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K Y B E R N E T I K A — VOLUME 41 (2005) , NUMBER 5, P A G E S 6 3 7 - 6 6 0 

DIRECT ALGORITHM FOR POLE PLACEMENT BY 
STATE-DERIVATIVE FEEDBACK FOR MULTI-INPUT 
LINEAR SYSTEMS - NONSINGULAR CASE 

TAHA H.S . ABDELAZIZ AND MICHAEL VALASEK 

This paper deals with the direct solution of the pole placement problem by state-
derivative feedback for multi-input linear systems. The paper describes the solution of this 
pole placement problem for any controllable system with nonsingular system matrix and 
nonzero desired poles. Then closed-loop poles can be placed in order to achieve the desired 
system performance. The solving procedure results into a formula similar to Ackermann 
one. Its derivation is based on the transformation of linear multi-input systems into Frobe-
nius canonical form by coordinate transformation, then solving the pole placement problem 
by state derivative feedback and transforming the solution into original coordinates. The 
procedure is demonstrated on examples. In the present work, both time-invariant and 
time-varying systems are treated. 

Keywords: pole placement, state-derivative feedback, linear MIMO systems, feedback sta
bilization 

AMS Subject Classification: 93B55, 93C35, 93D15 

1. INTRODUCTION 

Pole placement technique is one of the most important approaches for linear control 
systems design. The state feedback control problem has been investigated in control 
community during the last four decades. There have been developed the design 
methods for a wide class of linear systems under full-state feedback with the objective 
of stabilizing control systems (e.g. [8, 18, 19, 20, 21]). 

However, this paper focuses on a special feedback using only state derivatives 
instead of full-state feedback. Therefore this feedback is called state derivative feed
back. The problem of arbitrary pole placement using state-derivative feedback nat
urally arises. To the best knowledge of the authors there have been yet no general 
study solving this feedback for pole placement based on traditional approaches to 
pole placement by state feedback. The problem of state derivative feedback has 
been investigated within the treatment of generalized class of singular linear dy
namic systems using geometric approach in [12] and [10]. Only recently, the authors 
have derived [1, 2] a pole placement technique by state-derivative feedback for single-
input time-invariant and time-varying linear systems. However, the generalization 
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of these results for multi-input systems is not an easy task. This paper is the first 
attempt to solve the aforementioned problem with a simple direct way. 

In general, it is well known from classical control theory that derivative feed
back is sometimes essential for achieving desired control objectives [12]. However, 
the motivation for the state derivative feedback in this paper comes from controlled 
vibration suppression of mechanical systems. The main sensors of vibration are 
accelerometers. From accelerations it is possible to reconstruct velocities with rea
sonable accuracy but not any longer the displacements. Therefore the available 
signals for feedback are accelerations and velocities only and these are exactly the 
derivatives of states of the mechanical systems that are the velocities and displace
ments. There have been published many papers (e.g. [3, 4, 9, 14, 15, 16]) describing 
the acceleration feedback for controlled vibration suppression. However, the pole 
placement approach for feedback gain determination has not been used at all or 
has not been solved generally. The approach in [3, 4, 15, 16] is based on dynamic 
derivative output feedback. The feedback uses acceleration only (the velocity is not 
used, therefore it is not full-state derivative feedback, but only output derivative 
feedback) and the acceleration is processed by dynamic filter (dynamic feedback). 
The feedback gains are determined using root locus analysis [3, 4, 14, 15, 16], opti
mization of #2 norm of the closed loop transfer function [4], or using just numerical 
parameter optimization of performance indexes [9]. Another papers dealing with 
acceleration feedback for mechanical systems are [5, 6] but there the feedback uses 
all states (positions, velocities) and accelerations additionally. 

In this paper a generalization of eigenvalue assignment by state-derivative feed
back for multi-input time-invariant and time-varying linear systems is presented. 
However, this paper deals only with the case of nonsingular system matrix of the 
original system. The whole procedure is unique and provides more insight into the 
eigenvalue assignment. The proposed controller is based on the measurement and 
feedback of the state derivatives of the system. In this study, particular attention 
is directed toward the Frobenius canonical form, because of its unparallel position 
in arriving at the desired pole placement for linear systems. This work has success
fully extended previous techniques by state feedback and modified to state-derivative 
feedback. The new formulations are derived through the following three steps de
sign. The first step is an implementation of a state coordinate transformation to the 
Frobenius canonical form. The second step involves the subsequent employment of 
pole placement technique for the transformed linear systems. The third step is the 
transformation of the state-derivative feedback into the original coordinates. This 
provides a new systematic way of solving the aforementioned problem with a simple 
direct way. Finally, the derived technique is demonstrated on examples. 

