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K Y B E R N E T I K A — V O L U M E 4 3 ( 2 0 0 7 ) , N U M B E R 2 , P A G E S 1 8 3 – 1 9 6

ON THE STRUCTURE OF CONTINUOUS UNINORMS

PaweÃl Drygaś

Uninorms were introduced by Yager and Rybalov [13] as a generalization of triangular
norms and conorms. We ask about properties of increasing, associative, continuous binary
operation U in the unit interval with the neutral element e ∈ [0, 1]. If operation U is
continuous, then e = 0 or e = 1. So, we consider operations which are continuous in
the open unit square. As a result every associative, increasing binary operation with the
neutral element e ∈ (0, 1), which is continuous in the open unit square may be given in
[0, 1)2 or (0, 1]2 as an ordinal sum of a semigroup and a group. This group is isomorphic to
the positive real numbers with multiplication. As a corollary we obtain the results of Hu,
Li [7].
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1. INTRODUCTION

Uninorms were introduced by Yager and Rybalov [13] as a generalization of triangu-
lar norms and conorms. However similar operations were considered in [3] and [4]. In
[6] Fodor, Yager and Rybalov examined a general structure of uninorms. For exam-
ple, the frame structure of uninorms and characterization of representable uninorms
are presented.

In this paper we consider a more general class of operations than uninorms,
i. e. operations from the class U(e) = {U : [0, 1]2 → [0, 1] : U is an increasing,
associative binary operation with the neutral element e} for e ∈ [0, 1], where we omit
the assumption about the commutativity. We ask about properties of continuous
operation U in U(e) where e ∈ [0, 1]. If operation U is continuous then e = 0 or
e = 1 (cf. [3]). So, we consider operations which are continuous in the open unit
square. The structure of operations continuous on another subset of unit square we
can find in [6, 11, 12].

First, in the Section 2 we present the notion of uninorms and the frame structure
of uninorms. Next we present the construction of ordinal sum of semigroups. In
Section 4 we present properties of the operation which is continuous in (0, 1)2.
As a result every operation in U(e) with e ∈ (0, 1), which is continuous in the open
unit square may be given in [0, 1)2 or (0, 1]2 as an ordinal sum of a semigroup and
a group. This group is isomorphic to the positive real numbers with multiplication.



184 P. DRYGAŚ

Moreover this operation is commutative beyond from two points at the most. As a
corollary we obtain results of Hu, Li [7] and Fodor, Yager, Rybalov [6].

2. NOTION OF UNINORMS

We discuss the structure of binary operations U : [0, 1]2 → [0, 1].

Definition 1. (Yager and Rybalov [13]) An operation U is called a uninorm if it
is commutative, associative, increasing and has the neutral element e ∈ [0, 1].

Uninorms are generalizations of triangular norms (case e = 1) and triangular
conorms (case e = 0). In the case e ∈ (0, 1) a uninorm U is composed by using a
triangular norm and a triangular conorm.

Theorem 1. (Fodor, Yager and Rybalov [6]) If a uninorm U has the neutral element
e ∈ (0, 1), then there exist a triangular norm T and a triangular conorm S such that

U =

{
T ∗ in [0, e]2,

S∗ in [e, 1]2,
(1)

where
{

T ∗(x, y) = ϕ−1 (T (ϕ(x), ϕ(y))) , ϕ(x) = x/e, x, y ∈ [0, e],

S∗(x, y) = ψ−1 (S (ψ(x), ψ(y))) , ψ(x) = (x− e)/(1− e), x, y ∈ [e, 1].
(2)

Lemma 1. (Fodor, Yager and Rybalov [6]) If U is increasing and has the neutral
element e ∈ (0, 1) then

min ≤ U ≤ max in A(e) = [0, e)× (e, 1] ∪ (e, 1]× [0, e). (3)

Furthermore, if U is associative, then U(0, 1), U(1, 0) ∈ {0, 1}.

Theorem 2. (Li and Shi [10]) Let e ∈ (0, 1). If T is an arbitrary triangular norm
and S is an arbitrary triangular conorm then formula (1) with U = min or U = max
in A(e) gives uninorms.

Remark 1. Uninorms from Theorem 2 are not continuous in some points such
that one of the variables is equal to the neutral element.

