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KYBERNET IK A — VOLUME 4 2 ( 2 0 0 6 ) , NU MB ER 6 , P AG E S 6 2 9 – 6 4 6

DECISION–MAKING UNDER UNCERTAINTY PROCESSED
BY LATTICE–VALUED POSSIBILISTIC MEASURES

Ivan Kramosil

The notion and theory of statistical decision functions are re-considered and modified
to the case when the uncertainties in question are quantified and processed using lattice-
valued possibilistic measures, so emphasizing rather the qualitative than the quantitative
properties of the resulting possibilistic decision functions. Possibilistic variants of both
the minimax (the worst-case) and the Bayesian optimization principles are introduced and
analyzed.

Keywords: decision making under uncertainty, complete lattice, lattice-valued possibilistic
measures, possibilistic decision function, minimax and Bayesian optimization
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1. INTRODUCTION, MOTIVATION, PRELIMINARIES

In this paper, we take an inspiration and motivation in the theory of statistical
decision functions developed on the grounds of Kolmogorov’s axiomatic probability
theory (see, e. g. [8] or [10]). Consider a system S the actual internal state of which
is s0. The value of s0 is neither known nor immediately observable by a subject
who is to control the system S, just a set S in which s0 is included is known. The
subject takes a decision d from a fixed set D of possible decisions. The consequences
resulting this act depend only on d and the actual state s0 and they are supposed to
be quantified by a non-negative real number λ(s, d) taken as the loss suffered when
s is the actual state and d is applied. Hence, a decision d is optimal w.r.t. s, if the
inequality λ(s, d0) ≤ λ(s, d1) holds for each d1 ∈ D.

However, up to the trivial cases the actual states are not known or directly observ-
able, the only what is at the subject’s disposal are empirical data taking their values
in a set E. We suppose that the way in which the subject takes his/her decisions can
be described by a decision function δ : E → D. Combining our notation together, if
s is the actual state, e is the empirical value being at the subject disposal and δ is
the decision function which he/she applies, the suffered loss is λ(s, δ(e)) ∈ [0,∞). A
decision function δ0 : E → D is uniformly optimal (uniformly the best one), if for
every δ : E → D, every s ∈ S, and every e ∈ E the inequality λ(s, δ0(e)) ≤ λ(s, δ(e))
is valid. However, up to very elementary cases when the actual state of the system
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can be identified from the empirical data, such an optimal decision function does
not exist.

Let us analyze, in more detail, the case when the phenomenon of randomness
enters our model, so giving arise the notion of statistical decision functions. The
reader is supposed to be familiar with the notion of probability space 〈Ω,A, P 〉. Given
a nonempty set Z and a σ-field Z of subsets of Z, a 〈Z,Z〉-measurable mapping
X : Ω → Z is called a 〈Z,Z〉-valued random variable defined on the probability
space 〈Ω,A, P 〉. If Z is finite and Z is not specified, we suppose that Z = P(Z).
Hence, we will suppose that the empirical value being at the subject’s disposal, is
the value taken by an E-valued random variable η : Ω → E. Accepting, below,
the so called bayesian approach, we will suppose that also the actual internal state
s0 of the system in question is the value taken by an S-valued random variable
σ : Ω → S. For the sake of simplicity we suppose that E,S,D are finite sets, so
that the conventions on the corresponding σ-fields apply. Under this setting, the
decision function δ converts into a D-valued random variable δ∗ : Ω → D such that
δ∗(ω) = δ(η(ω)) for every ω ∈ Ω, and the loss function λ converts into a real-valued
random variable λ∗ : Ω → R = (−∞,∞), setting λ∗(ω) = λ(σ(ω), δ(η(ω))) for every
ω ∈ Ω.

In general, there does not exist a decision function δ0 : E → D such that the
inequality λ(σ(ω), δ0(η(ω))) ≤ λ(σ(ω), δ(η(ω))) would hold for every δ : E → D
and every ω ∈ Ω. However, the bayesian approach enables to define, under some
conditions, the expected value Eλ∗ =

∫∞
−∞ λ∗(·) dP of the random variable λ∗. A

decision function δ0 : E → D is optimal in the bayesian sense w.r.t. the apriori
random variable σ, if

E(λ(δ(·), δ0(η(·)))) = inf{E(λ(σ(·), δ(η(·)))) : δ : E → D} (1.1)

holds. Given ε > 0, a decision function δ0,ε : E → D is ε-optimal in the bayesian
sense w.r.t. σ, if for each δ : E → D the inequality

E(λ(δ(·), δ0,ε(η(·)))) < E(λ(δ(·), δ(η(·)))) + ε (1.2)

is the case. A decision function δ0 satisfying (1.1) need not, in general, exist, but a
decision function δ0,ε satisfying (1.2) obviously exists for each ε > 0. Cf. [2] or [12]
for more detail.

Keeping the idea that degrees of randomness are defined by sizes of (some) subsets
of the space Ω of all elementary random events under consideration, let us abandon
the assumption that the values ascribed to these sets are real numbers, and let us
take into consideration also non-numerical values from a set equipped by a structure
weaker than the structures definable over the unit interval of real numbers. E.g.,
degrees of randomness from a partially ordered set or lattice-valued degrees may be
taken into consideration, with the operation of addition replaced by that of supre-
mum, definable in partially ordered sets and lattices. Pursuing this way of reasoning
in more detail, we arrive at the notion of lattice-valued possibilistic measure.

Our aim will be, in this paper, to investigate whether the idea of statistical
decision function, very briefly sketched above, can be modified to the case when
probability measure is replaced by a lattice-valued possibilistic measure. To be able
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to do so at a formalized level, the reader is supposed to be familiar with some more
or less elementary notions of lattice theory and their relations (cf. [1] or [6], e. g.),
let us list them very briefly.

Let us begin with the notion of partially ordered set (poset) T = 〈T,≤T 〉 (or
simply ≤, if no misunderstanding menaces). By t1 ∨ t2 or

∨
S (t1 ∧ t2,

∧
S, resp.)

we denote the supremum (infimum, resp.) operation defined in T in the standard
way. The values

∨
S and/or

∧
S need not be defined in general, but if it is the

case, they are defined uniquely. A pose T = 〈T,≤T 〉 is called a complete lattice,
if for each S ⊂ T the values

∨
S and

∧
S are defined (for S = ∅, the conventions∨

S = ®T =
∧

T and
∧

S = 1T =
∨

T apply). 1T is the unit element of T and
®T is the zero element of T , only the nontrivial cases when ®T < 1T holds are
considered below (t1 < t2 means that t1 ≤ t2 and t1 6= t2 hold).