In summary, the rest of this paper is organized as follows. In Section 2, we 
begin with a transformation to Frobenius canonical form for multi-input systems and 
introduce the solution of the pole placement problem by state-derivative feedback 
for time-invariant systems. Section 3 deals with the extension of pole placement 
for multi-input time-varying systems. In Section 4, the illustrative examples and 
simulation results are presented. Finally, conclusion is in Section 5. 
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2. POLE PLACEMENT BY STATE-DERIVATIVE FEEDBACK 
FOR MULTI-INPUT TIME-INVARIANT SYSTEMS 

In this section, we provide a detailed description of the algorithm for the pole place
ment problem by state-derivative feedback for linear time-invariant systems. 

2.1. Pole placement problem formulation 

Consider a multi-input, time-invariant, linear system with the following state-space 
representation 

x(t) =Ax(t)+Bu(t) (1) 

where x(t) e Rn and u(t) e M771 are the state and the control vectors, respec
tively, (m < n), while A e R n x n and B e Rnxm are the system and control 
gain matrices, respectively. The fundamental assumptions imposed on the system 
is that, the system is completely controllable and the m columns of the matrix B, 
B = [&i, &2,..., &m], are linearly independent (B has a full column rank m). Further 
it is assumed that the system matrix A is nonsingular. 

The objective is to stabilize the system by means of a linear feedback that enforces 
a desired characteristic behavior for the states. The design problem is to find the 
state-derivative feedback control law 

u(t) = -Kx(t) (2) 

that assigns prescribed closed-loop eigenvalues, that stabilizes the system and achieves 
the desired performance. Substituting (2) into (1) the closed-loop system dynamics 

b e C ° m e S (In + BK)x(t) = Ax(t) 

x(t) = (In + BK)~1Ax(t) 

where In is the nxn identity matrix. In the following, matrix (In+BK) is assumed 
to have a full rank in order that the closed-loop system is well defined. 

The problem is to find such feedback gain matrix K e R m x n that the self-
conjugate closed-loop eigenvalues {Ai, . . . , Xn} are assigned at the desired values. It 
will be shown that the desired eigenvalues {Ai, . . . , An} must be nonzero. The major 
difficulty is that the system matrix A is manipulated by the feedback gain K in (3) 
by indirect way that is not similar to the traditional state feedback modification of 
system matrix. 

In order to overcome this difficulty, the system can be manipulated based on a 
transformation of coordinates. In other words, the pole placement problem is easily 
solved if the system is preliminarily reduced to a simple structure of the transformed 
matrices A and B. Consequently, the pole placement methodology can be applied. 
A preliminary step for solving the above problem is to transform this system to the 
Frobenius canonical form, and the next step is to employ pole placement technique 
in order to arbitrarily assign the poles of the closed-loop system and achieve the 
above objective. 
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2.2. Transformation into Probenius canonical form 
for time-invariant systems 

Frobenius canonical form is constructed by transforming the state vector to a new 
coordinate system in which the system equations take a particular form. Let us take 
the following time-invariant linear coordinate transformation 

z(t) = Q~xx(t), x(t) = Qz(t) (4) 

where z(t) G Rn is the transformed state variable vector and the transformation 
matrix is Q~l G R n X n . Then, the Probenius canonical form is 

z(t) = AFz(t) + BFu(t) (5) 

where AF G R n x n and BF G R n x m are the transformed system and control gain 
matrices, respectively, and given by [13], 

where 
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It is shown that, this system is composed of m fundamental companion matrices 
located in blocks along the diagonal. Each of the companion matrices can be con
sidered to represent a subsystem coupled to other subsystems. The block size is fij, 
the controllability index corresponding to bj of matrix B, and /ii H h fim = n, 
j = 1 , . . . , m. Then, the multi-input system is reduced to a coupled set of m single-
input subsystems that can be easily manipulated and, consequently, solve the pole 
placement problem. The x's in the matrices represent generally nonzero elements. 

The constant transformation matrix Q _ 1 G R n x n is constructed as follows 

Q-'= rows (q1qlA.-.qlA^-1q2 q2A...q2A^-1...qrn qmA. - - qmA^-x) 

where q^ G R l x n denotes the row vector computed as follows: 

3 

qj = eJ.R~1, rj = Y^»k, j = l,...,m, (9) 
k=i 

where erj G Rn is unit vector with 1 at position rj. 
The controllability matrix of system (1), R G R n x n , is 

R = (6i Abx.- - A^-1^ b2 Ab2.. A^~xb2 .bmAbm... A^^bm). (10) 

The selection of the vectors comprising the R matrix is done according to the fol
lowing procedure. The process starts with all columns bj of matrix B. At step i, 
the columns At~1bj are studied for their dependence on all previous ones on the 
order j = 1 , . . . , m from left to right. If the selected vector is linearly independent of 
the previously selected vectors, retain it, otherwise omit it from the selection. The 
selection process terminates when n linearly independent vectors are found. Arrange 
the n vectors in their proper order to form the matrix R. It has been proven [19] 
that the transformation matrix Q " 1 obtained by this procedure is nonsingular and 
the transformation to the generalized canonical form can be made. The above steps 
complete the transformation into canonical form. These results substantially sim
plified the manipulation of the pole placement problem. The next step is to develop 
the feedback gain matrix and solve the pole placement problem. 