Example 1. (Fodor, Yager and Rybalov [6]) Formula

U(x, y) =

{
0, if x = 0 or y = 0,

xy
(1−x)(1−y)+xy , if x > 0 and y > 0

gives a uninorm with e = 1
2 , T (x, y) = xy

2−(x+y−xy) , S(x, y) = x+y
1+xy , x, y ∈ [0, 1].

This uninorm is continuous apart from the points (0, 1) and (1, 0).
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T ∗
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Fig. 1. Frame structure of uninorm U with neutral element e.

Theorem 3. (CzogaÃla and Drewniak [3]) If a uninorm is continuous then e = 0 or
e = 1.

3. REMARK ABOUT THE ORDINAL SUM THEOREM

In this section we consider the ordinal sum and dual ordinal sum of semigroups. Next
we present the characterization of continuous t-norms and t-conorms by using the
ordinal sum theorem. Additional information about the ordinal sum of semigroups
one may find in [1, 2, 5, 8, 9, 12].

Theorem 4. (Clifford [1], Climescu [2]) If (X,F ), (Y,G) are disjoint semigroups
then (X ∪ Y,H) is a semigroup, where H is given by

H(x, y) =





F (x, y), if x, y ∈ X,
G(x, y), if x, y ∈ Y,
x, if x ∈ X, y ∈ Y,
y, if x ∈ Y, y ∈ X.

(4)

By duality we obtain

Theorem 5. (Drewniak and Drygaś [5]) If (X,F ), (Y,G) are disjoint semigroups,
then (X ∪ Y,H) is a semigroup, where H is given by

H(x, y) =





F (x, y), if x, y ∈ X,
G(x, y), if x, y ∈ Y,
y, if x ∈ X, y ∈ Y,
x, if x ∈ Y, y ∈ X.

(5)
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Fig. 2. Ordinal sum (left) and dual ordinal sum (right) of semigroups (X,F ) and (Y,G).

For our consideration it will be useful to remember the characterization of con-
tinuous t-norms or t-conorms by using ordinal sum theorems.

Theorem 6. (Klement, Mesiar and Pap [9], p. 128, Sander [12]) Operation T :
[0, 1]2 → [0, 1] is continuous, associative, increasing, with the neutral element e = 1
iff there exists a family {(ak, bk)}k∈A (where A ⊂ Q ∩ [0, 1]) of nonempty, pairwise
disjoint, open subintervals of [0, 1] such that the operations Tk = T |[ak,bk]2 are con-
tinuous, increasing, associative with Archimedean property, neutral element bk and
T is given by

T (x, y) =

{
Tk(x, y), for (x, y) ∈ (ak, bk]2,

min(x, y), otherwise.
(6)

Moreover, the operation T is commutative.

Theorem 7. (Klement, Mesiar and Pap [9], p. 130) Operation S : [0, 1]2 → [0, 1] is
continuous, associative, increasing, with the neutral element e = 0 iff there exists
a family {(ak, bk)}k∈A (where A ⊂ Q ∩ [0, 1]) of nonempty, pairwise disjoint, open
subintervals of [0, 1] such that the operations Sk = S|[ak,bk]2 are continuous, increas-
ing, associative with Archimedean property, neutral element ak and S is given by

S(x, y) =

{
Sk(x, y), for (x, y) ∈ [ak, bk)2,

max(x, y), otherwise.
(7)

Moreover, the operation S is commutative.

4. MAIN RESULTS

In Theorems 6 and 7 a characterization of continuous operations in the class U(1)
and U(0) respectively is given. Moreover, if operation in the class U(e) is continuous,
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then e = 0 or e = 1 (see Theorem 3). Thus, we ask about the structure of operations
in the class U(e) which are continuous in the open unit square for e ∈ (0, 1).

Lemma 2. Let e ∈ (0, 1). If operation U ∈ U(e) is continuous in (0, 1)2 then
operation U |[0,e]2 is isomorphic to a continuous t-norm and U |[e,1]2 is isomorphic to
a continuous t-conorm.