Let T = 〈T,≤〉 be a complete lattice. A mapping τ : T × T → T is called
triangular seminorm (t-seminorm) on T , if the conditions

(i) τ(t,1T ) = τ(1T , t) = t for each t ∈ T (boundary conditions), and

(ii) for each s1, s2, t1, t2 ∈ T such that s1 ≤ t1 and s2 ≤ t2 hold, the inequality
τ(s1, s2) ≤ τ(t1, t2) holds (isotonicity)

are valid. If τ is, moreover, commutative and associative, it is called triangular norm
(t-norm) on T .

Obviously, for each complete lattice T = 〈T,≤〉 infimum is a t-norm on T and for
each t-norm τ on T the relation τ(s, t) ≤ s ∧ t holds. The inequality

∨
s∈A τ(t, s) ≤

τ(t,
∨

A) also holds for each t-norm τ on T and each A ⊂ T, but the equality
need not hold in general. A t-norm τ on T is called distributive, if the equality∨

s∈A τ(t, s) = τ(t,
∨

A) holds for each t ∈ T and A ⊂ T.
Cf. [1], [6], or [11] for more detail on posets, lattices, Boolean algebras and related

notions.

2. LATTICE–VALUED POSSIBILISTIC MEASURES AND VARIABLES

Given a nonempty set Ω, the reader is supposed to be familiar with the notion of
field and σ-field of subsets of Ω. A nonempty system A ⊂ P(Ω) is called complete
field (in [3] the term ample field is proposed), if for each A ∈ A and each A0 ⊂ A
the sets Ω−A and

∪A0 are in A.

Definition 2.1. Let Ω be a nonempty set, let A ⊂ P(Ω) be a complete field (hence,
Ω and ∅ are in A), let T = 〈T,≤〉 be a complete lattice. A mapping Π : A → T is
called a T -(valued) possibilistic measure on A, if Π(Ω) = 1T , Π(∅) = ®T and, for
every A,B ∈ A, Π(A ∪ B) = Π(A) ∨ Π(B). A T -possibilistic measure Π on A is
complete, if for each ∅ 6= A0 ⊂ A the relation

Π
(∪

A0

)
=

∨
{Π(A) : A ∈ A0} (2.1)

holds. The triple 〈Ω,A, Π〉 is called T -possibilistic space.
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Evidently, T -possibilistic measures are particular cases of the so called T -monotone
(or T -fuzzy) measures on A.

Definition 2.2. Given nonempty sets Ω and Z and nonempty complete fields
A ⊂ P(Ω) and Z ⊂ P(Z), a mapping X : Ω → Z is Z-(valued) possibilistic variable,
if it is (A,Z)-measurable, i. e., if for each B ∈ Z its inverse image X−1(B) is in A.

In what follows, we will investigate 〈T,ZT 〉-valued possibilistic variables and we
will need and suppose that for each t ∈ T the set {s ∈ T : s ≥ t} is in ZT . However,
it can be easily proved that this is the case just when ZT = P(T ). Consequently, we
will suppose, in what follows and if not stated explicitly otherwise, that ZT = P(T )
and such possibilistic variables will be denoted as T -valued.

Definition 2.3. Let T = 〈T,≤〉 be a complete lattice, let 〈Ω,A, Π〉 be a T -
possibilistic space, let X be a T -possibilistic variable, let τ be a t-norm on T. The
expected value Eτ X of X w.r.t. τ is defined by

EτX =
∨

t∈T

τ [t, Π({ω ∈ Ω : X(ω) ≥ t})] =
∮

XdΠ, (2.2)

as this value is nothing else than the so called Sugeno integral of the T -valued function
X taken w.r.t. T -possibilistic measure Π and the t-norm τ. Under the conditions
imposed above on the notions occurring in (2.1), the value EτX, belonging to T , is
always defined.

Given A ∈ A, let XA(ω) = 1T , if ω ∈ A,XA(ω) = ®T , if ω ∈ Ω − A. Then, for
each t-norm τ on T, EτXA ≤ E∧XA = Π(A) holds (∧ is the minimum).

Cf. [3], [4] and [5] for more detail on possibilistic measures.

3. POSSIBILISTIC DECISION FUNCTIONS

In this section our aim will to reconsider the problem of decision making under un-
certainty as sketched in Section 1, but this time with the phenomenon of uncertainty
(randomness) formally described and processed, and with the degrees of uncertainty
quantified, by the tools offered by lattice-valued possibilistic measures and variables.
Hence, let the symbols S (set of states), D (set of decisions and E (set of empirical
values) keep their meanings and the intuition behind as introduced above. Deci-
sion function δ is, again, a mapping which takes E into D. Given a complete lattice
T = 〈T,≤〉, a T -valued loss function λ is a mapping which takes the Cartesian prod-
uct S × D into T. So, the loss suffered when s is the actual state, e the empirical
value and δ the decision function applied can be denoted by λ(s, δ(e)).

In order to implement the possibilistically processed phenomenon of uncertainty
into our model, let us fix a T -possibilistic space 〈Ω,A, Π〉 and suppose that (i) the
actual internal state s is the value taken by an S-valued possibilistic variable defined
on 〈Ω,A,Π〉. In both the cases we suppose that the complete fields over S and E
are the power-sets P(S) and P(E).
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Under these notations and assumptions the loss suffered when ω ∈ Ω is the
elementary random event can be defined by the value λ(σ(ω), δ(η(ω))) from T ; let
us prove that it is a T -valued possibilistic variable (let us recall that we take ZT =
P(T )). Indeed, given d ∈ D and t ∈ T and setting δ−1(d) = {e ∈ E : δ(e) = d},
R(t) = {〈s, d〉 ∈ S ×D : λ(s, d) = t}, we obtain that

{ω ∈ Ω : λ(σ(ω), δ(η(ω))) = t}
= {ω ∈ Ω : 〈σ(ω), δ(η(ω))〉 ∈ R(t)}
=

∪

〈s,d〉∈R(t)

{ω ∈ Ω : σ(ω) = s, δ(η(ω)) = d}

=
∪

〈s,d〉∈R(t)

({ω ∈ Ω : σ(ω) = s} ∩
∪

e∈δ−1(d)

{ω ∈ Ω : η(ω) = e}). (3.1)

As the sets {ω ∈ Ω : σ(ω) = s} and {ω ∈ Ω : η(ω) = e} are in A for each s ∈ S and
e ∈ E and A is a complete field, the set {ω ∈ Ω : λ(σ(ω), δ(η(ω))) = t} is also in A.
Hence, for each B ⊂ T, the set

{ω ∈ Ω : λ(σ(ω), δ(η(ω))) ∈ B} =
∪

t∈B

{ω ∈ Ω : λ(σ(ω), δ(η(ω))) = t} (3.2)

is in A, so that λ(σ(ω), δ(η(ω))) is a T -possibilistic variable defined on the T -
possibilistic space 〈Ω,A, Π〉 and taking 〈Ω,A〉 into 〈T,P(T )〉.