2.3. Solution of the pole placement problem for time-invariant sys tems 

In this section, we shall show how to derive an explicit formula for the state-derivative 
feedback gain matrix K that assigns the desired closed-loop poles system in a com
putational efficient and simple direct manner. Utilizing the above transformation 
into canonical form, the system can be manipulated by a linear feedback for a desired 
behavior (i.e., the pole placement problem). By differentiating the transformation 
equation (4), the resulting closed-loop system in the ^-coordinates is 

z(t) = Q-Xx{t). (11) 

Hence, after the substitution of (3) and (4) in the above equation we obtain 

z(t) = Q-\ln + BK-x)AQz(t) = Azz(t) (12) 
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where Az £ R n x n is the closed-loop system matrix in the z-coordinates arid given 

b y Az = Q~l(In + BK)~lAQ. (13) 

Postmultiply the above equation by Q~1A~l(In + BK) the above equation can be 
rewritten as A ^ _ i - _ i / - r - + ^ ^ _.-._. i / v 

AZQ lA l(In + BK) = Q l. (14) 
To solve the pole placement problem, we first divide the desired poles into a self-
conjugate m groups {A 1 } , . . . , {A771}, with /ij poles in each block, j = 1 , . . . , m, where 
AJ = (Ai,.. . ,A£ ). It is also advantageous that the desired poles are distributed 
among all blocks and the largest eigenvalues lies within the smallest block. The 
benefit of this is to smoothing and minimizing undesirable transient variations [19]. 
The corresponding real vectors { d 1 } , . . . , {d m } , with dJ = (dJ

Q,..., d^ _x) that are 
the coefficients of desired characteristic equations for groups j are computed 

Dj(s) = (s-\{)(s-\i)...(s-\N-l) 
(15) 

= s^+dJil._ls^-l + ...+d{s + dJ
Q, j = \,...,m 

Then the structure of the desired closed-loop matrix can be formed as a block diag
onal matrix as 

/ / 0„,-„ /„,., \ 0 . 0 \ 

(°"-^-) ••• 

v 0 0 ••• ( ^ ^ i ' ' " 1 " 1 ) y 

(16) 
It is noting that the eigenvalues of Az are the same as the desired closed-loop poles. 
Prom the equations (13) and/or (14) it is clear that for nonsingular matrix A the 
desired matrix Az must be also nonsingular as the matrices (In + BK) and Q are 
of full rank. 

Prom the derivation of the state-derivative feedback pole placement the necessary 
conditions for arbitrary pole placement with nonzero eigenvalues can be described 
in the following lemma. 
Lemma 1. If the pole placement problem with nonzero self-conjugate desired poles 
for the real pair (A, B) is solvable, then (A, B) is completely controllable, that is 

rank[.B, AB,..., An~lB] = n, (17) 

and A is nonsingular. 

P r o o f . Suppose that (A, B) is not completely controllable. Then there exist an 
eigenvalue, say A, of A and a vector w ^ 0 such that 

w~A = \wT, w~B = 0. 
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. wT[(In-BK)X-A] = wTX-XwT = 0 

so that A is a closed-loop eigenvalue as well, contradicting the change of poles to 
desired ones. For the transformation into the Probenius canonical form and/or 
computing the feedback gain the controllability matrix R must be of full rank (the 
open-loop system must be controllable). 

Prom the condition that the closed-loop matrix in equation (3) must be defined 
it follows that (In + BK) must be of full rank. The equation (13) is easy to be 
rewritten as v , , x 

Az = (In + BFKF)~l AF, KF = KQ. (18) 

In order that the matrix (J n + BFKF) has a full rank, the matrices AF and Az 
must be both either nonsingular or singular. Thus if Az is nonsingular, i. e. the 
desired poles are nonzero, then the matrix AF must be also nonsingular, i. e. A is 
nonsingular. • 

Equation (14) can be rewritten in terms of the row vectors q^ (j = 1 , . . . ,m) of 
Q " 1 as 

qiA
l (In + S K ) = QlA\ i = 0 , . . . , in - 2, 

M I - I 

£ ( -d t a -4* - 1 ) (J„ + BK) = qxA^~\ 
1=0 

q2A* (In + BK) = q2A\ i = 0 , . . . ,/x2 - 2, 
M 2 - 1 

£ {-d2^*-1) (J„ + BK) = q2A^~\ 
1=0 

. . . , 
qmA\ln + BK) = qmA\ i = 0 , . . . , Mm - 2, 

/ * m - l 

£ (-dTq^-1) (J„ + BK) = g m A ^ " 1 . (19) 
i=0 

Based on the definition of the transformation matrix Q" 1 , it can be easily verified 

t h a t qjA
iB = 0liTn, j = l , . . . , m , i = 0 , . . . , W - 2 . (20) 