P r o o f . First we prove that operation U |[e,1]2 is continuous. The operator U is
continuous in (0, 1)2. From this we obtain the continuity of the operation U |[e,1]2 in
[e, 1)2. Moreover U(x, y) ≥ max(x, y) for x, y ∈ [e, 1] and U(x, 1) = U(1, x) = 1 for
x ∈ [e, 1]. Let x, y ∈ [e, 1], then 1 ≥ U(x, y) ≥ max(x, y), limx→1 max(x, y) = 1 and
limy→1 max(x, y) = 1. It means that limx→1 U(x, y) = 1 and limy→1 U(x, y) = 1,
i. e. functions U(x, t) and U(t, y), t ∈ [e, 1] are continuous for all x, y ∈ [e, 1]. This
implies continuity of the operation U |[e,1]2 . It means, that U |[e,1]2 is a continuous,
associative, increasing operation with neutral element e, then it is isomorphic to a
continuous t-conorm.

In similar way we obtain that the operation U |[0,e]2 is isomorphic to a continuous
t-norm. ¤

Lemma 3. Let e ∈ (0, 1) and U ∈ U(e). If there exists a ∈ [0, e) such that
U(x, y) = x for x ∈ (a, e), y ∈ (e, 1) or U(x, y) = y for x ∈ (e, 1), y ∈ (a, e) then U
is not continuous in (0, 1)2.

P r o o f . Let U(x, y) = x for x ∈ (a, e), y ∈ (e, 1). Take s ∈ (e, 1) and let
f(t) = U(t, s), t ∈ [0, 1]. We have f(t) = U(t, s) = t < e for t ∈ (a, e) and
f(e) = s > e. It means, that the function f is not continuous at the point e. This
implies, that U is not continuous in (0, 1)2.

In similar way as above we obtain the second part of Lemma. ¤

In the next part of this paper we need the following lemmas

Lemma 4. (Klement, Mesiar and Pap [9]) Let J = [a, b] and F : J2 → J be
associative, increasing operation with the neutral element b. If x ∈ J is an idempo-
tent element of operation F and functions f(t) = F (x, t), h(t) = F (t, x), t ∈ J are
continuous in J then F (x, y) = F (y, x) = min(x, y) for y ∈ J .

Lemma 5. Let J = [a, b] and F : J2 → J be associative, increasing operation
with the neutral element a. If x ∈ J is an idempotent element of operation F and
functions f(t) = F (x, t), h(t) = F (t, x), t ∈ J are continuous in J then F (x, y) =
F (y, x) = max(x, y) for y ∈ J .

Lemma 6. Let e ∈ (0, 1) and U ∈ U(e) be continuous in (0, 1)2. If there exists
b ∈ (0, e) such that U(b, y) = b for y ∈ (b, e) or U(x, b) = b for x ∈ (b, e) then
U(x, y) = U(y, x) = min(x, y) for x ∈ [0, b] and y ∈ [b, 1).
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Fig. 3. The operation U from the Lemma 6.

P r o o f . Let x ∈ [0, b] and y ∈ (e, 1). For all t ∈ (b, e) we have U(b, t) = b. By
the continuity of the operation U we have U(b, b) = b. This means that b is an
idempotent element of the continuous operation U |[0,e]2 and by Lemma 4 we have
U(b, t) = U(t, b) = min(t, b) for t ∈ [0, e]. Hence, by monotonicity of U we have
U(s, t) = min(s, t) for s ∈ [0, b], t ∈ [b, e].

Suppose that there exists z ∈ (e, 1) such that U(b, z) ≥ e. By continuity of the
operation U and condition U(b, e) = b there exists w ∈ (e, z] such that U(b, w) = e.
Then

b = U(b, e) = U(b, U(b, w)) = U(U(b, b), w) = U(b, w) = e,

which is a contradiction. Therefore U(b, y) < e for all y ∈ (e, 1). By continuity of the
operation U and condition U(e, y) = y there exists v ∈ (b, e) such that U(v, y) = e.
Therefore for all x ≤ b we have

U(x, y) = U(min(x, v), y) = U(U(x, v), y) = U(x,U(v, y)) = U(x, e) = x.