Hence, we can define the expected value of the T -valued loss function λ(σ(·), δ(η(·)))
(abbreviated by λ∗, if σ, δ and η are fixed) w.r.to a t-norm τ on T, setting

Eτλ∗ = Eτλ(σ(·), δ(η(·))) =
∨

t∈T

τ [t, Π({ω ∈ Ω : λ(σ(ω), δ(η(ω))) ≥ t})] (3.3)

and using this value as a global characteristic of the quality of the decision function δ.
Due to the conditions imposed on T = 〈T,≤〉 this value is always defined, however,
contrary to the case of real-valued loss functions, some pairs 〈δ1, δ2〉 of decision
functions may be incomparable w.r.t to corresponding expected values. As T is
complete lattice, the value

Einf
τ λ∗ =

∧

δ:E→T

∨

t∈T

τ [t,Π({ω ∈ Ω : λ(σ(ω), δ(η(ω))) ≥ t})] (3.4)

is defined in T, so that, for each t0 > Einf
τ λ∗, there exists δ0 : E → D such that the

inequality Eτλ(σ(·), δ0(η(·))) < t0 holds. However, in general, a decision function δ1

satisfying Eτλ(σ(·), δ1(η(·))) = Eτλ∗ need not exist, as the following simple example
demonstrates.

Let 〈Ω,A, Π〉 be a possibilistic space, let S = D = {s1, s2}, let E = {e} be the
degenerated observational space, let T = 〈T,≤〉 be a complete lattice, let λ(s, d) =
®T , if s = d, λ(s, d) = 1T , if s 6= d, let Π({ω ∈ Ω : σ(ω) = si}) = ti > ®T for both
i = 1, 2, let t1 ∧ t2 = ®T . Such a possibilistic measure can be easily obtained, e. g.,
take T = 〈P(Ω),⊂〉 and define Π as the identity on the complete field P(Ω). Then

Π({ω ∈ Ω : σ(ω) = s1}) ∧Π({ω ∈ Ω : σ(ω) = s2})
= {ω ∈ Ω : σ(ω) = s1} ∩ {ω ∈ Ω : σ(ω) = s2} = ∅ = ®T , (3.5)
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even if the sets {ω ∈ Ω, σ(ω) = si} are nonempty for both i = 1, 2.
Only the two decision functions are possible: δs1(e) = s1 and δs2(e) = s2. As

η(ω) = e for each ω ∈ Ω, we obtain that

λ(σ(ω), δs1(η(ω))) = λ(σ(ω), s1) = ®T , if σ(ω) = s1,

λ(σ(ω), δs1(η(ω))) = λ(σ(ω), s·1) = 1T , if σ(ω) = s2, (3.6)

and dually for δs2 . So, given a t-norm τ on T,

Eτλ(σ(·), δs1(η(·))) =
∨

t∈T

τ [t,Π({ω ∈ Ω : λ(σ(ω), δs1(η(ω))) ≥ t})]

≤
∨

t∈T

[t ∧Π({ω ∈ Ω : λ(σ(ω), δs1(η(ω))) ≥ t})]

=
∨

t∈T

[t ∧Π({ω ∈ Ω : λ(σ(ω), s1) ≥ t})]

= 1T ∧Π({ω ∈ Ω : σ(ω) = s2}) = 1T ∧ t2 = t2. (3.7)

Analogously, Eτλ(σ(·), δs2(η(·))) ≤ t1 holds, so that the relation

Einf
τ λ∗ = (Eτλ(σ(·), δs1(η(·)))) ∧ (Eτλ(σ(·), δs2(η(·)))) = t1 ∧ t2 = ®T (3.8)

follows, but the value Einf
τ λ∗ is reachable neither by δs1 nor by δs2 .

4. CLASSIFICATION OF POSSIBILISTIC DECISION FUNCTIONS
BASED ON THE MINIMAX PRINCIPLE

One way how to introduce the minimax principle into our reasoning reads as fol-
lows. Instead of the loss λ(s, d) suffered when s is the actual state and d is the
decision we consider its “pessimistic” approximation from above, supposing that
the loss

∨
s∈S λ(s, d) is suffered, hence, we define the loss function λ̂ : D → T by

λ̂(d) =
∨

s∈S λ(s, d). So λ̂(η(ω)) is the loss suffered when η(ω) is the empirical value
under consideration, it defines a T -valued possibilistic variable on 〈Ω,A,Π〉 and the
expected value Eτ λ̂(δ(η(·))) of this variable, denoted by χMM (δ) (MM for minimax)
can serve as a T -valued degree of quality of the decision function δ.

Another criterion of quality of the decision function δ obeying the minimax prin-
ciple may be like this. Given s ∈ S, take the expected value of the loss func-
tion λ(s, δ(η(·))) and set χmm(δ) =

∨
s∈S Eτλ(s, δ(η(·))). Denoting by χB

σ (δ) (B for
Bayes) the value Eτλ∗ defined by (3.3), the following relation can be proved.

Theorem 4.1. Let S,D and E be as in Section 3, let T = 〈T,≤〉 be a complete
lattice, let τ be a t-norm on T, let λ : S ×D → T be a T -valued loss function, let
〈Ω,A, Π〉 be a T -possibilistic space. Then, for each possibilistic variables σ : Ω → S,
η : Ω → E, and each decision function δ : E → D the relation χB

σ (δ) ≤ χmm(δ) ≤
χMM (δ) holds.

When proving this assertion, the following lemma will be of use.
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Lemma 4.1. Let T = 〈T,≤〉 be a complete lattice, let 〈Ω,A,Π〉 be a T -possibilistic
space, let F be a nonempty set of T -valued possibilistic variables on 〈Ω,A, Π〉, let
τ be a t-norm on T. Then the relation

∨
f∈F (Eτf) ≤ Eτ (

∨F) is valid, where
(
∨F)(ω) =

∨
f∈F f(ω) for each ω ∈ Ω. If there exists, for every ω ∈ Ω, at most one

f ∈ F such that f(ω) > ®T holds, then the equality
∨

f∈F (Eτf) = Eτ (
∨F) holds.