It is easy to write the m equations describing the closed-loop system as 

/ x i - l 

^(-dU.A^i^ + BK) = qiA^~\ 
i=0 

M 2 - 1 

^ ( - d ^ A ^ i ^ + BK) = q2A^ 
i=0 

. . . , 
M m - 1 

] T (-dmq1A
i~1)(In + BK) = g^A"™-1. (21) 

i=0 

2 - 1 
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These equations can be put in a matrix form and solved algebraically. Then, the 
feedback gain matrix K for the time-invariant system can be written as 

K = 

(Vn-to-**-1)) B \ ( q.A^+^iĄq.A'-1) ^ 
І=0 

(íW^1-1))-*] Џтn-l 

l g-.ii^-1-!- E (ďTqmA*-1) i 
\ i=0 / 

/ qíA"~1+ £ (dtøi-4*-1) 

м̂̂ -1 

9mA""-1 + ' E W « m ^ 1 ) 
i=0 

(22) 

Utilizing (20) then matrix M\ can be given by 

dh 

( "Zi-d^A*-1) ^ 
i=0 

M i = 

M m - 1 . , 

. £ (-dTflři^-1) 
\ i=0 

в = -
0 

JTП 

" 0 

91 

Яm 

A~lB. (23) 

Therefore, M i is nonsingular if A has full rank a'nd B has full column rank and all 
the desired poles are non-zero. 

The gain matrix can be given by 

/ 1 l_ _«.-! . "&,*. *i-u\ \ 
9i \ 

- 1 

K = - A-XB 

) 

4(gmA',1-1+'E1(dJ«1.A
1-1)) 

-ţr (fllA"--1 + " Ľ Wflm-4*"1)) 

The gain matrix can be rewritten in a simple form as 

eUAR)-1 \ \->( jrieKARy^A)) \ 
K = -

el{AR) - 1 ^ 3Jr(«3[(.A.B)-1.Dm(A)) ) 

(24) 

(25) 

where Dj(A) € R n x n is the evaluation of the desired characteristic polynomial Dj 
with the state matrix A and computed as 

Dj(A) = A^+d^j_1A^-1 + --- + 4A + 4ln, j = l,...,m. (26) 

Now, it is considered the stabilizing feedback control defined by a set of desired 
eigenvalues A*, i = 1 , . . . ,n, instead of the evaluated coefficients of the character
istic equation. The desired eigenvalues are divided into self-conjugate m groups 
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{A1},..., {Am} with jij poles in each and distributed these poles among the blocks. 
The feedback gain matrix is 

/ n -1\ l „ A-1 n f A \ i r \ \ \ 

к = 

- 1 

A~lB 

n{Џ)(яmл-imA--xrin)j 
(27) 

/ 

An efficient numerical algorithm for computing the feedback gain matrix K is 

/ ftti\,i» \ 

к = 

- 1 

A~lB 

\ 

Ä(*)* 

Й(+)«. 
(28) 

where 

Qo =eJJ(AR) *, q{ =qli1(A-\3

iIn), j = 1,... ,m, i = 1,... ,/ij. 

One can notice that the proposed algorithm is straightforward, easy to be imple
mented and the feedback gain calculations are not done in the intermediate Frobenius 
form and direct implementation is performed in the original state space. The above 
algorithm is valid for desired eigenvalues that are real, complex-conjugate and re
peated poles. Note that, the complex-conjugate eigenvalues should be placed within 
the same block. It should be pointed out that different sequence of the desired poles 
will lead to different feedback gain matrices. For smoothing and minimizing unde
sirable transient variations, the largest poles can lie within the smallest block [19]. 
The transformation matrix Q""1 plays an important role to solve this problem. 

Remark 1. For the case of (m = n) and utilizing (14) the feedback gain can be 

g i v e n b y : K = B~1(AQAz1-In) (29) 

where Az is in Jordan canonical form with the desired eigenvalues on the diagonal. 

Remark 2. For single-input case (m = 1), the state-derivative feedback gain can 
be written as: 

If the coefficients dj, t = 1, . . . , n, of the characteristic equation are given [1, 2] 

where 
=m(*+iH 
q'0 = el{AR)-\ flj = flU.4-

(30) 

Furthermore, if a set of desired eigenvalues Xt, i = 1,..., n, are given [1, 2] 

detL4)_ , 
•** — -rnrn \ Hni 

l l t = l A -
(31) 
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where , T , _, n._x q'0 = e^(AR)-\ q\ = q\_x(A - \Jn). 

With the above results, we are now in the position to present the first main result 
of this work. 