By commutativity of the operation U |[0,e]2 we obtain U(y, x) = x for x ∈ [0, b] and
y ∈ [b, e]. In similar way as above we obtain U(y, x) = min(x, y) for x ∈ [0, b],
y ∈ [b, 1). If we assume that U(x, b) = b for x ∈ (b, e) then the proof is analogous.¤

By duality we obtain

Lemma 7. Let e ∈ (0, 1) and U ∈ U(e) be continuous in (0, 1)2. If there exists
a ∈ (e, 1), such that U(a, y) = a for y ∈ (e, a) or U(x, a) = a for x ∈ (e, a) then
U(x, y) = U(y, x) = max(x, y) for x ∈ [a, 1] and y ∈ (0, a].

Lemma 8. (cf. Hu and Li [7]) Let e ∈ (0, 1) and U ∈ U(e) be continuous in (0, 1)2.
Then there exist idempotent elements a ∈ [0, e) and b ∈ (e, 1] such that operations
U |(a,e]2 and U |[e,b)2 are strictly increasing. Moreover a = 0 or b = 1.
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Fig. 4. The operation U ∈ U(e) from Lemma 8.

P r o o f . By Lemma 2 operation U |[0,e]2 is isomorphic to a continuous t-norm.
By Theorem 6 there exists a countably family of intervals (ak, bk) ⊂ [0, e] such that
U |[0,e]2 is an ordinal sum of semigroups Tk = U |[ak,bk]2 with Archimedean property
or Tk = min.

Suppose that there does not exist such a ∈ [0, e) that U |[a,e]2 is a semigroup with
Archimedean property. Then there exists r ∈ [0, e) such that U |[r,e]2 = min or for
every neighborhood of the point e there exists k such that interval (ak, bk) is included
in that neighborhood, i. e. there exists an increasing subsequence {bkn} of sequence
{bk} convergent to e. So, we construct the sequence of idempotent elements {cn},
e. g. cn = e − 1

n+[ 1
e−r ] ∈ [r, e) in the first case, and cn = bkn in the second case.

According to (6) we have U(cn, y) = cn for all y ∈ (cn, e). By Lemma 6, U(x, y) = x
for x ∈ [0, cn] and y ∈ (e, 1). It implies that U(x, y) = x for x ∈ [0, e) =

⋃∞
n=1[0, cn]

and y ∈ (e, 1). Now, by Lemma 3, operation U is not continuous in (0, 1)2, which
is a contradiction. So, there exists a ∈ [0, e) such that U |[a,e]2 is isomorphic to a
continuous Archimedean t-norm. Moreover a is an idempotent element of operation
U and the zero element of operation U |[a,e]2 .

Now we show that U |(a,e]2 is strictly increasing. Suppose that it is not. It means
that U |[a,e]2 is isomorphic to the ÃLukasiewicz t-norm TL. By continuity of U there
exist p ∈ (a, e) and w ∈ (e, 1) such that U(p, w) = e. By the fact that U |[a,e]2
is isomorphic to TL (all elements from (a, e) are zero divisors, where zero element
is equal to a) it follows that U(p, q) = U(q, p) = a for some q ∈ (a, e) and by
monotonicity of operation U and because U(a, a) = a we have U(t, p) = a for all
t ∈ [a, q]. Therefore U(t, U(p, w)) = U(t, e) = t and U(U(t, p), w) = U(a,w). By
associativity of U we have U(a,w) = t for all t ∈ [a, q], which leads to a contradiction.
Thus U |(a,e]2 is strictly increasing.

In similar way we prove that there exists idempotent element b ∈ (e, 1], which is
the zero element of U |[e,b]2 , such that U |[e,b)2 is strictly increasing.

Suppose that a > 0 and b < 1. Since U(a, y) = a for all y ∈ (a, e), Lemma 6
implies that U(x, y) = min(x, y) for x ∈ [0, a] and y ∈ (e, 1). Similarly, since b is the
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zero element of U |[e,b]2 , Lemma 7 implies that U(x, y) = max(x, y) for x ∈ (0, e) and
y ∈ [b, 1]. Therefore U(x, y) = x and U(x, y) = y for x ∈ (0, a] and y ∈ [b, 1), which
is a contradiction.