P r o o f . For each f ∈ F and each t ∈ T the inequality

Π({ω ∈ Ω : f(ω) ≥ t}) ≤ Π({ω ∈ Ω :
(∨

F
)

(ω) ≥ t}) (4.1)

is obvious, hence, the inequalities Eτf ≤ Eτ (
∨F) and

∨
f∈F (Eτf) ≤ Eτ (

∨F)
immediately follow. Let there exist, for every ω ∈ Ω, at most one f ∈ F such that
f(ω) > ®T is the case. Then, for each t ∈ T, t > ®T ,

{ω ∈ Ω :
(∨

F
)

(ω) ≥ t} =
∪

f∈F
{ω ∈ Ω : f(ω) ≥ t}, (4.2)

so that
Π({ω ∈ Ω :

(∨
F

)
(ω) ≥ t}) =

∨

f∈F
Π({ω ∈ Ω : f(ω) ≥ t}) (4.3)

follows. Moreover, for each t > ®T , if {ω ∈ Ω : (
∨F) (ω) ≥ t} 6= ∅, then there exists

just one ft ∈ F such that

{ω ∈ Ω :
(∨

F
)

(ω) ≥ t} = {ω ∈ Ω : ft(ω) ≥ t}. (4.4)

Hence, the inequalities

τ [t,Π({ω ∈ Ω :
(∨

F
)

(ω) ≥ t})] ≤
∨

f∈F

∨

t∈T

τ [t, Π({ω ∈ Ω : f(ω) ≥ t})] =
∨

f∈F
(Eτf)

(4.5)
and

Eτ

(∨
F

)
=

∨

t∈T

τ [t,Π({ω ∈ Ω :
(∨

F
)

(ω) ≥ t})] ≤
∨

f∈F
(Eτf) (4.6)

follow, what completes the proof of Lemma 4.1. ¤

P r o o f o f Th e o r em 4.1. Set, for each s ∈ S and ω ∈ Ω, λ̂s(ω) = λ(s, δ(η(ω))),
if σ(ω) = s, λ̂s(ω) = ®T , if σ(ω) 6= s. Then, for each ω ∈ Ω, the relations

λ̂s(ω) ≤ λ(s, δ(η(ω))), λ(σ(ω), δ(η(ω))) =
∨

s∈S

λ̂s(ω) (4.7)

are valid and for each ω ∈ Ω there exists at most one s ∈ S such that λ̂s(ω) > ®T
holds. Applying Lemma 4.1 to F = {λ̂s : s ∈ S}, we obtain that

∨
s∈S(ET λ̂s(·)) =
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Eτ

(∨
s∈S λ̂s(·)

)
, so that the relation

χB
σ (δ) = Eτλ(σ(·), δ(η(·))) = Eτ

( ∨

s∈S

λ̂s(·)
)

=
∨

s∈S

(Eτ λ̂s(·))

≤
∨

s∈S

(Eτλ(s, δ(η(·))) = χmm(δ) (4.8)

easily follows. Applying Lemma 4.1 again, now to F = {ρ(s, δ(η(·))) : s ∈ S}, we
obtain that χmm(δ) ≤ Eτ

(∨
s∈S λ(s, δ(η(·)))

)
= χMM (δ) holds and Theorem 4.1 is

proved. ¤

The equality χmm(δ) = χMM (δ) does not hold in general. Indeed, let S =
{s1, s2}, D = {d1, d2}, E = {e1, e2}, let δ(ei) = di for both i = 1, 2. Set Π({ω ∈ Ω :
η(ω) = ei}) = ti for both i = 1, 2 and suppose that ®T < t1, t2 < 1T , t1 ∧ t2 = ®T
holds (t1 ∨ t2 = 1T easily follows). Let λ(s1, d1) = λ(s2, d2) = t2, λ(s1, d2) =
λ(s2, d1) = t1. Then, for each ω ∈ Ω, λ(s1, δ(η(ω)))∨λ(s2, δ(η(ω))) = t1∨ t2 = 1T =
χMM (δ). However,

{ω ∈ Ω : λ(si, δ(η(ω))) = t2} = {ω ∈ Ω : η(ω) = ei},
{ω ∈ Ω : λ(si, δ(η(ω))) = t1} = {ω ∈ Ω : η(ω) 6= ei}, (4.9)

consequently,

Eτλ(s1, δ(η(·))) = τ [t1, Π({ω ∈ Ω : η(ω) = e2})] ∨ τ [t2,Π({ω ∈ Ω : η(ω) = e1})]
= τ [t1, t2] ∨ τ [t2, t1] ≤ (t1 ∧ t2) ∨ (t2 ∧ t1) = ®T (4.10)

The proof that Eτλ(s2, δ(η(·))) = ®T is quite analogous, so that

χmm = (Eτλ(s1, δ(η(·)))) ∨ (Eτλ(s2, δ(η(·)))) = ®T < 1T = χMM (δ). (4.11)

Theorem 4.2. Let the notations and conditions of Theorem 4.1 hold, let the
loss function λ take only the values ®T or 1T . Then, for each decision function
δ : E → D,χmm(δ) = χMM (δ).

P r o o f . Obviously, under the restrictions given, for each s ∈ S,Eτλ(s, δ(η(·))) =
τ [1T , Π({ω ∈ Ω : λ(s, δ(η(ω))) = 1T })] = Π({ω ∈ Ω : λ(s, δ(η(ω))) = 1T }). So,

χmm(δ) =
∨

s∈S

Eτλ(s, δ(η(·))) =
∨

s∈S

Π({ω ∈ Ω : λ(s, δ(η(ω))) = 1T })

= Π

( ∪

s∈S

{ω ∈ Ω : λ(s, δ(η(ω))) = 1T }
)

= Π({ω ∈ Ω :
∨

s∈S

λ(s, δ(η(ω))) = 1T })

= τ [1T , Π({ω ∈ Ω :
∨

s∈S

λ(s, δ(η(ω))) = 1T })

=
∨

t∈T

τ [t,Π({ω ∈ Ω :
∨

s∈S

λ(s, δ(η(ω))) ≥ t})]
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= Eτ

( ∨

s∈S

λ(s, δ(η(·)))
)

= χMM (δ), (4.12)

as
∨

s∈S λ(s, ·) is also a mapping which takes S ×D into {®T ,1T }. ¤

Corollary 4.1. Let the notations and conditions of Theorem 4.1 hold, let S contain
at least two elements, let S = D, let λ(s, d) = ®T , if s = d, λ(s, d) = 1T , if s 6= d.
Then, for each δ : E → D,χmm(δ) = χMM (δ) = 1T .