Theorem 1. Consider the controllable multi-input time-invariant linear system (1). 
If system matrix A is nonsingular and B has full column rank, then the sys
tem (1) with the state-derivative feedback (2) can be stabilized with the unique feed
back gain K (28) or (25) with the prescribed non-zero eigenvalues {A 1 } , . . . , {Am}, 
with self-conjugate jij poles in each block, or with the real non-zero coefficients 
{ d 1 } , . . . , {d m } . For single-input case (m = 1), the feedback gain can be given by 
(30) or (31). 

However, on the other hand the control effort u(t) is the same for both state 
feedback and state-derivative feedback. This can be derived from (14), (12), (11) 
and the fact that the system has after the application of the feedback K the desired 
dynamic properties 

u(t) = -Kx(t) = -B+ (AQA^Q-1 - In) QAzz(t) 

= -B+(AQ - QAz) u(t) = -B+(A - QAzQ~l) x(t) (32) 

= -Ksx(t) 

where (•)+ denote the Moore-Penrose generalized inverse. The last expression is 
exactly the traditional state feedback for the change from original system poles to 
the desired ones and the same state transformation matrix Q~l. 

Further, the transient response for state-derivative feedback is obtained by uti-
U z i n g ( 1 3 ) (In + BK)-iA = QAzQ-\ (33) 

Therefore, the closed-loop system is 

x(t) = QAzQ~lx(t) (34) 

which is the identical response for state feedback with the same desired poles and 
transformation matrix. 

The above formulation is devoted for completely controllable systems. In the 
following remark uncontrollable systems can be stabilized via state-derivative feed
back. 

Remark 3. If system (1) is not completely controllable, then by using a nonsin
gular state transformation matrix T G R n x n 

z(t) = Tx(t) (35) 
we can obtain that 

* w - ( ^ z)^+{Bo)^ *>-(: .(!)) <36> 
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where the pair (_4i,JE?i) is controllable and the vector xi(t) G Rc has dimension 
c = rank[B,AB, . . . ,A n - 1 _3] < n, whilst the vector x2(t) G R n " c contains the 
state components which are completely uncontrollable. The poles of matrix A22 are 
referred to as uncontrollable poles of the system. 

Let the control law be taken as 

u(t) = -[KuK2]z(t) (37) 

where K1 G R m x c and K2 G R m X n " c . 
Then, the transformed closed-loop system can be described by 

C'Г'Г)^( ì ' £)*> (38) 

Therefore 

*w-(^+r,,"M)(^^)*w <»> 
where IV G RCXn~c. 

Continuing the derivation, it is easy to obtain 

z(t) =Azz(t), AZ = ( ̂  + a-*-)"1*- ('« + ̂ ^ + NA") . 

(40) 
Then, the eigenvalues of matrix Az are those of (Ic+B\K\) lAn and A22. There
fore the state-derivative feedback affects only the controllable part of the system. 
The controllable poles can be assigned at desired values using the above algorithm, 
while the uncontrollable poles are not altered by feedback. If the matrix A22 is 
stable, the system is said to be stabilized and it is possible to find the feedback gains 
for which the closed-loop system is asymptotically stable. The matrix K2 does not 
affect the closed-loop poles and may be arbitrarily chosen as K2 = 0. 

Finally, the state-derivative feedback gain can be given by 

K = [Kl,0n-c]T. (41) 

Therefore, the controllable eigenvalues can be reassigned with desired values. 

3. POLE PLACEMENT BY STATE-DERIVATIVE FEEDBACK 
FOR MULTI-INPUT TIME-VARYING SYSTEMS 

In this section, we extended the above methodology for the general multi-input linear 
time-varying dynamic systems. Consider the multi-input time-varying linear system 

x(t) = A(t)x(t) + B(t)u(t) (42) 

where x(t) G Rn and u(t) G Rm are the state and the control vectors, respec
tively, while A(t) G R n x n and B(t) € R n x m are the system and control gain 
matrices, respectively. The sufficient conditions for the existence and unique so
lution is to require that all elements of matrices A(t) and B(t) are bounded and 
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n-times continuously differentiate with bounded derivatives, A(t) is of full rank 
and B(t) = [b\(t),..., bm(t)] is of full column rank in the time interval of interest, 
t G [to,oo]. 

The objective here is to find a time-dependent linear feedback gain matrix that 
stabilize the system by the time-varying state-derivative feedback control law 

u(t) = -K(t)x(t). (43) 

Then the closed-loop system can be written as 

x(t) = (In + B(t) K(t))~x A(t) x(t). (44) 

Similar to the time-invariant case, matrix (In + B(t) K(t)) is assumed to have a full 
rank in order that the closed-loop system is well defined. 

One important difference between linear time-varying and time-invariant systems 
is stability criteria. Linear time-invariant systems are stable if and only if all of the 
system's eigenvalues are negative. On the other hand, linear time-varying systems 
may be unstable even if all of the system's "frozen-time" eigenvalues (the eigen
values of the system at any fixed time) are negative for all time. In this work 
a stabilization of linear time-varying system is introduced. The scheme could be 
used to determine stability of time-varying systems easily as well as to provide a 
new horizon of designing controllers via state-derivative feedback. It is shown that 
the performance for linear time-varying systems can be appropriately assigning the 
closed-loop eigenvalues of linear time-varying systems such as linear time-invariant 
cases. 