Accordingly a = 0 or b = 1. ¤

Lemma 9. Let e ∈ (0, 1) and U ∈ U(e) be continuous in (0, 1)2. If there exists
a ∈ [0, e) such that operations U |(a,e]2 and U |[e,1)2 are strictly increasing then the
operation U |(a,1)2 is strictly increasing.

P r o o f . To show, that U |(a,1)2 is strictly increasing we must show that U is
strictly increasing on the set (a, e] × [e, 1) ∪ [e, 1) × (a, e]. By Lemma 2 operations
U |[0,e]2 and U |[e,1]2 are commutative. Let x, y ∈ (a, e], x < y and z ∈ [e, 1). Suppose
that U(x, z) = U(y, z). Then z > e because U(x, e) = x < y = U(y, e).

If U(x, z) = U(y, z) < e then by continuity of U and inequality U(e, z) = z > e
there exists s ∈ (x, e) such that U(s, z) = e. Then

x = U(x, e) = U(x,U(s, z)) = U(U(x, s), z) = U(U(s, x), z) = U(s, U(x, z))

= U(s, U(y, z)) = U(U(s, y), z) = U(U(y, s), z) = U(y, U(s, z)) = U(y, e) = y,

which is a contradiction.
If U(x, z) = U(y, z) ≥ e then, by continuity of U and condition U(x, e) = x, x <

y ≤ e, there exists c ∈ (e, z] such that U(x, c) = y. From U(y, e) = y ≤ e ≤ U(y, z),
there exists d ∈ [e, z] such that U(y, d) = e. Thus U(e, z) = z and

z = U(e, z) = U(U(y, d), z) = U(y, U(d, z)) = U(y, U(z, d))

= U(U(x, c), U(z, d)) = U(x,U(c, U(z, d))) = U(x,U(U(c, z), d))

= U(x,U(U(z, c), d)) = U(x,U(z, U(c, d))) = U(x,U(z, U(d, c)))

= U(U(x, z), U(d, c)) = U(U(y, z), U(d, c)) = U(y, U(z, U(d, c)))

= U(y, U(U(z, d), c)) = U(y, U(U(d, z), c)) = U(y, U(d, U(z, c)))

= U(U(y, d), U(z, c)) = U(e, U(z, c)) = U(z, c).

Moreover operation U |[e,1)2 is strictly increasing and z, c ∈ (e, 1). This leads to a
contradiction. Therefore U is strictly increasing with respect to the first variable in
the (a, e]× [e, 1).

Now let x, y ∈ [e, 1), x < y and z ∈ (a, e]. Suppose that U(z, x) = U(z, y). Then
z < e because U(e, x) = x < y = U(e, y).
If U(z, x) = U(z, y) > e then, by continuity of U and inequality U(z, e) = z < e,
there exists s ∈ (e, x) such that U(z, s) = e. Therefore

x = U(e, x) = U(U(z, s), x) = U(z, U(s, x)) = U(z, U(x, s)) = U(U(z, x), s)

= U(U(z, y), s) = U(z, U(y, s)) = U(z, U(s, y)) = U(U(z, s), y) = U(e, y) = y,

which is a contradiction.
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If U(z, x) = U(z, y) ≤ e then, by continuity of U and condition U(e, y) = y, e ≤
x < y, there exists c ∈ (z, e) such that U(c, y) = x. From U(e, x) = x > e ≥ U(z, x)
there exists d ∈ [z, e] such that U(d, x) = e. Therefore

z = U(z, e) = U(z, U(d, x)) = U(U(z, d), x) = U(U(d, z), x)

= U(U(d, z), U(c, y)) = U(d, U(z, U(c, y))) = U(d, U(U(z, c), y))

= U(d, U(U(c, z), y)) = U(d, U(c, U(z, y))) = U(U(d, c), U(z, y))

= U(U(c, d), U(z, x)) = U(U(U(c, d), z), x) = U(U(c, U(d, z)), x)

= U(U(c, U(z, d)), x) = U(U(U(c, z), d), x) = U(U(c, z), U(d, x))

= U(U(c, z), e) = U(c, z).

Moreover, operation U |(a,e]2 is strictly increasing and z, c ∈ (a, e). This leads to
a contradiction. Thus U is strictly increasing with respect to second variable on
(a, e]× [e, 1).