P r o o f . As the conditions of Theorem 4.2 hold, only the relation χmm(δ) = 1T
remains to be proved. (4.12) yields that

χmm(δ) = Π

( ∪

s∈S

{ω ∈ Ω : λ(s, δ(η(ω))) = 1T }
)

= Π

( ∪

s∈S

{ω ∈ Ω : δ(η(ω)) 6= s}
)

= Π

(
Ω−

∩

s∈S

{ω ∈ Ω : δ(η(ω)) = s}
)

= Π(Ω) = 1T , (4.13)

as S contains at least two elements and for no ω ∈ Ω δ(η(ω)) can take more than
one value from S. ¤

Let us analyse, in more detail, the case when χmm(δ) < 1T holds, i. e., applying
(4.12), when χmm(δ) = Π(Ω−∩

s∈S{ω ∈ Ω : λ(s, δ(η(ω))) = ®T }) < 1T is the case.
Hence, setting t0 = χmm(δ), the inequality Π({ω ∈ Ω : λ(s, δ(η(ω))) = 1T }) ≤ t0 <
1T is valid for each s ∈ S. Setting t1 = Π(

∩
s∈S{ω ∈ Ω : λ(s, δ(η(ω))) = ®T }), we

obtain that, for each s ∈ S,®T < t1 ≤ Π({ω ∈ Ω : λ(s, δ(η(ω))) = ®T }) holds. If
the complete lattice T = 〈T,≤〉 defines a standard linear ordering on T (t1 ≤ t2 or
t2 ≤ t1 for each t1, t2 ∈ T}, then Π(Ω−A) = 1T easily follows for each A ∈ A such
that Π(A) < 1T holds. In this particular case, t1 = Π(

∩
s∈S{ω ∈ Ω : λ(s, δ(η(ω))) =

®T }) = 1T holds for each s ∈ S.

5. POSSIBILISTIC DECISION FUNCTIONS FOR STATE IDENTIFICATION
UNDER BAYESIAN CLASSIFICATION

In this section, we will go on in analyzing the most simple lattice-valued possibilistic
functions related to the identification of the actual state of the system under inves-
tigation. Hence, we suppose that S = D and that the {®T ,1T } loss function is
applies, i. e., λ(s, d) = ®T , if s = d, λ(s, d) = 1T otherwise. We also suppose that
the actual state is defined by the value of an S-valued possibilistic variable σ defined
on the fixed possibilistic space 〈Ω,A, Π〉. Under these conditions,

χB
σ (δ) = Eτλ∗ = τ [®T , Π({ω ∈ Ω : λ(σ(ω), δ(η(ω))) ≥ ®T })]
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∨ τ [1T , Π({ω ∈ Ω : λ(σ(ω), δ(η(ω))) ≥ 1T })]
= τ [®T ,1T ] ∨Π({ω ∈ Ω : λ(σ(ω), δ(η(ω)) = 1T })
= Π({ω ∈ Ω : σ(ω) 6= δ(η(ω))}). (5.1)

Hence, the expected loss is defined by the possibilistically quantified size of the
set of those elementary random events ω ∈ Ω for which the decision function δ fails.

The following attributes will be related only to the particular case of possibilistic
decision functions as specified in the introduction of this section.

Decision function δ : E → D is called optimal in e ∈ E, if

Π({ω ∈ Ω : η(ω) = e, σ(ω) = δ(e)}) =
∨

s∈S

Π({ω ∈ Ω : η(ω) = e, σ(ω) = s}) (5.2)

holds. Decision function δ is (uniformly) optimal on E, if (5.2) holds for every e ∈ E.
Decision function δ is weakly optimal in e ∈ E, if there is no s ∈ S with the property

Π({ω ∈ Ω : η(ω) = e, σ(ω) = s}) > Π({ω ∈ Ω : η(ω) = e, σ(ω) = δ(e)}) (5.3)

Decision function δ is (uniformly) weakly optimal on E, if it is weakly optimal in
every e ∈ E.

If the state space S is finite, then there always exists a decision function δ : E →
D(= S) which is uniformly weakly optimal on E. Indeed, take A = {Π({ω ∈ Ω :
η(ω) = e, σ(ω) = s}) : s ∈ S}) ⊂ T, denote by Ae the subset of all elements of A
which are not dominated by other element of A w.r.t ≤ on T , and set

Se = {s ∈ S : Π({ω ∈ Ω : η(ω) = e, σ(ω) = s}) ∈ Ae}. (5.4)

As S is finite, the sets Ae ⊂ T and Se ⊂ S are nonempty for each e ∈ E, hence, a
value δ(e) ∈ Se can be chosen. The resulting mapping δ : E → S obviously defines
a uniformly weakly optimal decision function on E.

If e ∈ E is such that the set Ae contains at least two elements, there is no decision
function optimal in e. Indeed, let t1, t2 ∈ Ae be different, hence, incomparable w.r.t.
≤ elements, let, for both i = 1, 2, si ∈ Se be such that Π({ω ∈ Ω : η(ω) = e, σ(ω) =
si}) = ti. Suppose, in order to arrive at contradiction, that δ : E → S is optimal in
e. Then the inequality ti < Π({ω ∈ Ω : η(ω) = e, σ(ω) = δ(e)}) must be valid for
both i = 1, 2, but this contradicts the assumption that both t1, t2 are non-dominated
elements in the set of values taken by Π for the given e ∈ E and for s ranging over S.

Theorem 5.1. Let T = 〈T,≤〉, τ : T × T → T, 〈Ω,A, Π〉, S,D, σ : Ω → S,E,
η : Ω → E, λ : S ×D → T keep their meaning standard in this text with the follow-
ing further conditions imposed: S = D is finite, λ(s, d) = ®T , if s = d, λ(s, d) = 1T ,
if s 6= d, and ≤ defines a linear ordering on T. Let δopt : E → D(= S) be such
that δopt(e) ∈ Se holds for each e ∈ E, where Se is defined by (5.4). Then δopt is
a uniformly on E optimal decision function, moreover, (5.2) holds for every e ∈ E
and the relation χB

σ (δ0) ≥ χB
σ (δopt) is valid for χB

σ (δ) defined by (5.1).

P r o o f . Using the same way of reasoning as above (below (5.4)), we obtain that
each set Se is nonempty, so that the mapping δopt satisfying the conditions can be
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defined. It follows immediately that each such δopt is uniformly optimal on E. The
set Ae is singleton for each e ∈ E, but there may exist more s ∈ S with the same
value Π({ω ∈ Ω : η(ω) = e, σ(ω) = s}).