The objective now is to construct the varying feedback gain matrix K(t) in order 
to stabilize the system. In this treatment, it is utilized the Frobenius transformation 
as an intermediate step to enable us to apply the pole placement approach according 
to [19, 20] for stabilization of time-varying systems. 

Let us take the following time-dependent state transformation that transforms 
the system into a new state variable z(t) as 

z(t) = Q-\t) x(t), x(t) = Q(t) z(t) (45) 

then the system is transformed to the Frobenius canonical form and the system 
matrices can be computed as 

AF(t) = Q~\AQ-Q), BF(t) = Q'1B (46) 

where AF(t) G R n x n and BF(t) G R n x m are the transformed system and control 
gain matrices, respectively. The transformed system is the same as (7). Note that, 
the eigenvalues of the time-varying dynamic system do not have the classical meaning 
regarding its behavior nor its stability features. 

The state transformation matrix Q~l(t) G R n x n can be calculated as follows 

Q~\t) = rows (q\ q\ • • • ^ q\ q\ • • • & • • • qf q? • • • «™ ) (47) 

where q\(t) G R l x n is computed by using the recursive computations of the rows as 
follows 
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9i = e£.K \ 9j+i = gjA+^, rj = J2^ J = l,...,m, i = l,...,/X!-l, (48) 
k=i 

where fij is the controllability index and satisfy fij H h / im = n. 
The controllability matrix for the time-varying system R(t) G R n x n is formed as 

-R(t) = ( r n r w • • • r i m r 2 i r 2 2 • • • r2/la • • • rml rm2 • • • rm M m ) (49) 

where r ./-;(£) G Rn can be computed algebraically using the recursion 

rji = bj, rj^+x = Arji - rjU j = 1 , . . . , ra, i = 1 , . . . fij - 1. (50) 

The fundamental assumption imposed on the system is that, the controllability 
matrix is of full rank with some choice of indices \ij fixed in the studied time interval 
t G [£ojOo]. This means this controllable system is lexicographically-fixed [19, 20]. 

If Q(t), Q~l(t), and dQ(t)/dt are continuous and bounded matrices and Q_1(£) 
has a full rank at the time interval of interest, t G [to, oo], then this transformation 
is called a Lyapunov transformation. One way of observing this boundedness is to 
check on the magnitude of the maximum singular value of Q(t) in this interval. It 
is worth to note that, the Lyapunov transformation means that the transformation 
from one system to the other preserves the property of stability. 

Therefore, the stabilization of time-varying systems by pole placement approach 
is based on computation of such time-varying feedback gain that modifies the original 
system into the new system, which is Lyapunov equivalent to linear time-invariant 
system. This linear time-invariant system is the Probenius canonical form of the 
modified system, the Laypunov transformation is the transformation into Probe
nius canonical form and the linear time-invariant system has the prescribed desired 
poles that guarantee the stability and desired behaviour. This stable behaviour is a 
reflection of that with constant and prescribed eigenvalues. 

Assuming that the above transformation is a Lyapunov type and the controllabil
ity matrix of the system is lexicographically-fixed, then the pole placement technique 
that introduced in the previous section can be applied. In this treatment, the sim
ilar steps as described in Section 2 for the time-invariant system to derive explicit 
expression for the feedback gain for the time-varying system are used. 

By differentiating the transformation equation (45) and substitute (44), the re
sulting closed-loop system is 

ž = Q~lx + f^Q-1) x = (Q-\ln + BK)~lA + ^(Q-1)) Qz = Azz, (51) 

where Az G R n X n is the closed-loop system matrix which given as (16) and can be 
computed as ' , H \ 

Az = (Q-Vn + BK)-1 A + jt(Q-X)) Q- (52) 

Hence, the above equation can be reformulated as 

(AzQ-1 - ^(Q-1)) A-\ln + BK) = Q~\ (53) 
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Applying the same procedure for the time-invariant system, it is easy to write the 
m equations describing the system in terms of the row vectors q\ (i = 1 , . . . , fj,j, 
j = l,...,m)oiQ-1(t) as 

(^(-dlqlJ-qlJA-^In + BK) = q1,, 

(j2(-dhli) - qÚ A-\ln + BK) <&> 

І^ i-ďTqT^-q^A-^In + BK) = ç£ (54) 

with the desired (Hurwitz) constant characteristic coefficients d\ (i = 0 , . . . ,/ij — 1, 
j = 1 , . . . , m) for the m groups. The simple reason for distributing these poles into 
different groups is to obtain the smoother transient behavior of the system. 