In a similar way we prove that U is strictly increasing on [e, 1)× (a, e]. ¤

Theorem 8. Let e ∈ (0, 1) and U ∈ U(e) be continuous in (0, 1)2. If there exists
an idempotent element a ∈ [0, e) of U such that operations U |(a,e]2 and U |[e,1)2 are
strictly increasing, then operation U |[0,1)2 is an ordinal sum of continuous semigroup
U |[0,a]2 with the neutral element a and continuous group U |(a,1)2 with Archimedean
property and the neutral element e.

P r o o f . By Lemma 2, the operation U |[0,e]2 is isomorphic to a continuous t-norm
and, since a is an idempotent element of this operation, U |[0,a]2 is also isomorphic
to a continuous t-norm. By Lemma 9, operation U |(a,1)2 is strictly increasing and
therefore it is isomorphic to the real numbers with addition. Now, taking into
account Lemma 6 we have that U |[0,1)2 is an ordinal sum of the semigroup U |[0,a]2

and the group U |(a,1)2 . ¤

Similarly, we obtain the following results:

Lemma 10. Let e ∈ (0, 1) and U ∈ U(e) be continuous in (0, 1)2. If there exists
b ∈ (e, 1] such that operations U |(0,e]2 and U |[e,b)2 are strictly increasing then the
operation U |(0,b)2 is strictly increasing.

Theorem 9. Let e ∈ (0, 1) and U ∈ U(e) be continuous in (0, 1)2. If there exists
an idempotent element b ∈ (e, 1] of U such that operations U |(0,e]2 and U |[e,b)2

are strictly increasing then operation U |(0,1]2 is a dual ordinal sum of continuous
group U |(0,b)2 with Archimedean property and the neutral element e and continuous
semigroup U |[b,1]2 with the neutral element b.

So, we have the characterization of this operation in the open unit square. Now
we ask about it’s structure on the boundary.
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Lemma 11. Let e ∈ (0, 1) and U ∈ U(e) be continuous in (0, 1)2. If there exists
an idempotent element a ∈ [0, e) of U such that operations U |(a,e]2 and U |[e,1)2 are
strictly increasing then there exist idempotent elements c, d ∈ [0, a] of operation U
such that

U(x, 1) =





x, if x ∈ [0, c),
1, if x ∈ (c, 1],
x or 1, if x = c,

(8)

U(1, x) =





x, if x ∈ [0, d),
1, if x ∈ (d, 1],
x or 1, if x = d.

(9)

Moreover c = d.

P r o o f . By the Lemma 1, U(0, 1) = 0 or U(0, 1) = 1. If U(0, 1) = 1 then by
monotonicity of U we have U(x, 1) = 1 for x ∈ [0, 1]. Therefore we obtain (8) for
c = 0. Moreover 0 is an idempotent element of the operation U .
If U(0, 1) = 0 then by Theorem 9 the semigroup U |(a,1)2 is isomorphic to the real
numbers with addition. Thus we have limy→1 U(x, y) = 1 for x ∈ (a, 1) and by
monotonicity of the operation U we obtain U(x, 1) = 1 for x ∈ (a, 1]. Let x ∈ (0, a].
First we will prove that U(x, 1) = x or U(x, 1) = 1. Suppose that there exists
z ∈ (0, a] such that z < U(z, 1) < 1 and let w = U(z, 1).
If w ∈ (a, 1) then for y ∈ (e, 1), by associativity of U and strictly monotonicity of
U |(a,1)2 , we obtain

w = U(z, 1) = U(z, U(y, 1)) = U(z, U(1, y))

= U(U(z, 1), y) = U(w, y) > U(w, e) = w,

which is a contradiction.
If w ∈ (z, a] then by the conditions U(0, w) = 0, U(e, w) = w and continuity of

U |[0,e]2 there exists v ∈ (0, e) such that U(v, w) = z and by associativity of U , we
obtain

w = U(z, 1) = U(U(v, w), 1) = U(U(v, U(z, 1)), 1)

= U(U(v, z), U(1, 1)) = U(U(v, z), 1) = U(v, U(z, 1)) = U(v, w) = z,

which is a contradiction. Therefore U(x, 1) = x or U(x, 1) = 1 for x ∈ [0, 1].
Thus, for c = inf{x ∈ [0, a] : U(x, 1) = 1} we obtain (8), moreover c ∈ [0, a].
Let x ∈ (0, c), y ∈ (c, e] then we have

U(x, y) = U(y, x) = U(y, U(x, 1)) = U(U(y, x), 1)

= (U(x, y), 1) = U(x, U(y, 1)) = U(x, 1) = x = min(x, y).