Applying (5.1) we obtain that

Π({ω ∈ Ω : η(ω) = e, σ(ω) = δopt(e)}) =
∨

s∈S

Π({ω ∈ Ω : η(ω) = e, σ(ω) = s})

= Π

( ∪

s∈S

{ω ∈ Ω : η(ω) = e, σ(ω) = s}
)

= Π({ω ∈ Ω : η(ω) = e}). (5.5)

Let δ0 : E → D(= S) and e ∈ E be such that δ0(e) is not in Se. Consequently,

Π({ω ∈ Ω : η(ω) = e, σ(ω) = δ0(e)}) < Π({ω ∈ Ω : η(ω) = e}) (5.6)

follows from (5.5). However, as Π is a T -possibilistic measure on A, also

Π({ω ∈ Ω : η(ω) = e}) = Π({ω ∈ Ω : η(ω) = e, σ(ω) = δ0(e)})
∨ Π({ω ∈ Ω : η(ω) = e, σ(ω) 6= δ0(e)}) (5.7)

holds. As ≤ defines a linear ordering on T, we obtain that

Π({ω ∈ Ω : η(ω) = e, σ(ω) 6= δ0(e)}) < Π({ω ∈ Ω : η(ω) = e}) (5.8)

follows for each δ0 such that δ0(e) is not in Se. Consequently, for each δ0 : E → D
(= S) we obtain that

Π({ω ∈ Ω : η(ω) = e, σ(ω) 6= δopt(e)}) ≤ Π({ω ∈ Ω : η(ω) = e, σ(ω) 6= δ0(e)}).
(5.9)

Combining (5.9) together for different e’s, we obtain that for each δ0 : E → D(= S),

χB
σ (δ0) = Π({ω ∈ Ω : σ(ω) 6= δ0(η(ω))})

= Π

( ∪

e∈E

{ω ∈ Ω : η(ω) = e, σ(ω) 6= δ0(η(ω))}
)

=
∨

e∈E

Π({ω ∈ Ω : η(ω) = e, σ(ω) 6= δ0(e)})

≥
∨

e∈E

Π({ω ∈ Ω : η(ω) = e, σ(ω) 6= δopt(e)})

= Π

( ∪

e∈E

{ω ∈ Ω : η(ω) = e, σ(ω) 6= δopt(e)}
)

= Π({ω ∈ Ω : σ(ω) 6= δopt(η(ω))}) = χB
σ (δopt). (5.10)

The assertion is proved. ¤
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6. ROBUSTNESS OF POSSIBILISTIC DECISION FUNCTIONS
OVER LATTICE–VALUED POSSIBILISTIC MEASURES
AND LOSS FUNCTIONS

There are numerous decision problems under uncertainty when the demand of ro-
bustness is quite intuitive and legitimate. This is to say that a “small enough” change
of the values taken by the input functions (σ, η, δ, λ) of the model in question, or
these changes being “rather rarely occurring” result in a “rather small” change of
the expected value of the loss function under consideration. The following asser-
tion, simplifying the operations with the expected values of T -valued possibilistic
variables may be of use in what follows (cf. [3]).

Lemma 6.1. Let T = 〈T,≤〉 be a complete lattice, let 〈Ω,A, Π〉 be a possibilistic
space with complete possibilistic measure Π, let τ be a completely distributive t-norm
on T, so that τ(t,

∨
s∈A s) =

∨
s∈A τ(t, s) holds for each t ∈ T and each ∅ 6= A ⊂ T,

let f : Ω → T be such that {ω ∈ Ω : f(ω) = t} ∈ A holds for each t ∈ T. Then the
relation

Eτf(·) =
∨

t∈T

τ [t, Π({ω ∈ Ω : f(ω) = t})] (6.1)

is valid.

P r o o f . Using the definitions and elementary properties of expected values and
t-norm we obtain the inequality

Eτf(·) ≥
∨

t∈T

τ [t, Π({ω ∈ Ω : f(ω) = t})] (6.2)

Let t, t1 ∈ T, let t ≤ t1, then the inequalities

τ [t,Π({ω ∈ Ω : f(ω) = t1})] ≤ τ [t1, Π({ω ∈ Ω : f(ω) = t1})]
≤

∨

t1∈T

τ [t1, Π({ω ∈ Ω : f(ω) = t1})] (6.3)

and

τ


t,

∨

t1≥t

Π({ω ∈ Ω : f(ω) = t1})


 = τ [t, Π({ω ∈ Ω : f(ω) ≥ t1})]

≤
∨

t1∈T

τ [t1, Π({ω ∈ Ω : f(ω) = t1})] (6.4)

are valid for each t ∈ T. Hence, the inequality
∨

t∈T

τ [t, Π({ω ∈ Ω : f(ω) ≥ t})] = Eτf(·) ≤
∨

t1∈T

τ [t1,Π({ω ∈ Ω : f(ω) = t1})] (6.5)

easily follows; combining (6.2) and (6.5) we complete the proof. ¤
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Within the framework of statistical decision functions the values of loss functions
and their expected values are real numbers, so that the differences between the quali-
ties of two decision functions can be defined by the absolute value of the difference of
the two real numbers in question. In the case of values from the complete lattice let
us take an inspiration in the idea of set-theoretic operation of symmetric difference
which can be still generalized using the operation of residuation and the notion of
residuum. Hence, given a complete lattice T = 〈T,≤〉 and a t-norm τ on T, for each
t ∈ T the value

tτ,c =
∨
{s ∈ T : τ(s, t) = ®} (6.6)

is defined (c stands for “complement”, the role of which tτ,c is to play) and called
τ -residuum of t w.r.t. T (cf. [3] or [7] for a more detailed investigation of the
residuation). As can be easily seen, for each t-norm τ on T the relations ®τ,c

T = 1T
and 1τ,c

T = ®T hold, moreover, if τ is completely distributive, then τ(t, tτ,c) = ®T
holds for each t ∈ T, as

τ(t, tτ,c) = τ
(
t,

∨
{s ∈ T : τ(s, t) = ®T }

)

=
∨
{τ(t, s) : s ∈ T, τ(s, t) = ®T } =

∨
{®T } = ®T . (6.7)

In order to simplify our reasoning let us limit ourselves to the case of the greatest
(w.r.t. ≤) t norm defined by the infimum ∧ on T, consequently, the index τ in
tτ,c will be omitted. We will also suppose that ∧ is a completely distributive t-
norm on T. It does not follow, in general, that t ∨ tc = 1T for each t ∈ T. Indeed,
take T = 〈[0, 1],≤〉, where ≤ denotes the standard linear ordering on [0, 1], then
obviously xc = 0, if x > 0, and 0c = 1 holds, hence, x ∧ xc = 0 for each x ∈ [0, 1],
but x ∨ xc = 0 ∨ x = x < 1 for each 0 < x < 1.