Continuing this procedure, these equations can be put in a matrix form. There
fore, the feedback gain matrix K(t) for the time-varying system can be written 
as 

/ Л*1-1 

K(t) = 

Çzi-dlql^-q^A-^B \ 

(55) 

1 qЪ + ÇĽШЛ + ql^A--1 x 

C + fSWíW+c)^"1 

The feedback gain matrix K(t) can be rewritten as 

/ ( < 4 - ( < + i + ß ] Ľ ( d } q l + i ) ) A - 1 ) в \ 

K(ť) = 

(<C - ( < m + i + '"z(dTqT+1)) A-1) 

( (<+i+g)
1K^.-+i))>--1 

(56) 

B 

- i \ 

/ 

(c+i+J/CC+i))^1 j 
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Next, we consider a stabilizing feedback control defined by the desired m group 
eigenvalues {A1},..., {Am}, with fij in each. An efficient numerical algorithm as 
computes the gain is 

K(t) = 

where 

9/l-n + l ЏmЛ 

(57) 

1-1 

q{ =ejR~\ g í + 1 = g J ( A - A j J n ) + g ? , j = l , . . . , m , i = l , . . . ) M i . (58) 

Remark 4. The matrix ((<zJu)T • • • (q™^ )TB is upper triangular matrix and all 
diagonal elements are one. The rows of this matrix are the /ii, Hi + /X2,..., n rows 
of matrix Bp(t) and since we assume that B(t) is of full rank therefore this matrix 
is nonsingular for the time interval of interest, t G [to,oo). Also matrix M2(t) can 
be reformulated as 

( "Zi-dhliì-ql \ 
Mo = A-XB (59) 

A - m - 1 

1 E (-d?q?+1)-qZ ) 
\ i=0 / 

d1 o \ 

0 

( ì 
ł - 1 Q~l + 

<r ) 

Џl 

A_1B = -MзA-^B. 

\C 
Therefore this matrix in nonsingular if A(t) is nonsingular, matrices B(t) and M$(t) 
have a full rank m and all desired poles are non-zero at the time interval of interest 
t G [to,oo). 

These derivations solve the problem for time-varying linear system if matrix A(t) 
is nonsingular. Obviously, the technique presented here is directly implemented in 
the state space with simple and efficient calculations. 

R e m a r k 5. For the case of (m = n) and utilizing (52), the feedback gain can be 
computed by 

к(t) = в-1
 (A (AZQ-1 - ̂ (Q-1)) ' Q"1 - Гnj (60) 

where Az is in Jordan canonical form with the desired eigenvalues on the diagonal. 
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Remark 6. For single-input case (m = 1), the state-derivative feedback gain K(t) 
can be given by: 

If the coefficients di, i = 1 , . . . , n, of the characteristic equation are given [1] 

K(t) (1 " U„+i + X><7i+1)J A-'BJ (qn+1 + J2(diqi+1)J A"1 (61) 

where 
- . T o - l q1=enR , 9^1 = ^ - 4 + ^ , i = l , . . . , n . 

Further, if the desired poles Ai, i = 1 , . . . , n are given [1] 

K(t) = (1 - g U i A - ^ ) " 1 g ^ " 1 (62) 

where 
q[ = e^R-1, qi+1 = q\(A - \Jn) + q^ i = 1,... ,n. 

Based on that the following theorem for a multi-input time-varying system can be 
formulated. 

Theorem 2. Consider the lexicographically-fixed completely controllable, multi-
input time-varying linear control system (42). If the transformation Q(t) is of Lya-
punov kind, i. e. Q(t), Q~x(t) and dQ(t)/dt are continuous and bounded and Q~1(t) 
is full rank, and A(t) is nonsingular and its inverse is bounded, B(t) is full column 
rank, and M$(t) has full rank, then the system (42) with the state-derivative feed
back (43) can be stabilized with the unique time-dependent feedback gain K(t) (56) 
or (57). For single-input case (m = 1), the feedback gain can be computed by 
(62)-(63). Everything must be valid at the time interval of interest t € [to, oo). 

Further, the control effort u(t) and transient response x(t) can be derived from I 
(51) and (53) as I 

u(t) = -K(t) x(t) = -B+ (A (AzQ-1 - ^-t(Qrl) Q'1 ~ In) (Qz(t) + Qz(t)) j 

= - B + (A(AZQ-1 + Q-lQQ-l)-xQ-1 - In) (QAZ + Q) z(t) 

= - B + (AQ(QAZ + Q ) - 1 - In) (QAZ + Q) z(t) 

= -B+(AQ - QAZ - Q) z(t) = -J3+ U-Q [AZQ-1 - ^(Q"1))) *(*) 

= -Ks(t)x(t) (63)| 

and I 
±(t) = (In + B(t)K(t))-1A(t)x(t) | 

- Q^AzQ-l-^t(Q~l)^x(t). (64) I 

Similar to the case of time-invariant system, the last expressions (63) and (64) 
are exactly for the time varying system via state feedback with the same desired 
eigenvalues and transformation matrix Q~ (t). I 
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4. ILLUSTRATIVE EXAMPLES 

In this section, the proposed pole placement techniques are applied and simulated 
to several systems to demonstrate the feasibility and effectiveness of the previous 
results. 