By monotonicity of U and inequality U |[0,e]2 ≤ min we obtain U(c, y) = c for
y ∈ (c, e). By above and continuity of U we have U(c, c) = c, i. e. c is an idempotent
element of operation U . Similarly we prove (9).
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To prove that c = d suppose that d < c. Then there exists y ∈ (d, c) such that
U(1, y) = 1 and U(y, 1) = y. Taking z ∈ (d, y) we have U(1, z) = 1 and

y = U(y, 1) = U(y, U(1, z)) = U(U(y, 1), z) = U(y, z) ≤ U(e, z) = z < y,

which is a contradiction, thus d ≥ c.
If we suppose that d > c then there exists y ∈ (c, d) such that U(1, y) = y and

U(y, 1) = 1. Taking z ∈ (y, d) we have

z = U(1, z) = U(U(y, 1), z) = U(y, U(1, z)) = U(y, z) ≤ U(y, e) = y < z,

which is a contradiction. Thus c = d. ¤

Lemma 12. Let e ∈ (0, 1) and U ∈ U(e) be continuous in (0, 1)2. If there exists
an idempotent element b ∈ (e, 1] of U such that operations U |(0,e]2 and U |[e,b)2 are
strictly increasing then there exist idempotent elements p, q ∈ [b, 1] of operation U
such that

U(x, 0) =





0, if x ∈ [0, p),
x, if x ∈ (p, 1],
0 or x, if x = p,

(10)

U(0, x) =





0, if x ∈ [0, q),
x, if x ∈ (q, 1],
0 or x, if x = q.

(11)

Moreover p = q.

0 e

e

1

1 b

b
c

d

a

a

U |(a,1)2

U |[0,a]2

min

min

min

min

Fig. 5. Operation U ∈ U(e) continuous in the open unit square with a > 0.

As a results of our considerations we obtain

Theorem 10. Let e ∈ (0, 1) and U ∈ U(e) be continuous in (0, 1)2. Then one of
the following two cases holds:
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(i) There exist idempotent elements a ∈ [0, e) and c ∈ [0, a] of operation U such
that U |[0,1)2 is an ordinal sum of continuous semigroup U |[0,a]2 with the neutral
element a and continuous group U |(a,1)2 with Archimedean property and the
neutral element e and conditions (8) and (9) hold.

(ii) There exist idempotent elements b ∈ (e, 1] and p ∈ [b, 1] of operation U , such
that U |(0,1]2 is a dual ordinal sum of continuous semigroup U |[b,1]2 with the
neutral element b and continuous group U |(0,b)2 with Archimedean property
and the neutral element e and conditions (10) and (11) hold.
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Fig. 6. Operation U ∈ U(e) continuous in the open unit square with b < 1.

P r o o f . By Lemma 8 there exist a ∈ [0, e) and b ∈ (e, 1] (a = 0 or b = 1) such
that U |(a,b)2 is strictly increasing (Lemma 9 and 10).

If b = 1 then by Theorem 8 and Lemma 11 we obtain (i).
If a = 0 then by Theorem 9 and Lemma 9 we obtain (ii). ¤

Remark 2. Operation U in the previous theorem is commutative in the set

(i) [0, 1]2 \ {(c, 1), (1, c)},

(ii) [0, 1]2 \ {(0, p), (p, 0)}.