So, keeping in mind the idea of symmetric difference, set ∆(s, t) = (s∧tc)∨(t∧sc)
for each s, t ∈ T. As proved in [9], the relations ∆(t, t) = ®T (reflexivity), ∆(s, t) =
∆(t, s) (symmetry), and ∆(s, t) ≤ ∆(s, u) ∨ ∆(u, t) (triangular inequality in the
lattice sense) are valid for each s, t, u ∈ T. Let us note that the condition tc∧ t ≡ ®T
is substantial when proving these relations.

Let T = 〈T,≤〉 be a complete lattice such that ∧ is completely distributive, let
〈Ω,A, Π〉 be a possibilistic space with a complete Π, let f1, f2 : Ω → T be mappings
such that, for both i = 1, 2 and each t ∈ T, {ω ∈ Ω : fi(ω) = t} ∈ A holds,
consequently, also {ω ∈ Ω : fi(ω) ∈ A} ∈ A is the case for both i = 1, 2 and each
A ⊂ T. Set

D1(f1, f2) = E∧∆(f1(·), f2(·))dΠ =
∨

t∈T

[t ∧Π({ω ∈ Ω : ∆(f1(ω), f2(ω)) ≥ t})],

(6.8)

D2(f1, f2) = ∆(E∧f1(·) dΠ, E∧f2(·) dΠ). (6.9)

Lemma 6.2. Let T = 〈T,≤〉 be a complete lattice such that t ∧ tc ≡ ®T and
t ∨ tc ≡ 1T holds. Then (s ∧ t)c = sc ∨ tc holds for each s, t ∈ T.
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P r o o f . Let t1 ≤ t2, then for each s ∈ T, s ∧ t2 = ®T implies that s ∧ t1 = ®T ,
and tc1 ≥ tc2 follows. So, for each s, t ∈ T, (s ∧ t)c ≥ sc ∨ tc holds for each complete
lattice. If, moreover, t ∧ tc ≡ ®T and t ∨ tc ≡ 1T , holds, then

(s ∧ t)c = (s ∧ t)c ∧ 1T = (s ∧ t)c ∧ (sc ∨ s) = ((s ∧ t)c ∧ sc) ∨ ((s ∧ t)c ∧ s)
= sc ∧ ((s ∧ t)c ∧ s), (6.10)

moreover, ((s ∧ t)c ∧ s) ∧ t = (s ∧ t) = ®T , so that (s ∧ t)c ∧ s ≤ tc follows. So,
(s ∧ t)c ≤ sc ∨ tc follows and the assertion is proved. ¤

Theorem 6.1. Let T = 〈T,≤〉 be a complete lattice such that t ∧ tc ≡ ®T and
t ∨ tc ≡ 1T holds, let Π be a complete T -valued possibilistic measure on the power-
set P(Ω), let f1, f2 : Ω → T, let D1(f1, f2) and D2(f1, f2) be defined by (6.8) and
(6.9). Then the relation D2(f1, f2) ≤ D1(f1, f2) holds.

P r o o f . Setting π(ω) = Π({ω}) for each ω ∈ Ω and applying (6.1), we obtain
that, for each f : Ω → T,

E∧f(·) =
∨

t∈T

[t ∧
∨
{π(ω) : f(ω) = t}] =

∨

ω∈Ω

(f(ω) ∧ π(ω)). (6.11)

Hence, Lemma 6.2 yields that

D2(f1, f2) = ∆(E∧f1dΠ, E∧f2dΠ) =
= ((E∧f1dΠ) ∧ (E∧f2dΠ)c) ∨ ((E∧f2dΠ) ∧ (E∧f1dΠ)c)

=

[( ∨

ω∈Ω

(f1(ω) ∧ π(ω))

)
∧

( ∨

ω∈Ω

(f2(ω) ∧ π(ω))

)c]

∨
[( ∨

ω∈Ω

(f2(ω) ∧ π(ω))

)
∧

( ∨

ω∈Ω

(f1(ω) ∧ π(ω))

)c]

≤
[( ∨

ω∈Ω

(f1(ω) ∧ π(ω))

)
∧ (f2(ω) ∧ π(ω))c

]

∨
[( ∨

ω∈Ω

(f2(ω) ∧ π(ω))

)
∧ (f1(ω) ∧ π(ω))c

]

=

[( ∨

ω∈Ω

(f1(ω) ∧ π(ω))

)
∧ (f2(ω)c ∨ (π(ω))c)

]

∨
[( ∨

ω∈Ω

(f2(ω) ∧ π(ω))

)
∧ ((f1(ω)c ∨ (π(ω))c)

]

=

[ ∨

ω∈Ω

(f1(ω) ∧ π(ω) ∧ (f2(ω))c)

]
∨

[ ∨

ω∈Ω

(f1(ω) ∧ π(ω) ∧ (π(ω))c)

]
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∨
[ ∨

ω∈Ω

(f2(ω) ∧ π(ω) ∧ (f1(ω))c)

]
∨

[ ∨

ω∈Ω

(f2(ω) ∧ π(ω) ∧ (π(ω))c)

]

=

[ ∨

ω∈Ω

(f1(ω) ∧ (f2(ω))c ∧ π(ω))

]
∨ ®T

∨
[ ∨

ω∈Ω

(f2(ω) ∧ (f1(ω))c ∧ π(ω))

]
∨ ®T

≤
∨

ω∈Ω

[((((f1(ω)) ∧ (f2(ω))c) ∨ (((f2(ω)) ∧ (f1(ω))c)) ∧ π(ω))]

=
∨

ω∈Ω

[(∆(f1(ω), f2(ω))) ∧ π(ω)] = E∧(∆(f1(·), f2(·))) dΠ = D1(f1, f2).