5. CONCLUSION

By the above consideration we obtain the following results known from the pa-
pers [6] and [7]
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Theorem 11. (Hu and Li [7], Theorem 4.5) Let e ∈ (0, 1) and U be a uninorm
which is continuous in (0, 1)2. Then U can be represented as follows:

(i) U(x, y) =





eT (xe ,
y
e ), if x, y ∈ [0, a],

h−1(h(x) + h(y)), if x, y ∈ (a, 1),

x, if x ∈ [0, a], y ∈ (a, 1) or x ∈ [0, c), y = 1,

y, if x ∈ (a, 1), y ∈ [0, a] or x = 1, y ∈ [0, c),

1, if x ∈ (c, 1], y = 1 or x = 1, y ∈ (c, 1],

x or y, if x = c, y = 1 or x = 1, y = c,

where a ∈ [0, e), c ∈ [0, a], U(c, c) = c, function h : [a, 1]→ [−∞,+∞] is strict
and h(a) = −∞, h(e) = 0, h(1) = +∞;

(ii) U(x, y) =





e+ (1− e)S(x−e1−e ,
y−e
1−e ), if x, y ∈ [b, 1],

h−1(h(x) + h(y)), if x, y ∈ (0, b),

y, if x ∈ (0, b), y ∈ [b, 1] or x = 0, y ∈ (p, 1],

x, if x ∈ [b, 1], y ∈ (0, b) or x ∈ (p, 1], y = 0,

0, if x = 0, y ∈ [0, p) or x ∈ [0, p), y = 0,

x or y, if x = p, y = 0, or x = 0, y = p,

where b ∈ (e, 1], p ∈ [b, 1], U(p, p) = p, function h : [0, b]→ [−∞,+∞] is strict
and h(0) = −∞, h(e) = 0, h(b) = +∞.

Theorem 12. (Fodor, Yager and Rybalkov [6]) Let e ∈ (0, 1) and U be a uninorm
continuous without the points (0, 1) and (1, 0). Then operations U |(0,e]2 and U |[e,1)2

are strictly increasing and

U(x, y) =
{
h−1(h(x) + h(y)), for (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)},
0 or 1, elsewhere, (12)

where h : [0, 1]→ [−∞,+∞] is an increasing bijection such that h(e) = 0.

P r o o f . Operation U |(0,1)2 is continuous. Suppose that in Theorem 10 the con-
dition (i) holds, i. e. there exists a ∈ [0, e), such that operation U |(a,1)2 is strictly
increasing. By Lemma 11 there exists c ∈ [0, a] such that (8) holds.

Suppose that c < a, then for x ∈ (c, a) and y ∈ (e, 1) we have U(x, y) =
min(x, y) = x and U(x, 1) = 1. It means that U is not continuous at the points
(x, 1), x ∈ (c, a). Therefore c = a.

Suppose now, that a > 0. By Lemma 11 we have U(x, 1) = x for x ∈ [0, a) and
U(x, 1) = 1 for x ∈ (a, 1]. It means that the point (a, 1) is a point of discontinuity
of the operation U , which leads to a contradiction. Thus a = 0. Now, directly by
the above theorem, we obtain (12). ¤

(Received April 17, 2006.)



196 P. DRYGAŚ
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M. Krawczak, and S. Zadrożny, eds.), EXIT, Warszawa 2005, pp. 147–158.

[6] J. Fodor, R. Yager, and A. Rybalov: Structure of uninorms. Internat. J. Uncertain.
Fuzziness Knowledge–Based Systems 5 (1997), 411–427.

[7] S.-K. Hu and Z.-F. Li: The structure of continuous uninorms. Fuzzy Sets and Systems
124 (2001), 43–52.

[8] S. Jenei: A note on the ordinal sum theorem and its consequence for the construction
of triangular norm. Fuzzy Sets and Systems 126 (2002), 199–205.

[9] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms. Kluwer Academic Publish-
ers, Dordrecht 2000.

[10] Y.-M. Li and Z.-K. Shi: Remarks on uninorm aggregation operators. Fuzzy Sets and
Systems 114 (2000), 377–380.

[11] M. Mas, M. Monserrat, and J. Torrens: On left and right uninorms. Internat. J.
Uncertain. Fuzziness Knowledge–Based Systems 9 (2001), 491–507.

[12] W. Sander: Associative aggregation operators. In: Aggregation Operators (T. Calvo,
G. Mayor, and R. Mesiar, eds), Physica–Verlag, Heidelberg 2002, pp. 124–158.

[13] R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets and Systems
80 (1996), 111–120.
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