(6.12)

The assertion is proved. ¤

The equality D1(f1, f2) = D2(f1, f2) does not hold in general. Indeed, let Ω =
{ω1, ω2}, f1(ω1) = f2(ω2) = ®T , f1(ω2) = f2(ω1) = 1T , let Π(∅) = ®T , Π(A) = 1T
for each ∅ 6= A ⊂ Ω, so that π(ω1) = π(ω2) = 1T . Then

E∧f1(·) dΠ = (f1(ω1) ∧ π(ω1)) ∨ (f1(ω2) ∧ π(ω2)) = f1(ω1) ∨ f1(ω2)
= 1T = f2(ω1) ∨ f2(ω2) = E∧f2(·)dΠ, (6.13)

so that D2(f1, f2) = ∆(E∧f1(·)dΠ, E∧f2(·)dΠ) = ∆(1T ,1T ) = ®T . But,

∆(f1(ω1), f2(ω1)) = ∆(®T ,1T ) = 1T = ∆(f1(ω2), f2(ω2)), (6.14)

hence,
∆(f1, f2) = E∧∆(f1(·), f2(·)) dΠ = 1T > ®T = D2(f1, f2). (6.15)

Theorem 6.2. Let T = 〈T,≤〉 be a complete lattice such that tc ∧ t ≡ ®T holds,
let 〈Ω,A, Π〉 be a T -possibility space with Π complete, let f1, f2 : Ω → T be such
that, for both i = 1, 2 and for each t ∈ T, {ω ∈ Ω : fi(ω) = t} ∈ A holds, let
A = {ω ∈ Ω : f1(ω) 6= f2(ω)} ∈ A, let IA(ω) = 1T , if ω ∈ A, IA(ω) = ®T , if
ω ∈ Ω−A. Then

D1(f1, f2) = E∧(IA(·)∧∆(f1(·), f2(·))) dΠ ≤
[ ∨

ω∈A

∆(f1(ω), f2(ω))

]
∧Π(A). (6.16)

P r o o f . If ω ∈ Ω−A, then ∆(f1(ω), f2(ω)) = ®T obviously holds, if ω ∈ A, then
IA(ω) = 1T and IA(ω) ∧∆(f1(ω), f2(ω)) = ∆(f1(ω), f2(ω)) follows. Hence,

D1(f1, f2) = E∧(IA(·) ∧∆(f1(·), f2(·))) dΠ ≤ E∧IA(·) dΠ

=
∨

t∈T

[t ∧Π({ω ∈ Ω : IA(ω) ≥ t})] = Π(A) (6.17)
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obviously holds and also the inequality D1(f1, f2) ≤
∨

ω∈A ∆(f1(ω), f2(ω)) is obvi-
ous, so that the assertion is proved. ¤

In the particular case of Bayesian decision making we can define, for two decision
functions δ1, δ2.

D∗
1(δ1, δ2) = E∧∆(λ(σ(·), δ1(η(·))), λ(σ(·), δ2(η(·)))) dΠ, (6.18)

D∗
2(δ1, δ2) = ∆(χB

σ (δ1), χB
σ (δ2)), (6.19)

where χB
σ (δi) = E∧λ(σ(·), δi(η(·))) dΠ for both i = 1, 2. It is just a matter of routine

(left to the reader) to rewrite Theorems 6.1 and 6.2 for the criteria D∗
i (δ1, δ2) instead

of Di(f1, f2).
Informally told, under our possibilistic setting, the obtained possibilistic decision

functions are robust in the sense that if the losses suffered when applying differ-
ent decision functions δ1, δ2 differ only rarely, or when the differences between the
corresponding losses are small, also the qualities of decision functions δ1, δ2 do not
differ too much from each other. As a matter of fact, in the case of possibilistic
decision functions the robustness w.r.t. differences of suffered losses in rarely occur-
ring cases is still more strong than as claimed by Theorems 6.1 and 6.2 applied to
Di(δ1, δ2), i = 1, 2, as this example demonstrates.

Let the notations and conditions introduced in Theorems 6.1, 6.2, (6.18) and
(6.19) hold, let δ1, δ2 be such that the losses suffered when δ1 or δ2 applied differ
only when s1 is the actual state, hence, let us suppose that

A = {ω ∈ Ω : λ(σ(ω), δ1(η(ω))) 6= λ(σ(ω), δ2(η(ω)))} ⊂ {ω ∈ Ω : σ(ω) = s1})
(6.20)

and A ∈ A holds. Consider the case when the inequality

Π(A) ≤ λ(σ(ω), δ1(η(ω))) ∧ λ(σ(ω), δ2(η(ω))) (6.21)

holds for each ω ∈ A. Then χB
σ (δ1) = χB

σ (δ2).
Indeed, for both i = 1, 2 we obtain that

χB
σ (δi) =

∨

ω∈A

[λ(σ(ω), δi(η(ω))) ∧ π(ω)] ∨
∨

ω∈Ω−A

[λ(σ(ω), δi(η(ω))) ∧ π(ω)]. (6.22)

As the loss function λ is supposed to take just the values ®T or 1T , for each ω ∈ A
and for both i = 1, 2 the relation π(ω) = Π({ω}) ≤ Π(A) ≤ λ(σ(ω), δi(η(ω))) = 1T
holds, so that λ(σ(ω), δi(η(ω))) ∧ π(ω) = π(ω) for both i = 1, 2, λ(σ(ω), δi(η(ω))) ∧
π(ω) = π(ω) holds for each ω ∈ A. Consequently, (6.22) yields that

χB
σ (δi) =

[ ∨

ω∈Ω−A

(λ(σ(ω), δi(η(ω))) ∧ π(ω))

]
∨Π(A) (6.23)

holds for both i = 1, 2. As the values λ(σ(ω), δi(η(ω))) are the same for both i = 1, 2,
if ω ∈ Ω−A, then the identity χB

σ (δ1) = χB
σ (δ2) follows.
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7. CONCLUSIONS

We have submitted an attempt to re-write the model of statistical decision mak-
ing under uncertainty for the case when the underlying uncertainty is quantified and
processed using lattice-valued possibilistic measures, so emphasizing rather the qual-
itative than the quantitative aspects of the degrees of uncertainty under considera-
tion. A complete lattice, chosen as an appropriate structure over these uncertainty
degrees, is perhaps the most specific mathematical structure still covering the two
most often used structures for quantification and processing of sizes: the unit inter-
val of real numbers with their standard linear ordering, and the complete Boolean
algebra with the corresponding partial ordering (as a matter of fact, a power-set
over a nonempty space partially ordered by the set inclusion). We have introduced
the possibilistic modifications of the two classical criteria used in order to define
and quantify the quantities of procedures for decision making under uncertainty:
the minimax (the worst-case) principle and the possibilistic variant of the Bayes
principle. For both the approaches we have stated and proved the most elementary
properties of the possibilistic decision functions under consideration.

Among the possible directions for further investigation let us mention explicitly
just the following ones: (i) to apply the general model from above to a particular
decision problem under uncertainty, (ii) to consider richer and more powerful struc-
tures for uncertainty degrees, but also to check which of the results achieved above
remain to be valid in weaker structures (lattices, lower or upper semilattices, posets,
. . . ), (iii) to analyze the possibilistic variant of the well-known Laplace principle, if
any exists, (iv) some relations between belief functions (Dempster–Shafer theory)
and possibilistic decision functions seem to be worth being analyzed.

The author is much indebted to an anonymous reviewer whose comments, re-
marks, and suggestions have helped to improve remarkably the final version of this
paper.
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