Example 1. The configuration of the mechanical system and its parameters are 
shown in Figure 1. The dynamic equation of this system, assuming small angle (p, 
can be described in the state-space from using the state vector x(t) = [x\ x2 x\ ±2 ] 

as: 

x = 

( 0 
0 

-kxcx 

V ~kxcx 

0 
0 

-k2c2 

-k2cx 

1 0 \ / 0 0 \ 
0 

bxcx 

1 
—b2c2 

x + 0 0 
C\ c2 

bxc2 -b2cx ) \ c 2 cx 1 
C) 

where 

cx -I £ 
~ m+ ľ 

m 

L 2 

I 
c\ = —, xs = 0.5(^1 + X2) and ip = 0.5(x\ — X2)/L 

where m and I represent the mass and inertia of the mass, k\ and k2 are the spring 
constants, b\ and b2 are the damper constants, x\ and x2 are the mass displacement 
from both sides, £3 is the vertical displacement of the center of mass, ip is the 
inclination angle of the mass with the horizontal, 2L is the distance between two 
supporting points, and u\ andi^ are the control inputs. 

Fig. 1. 

The model parameters are taken as m = 10 kg, I = lKg-m 2 , L = l m , k\ = 
500 N/m, k2 = 700 N/m, 61 = 10N-s/m and 62 = 20N-s/m. 

The original system poles are -15.1384 ± 31.1738* and -1.3616 ± 10.7106i. The 
desired closed-loop eigenvalues are selected as, {\\, \2) = —5±2i, for the first block, 
while the second block are {\\, A^} = - 1 0 ± 5 i . The transformation matrix and the 
equivalent Frobenius canonical form are 

Q 
- 1 

/ 2.75 2.25 0 0 \ 
0 0 2.75 2.25 
2.25 2.25 0 0 

\o 0 2.25 2.75 ) 
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and 

z = 

O 1 o o \ 
-550 - 1 1 450 9 
0 0 0 1 
630 18 -770 - 2 2 / 

z + 

( O 0 \ 
1 O 
o o 

\0 1 / 
( : ) 

Then the computed state-derivative feedback gain is 

/ 349. 

V _ 3 2 ° 
5517 228.7241 41.3052 30.5224 

320.2138 -169.9931 -48.1314 -34.6893 

Applying the control synthesis procedure of pole placement from Section 2 to 
this system. In this simulation, the initial conditions of the states are taken as, 
x(to) = [—0.01, 0.02 — 0.02, 0.01]T The transient response and control input are 
shown in Figure 2. In addition, the vertical displacement and inclination angle are 
displayed in Figures 3. 

5 
<_> 

. & 
"cS 

I 0 
- _ з 

"cS 

cÕ 
-5 

I 
0.15 

1 1 1 1 1 

_— 

\ ~ - - „ - -

xdot1(t) 
xdot2(t) 
xdot3(t) " 

-..- xdot4(t) 

xdot1(t) 
xdot2(t) 
xdot3(t) " 

-..- xdot4(t) 

.-_ 1 l . — 1 . ~Ł 1 • 

0.2. 0.4 0.6 0.8 

-0.15 

• . • - Ï ï - Г - Ч " ! TJ-"1- » T -k-r—. 

0.2 0.4 0.6 0.8 

1.2 1.4 

*ЛW 
x2(t) 

- - x3(t) 

- — X4W 

1.2 1.4 

0.6 0.8 
Time [s] 

Fig. 2. Transient response and control input of the system via state-derivative feedback. 

For a comparison, the computed state feedback gain matrix for the same desired 
system poles using [19] is 

-420.2500 65.2500 17.5000 22.5000 \ 
281.2500 -356.2500 45.0000 35.0000 / " Ks 

- ( 

The simulation results illustrated that the performance of both cases are identical 
as the system obtains the same poles. Therefore the control inputs are in both cases 
identical and this means that the robustness properties of both feedback controllers 
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Fig. 3. Vertical displacement of center of mass and the inclination angle with the 
horizontal. 

are the same if properties of sensors are the same. It is also clear that the same 
performance is achieved in case of state-derivative feedback controller with lower gain 
matrix elements than by the state feedback, i.e. H-K l̂h = 558.6532 and ||-K"S||2 = 
625.2565. 

0 .1 
0 . 0 5 

S ° 
fîэ - 0 . 0 5 

-0.1 

-0 .15 

s ' ^ „ "' \ 
x..(t) 
x 2 ( t ) 

- - x 3 ( t ) -
- - - - x 4 ( t ) 

__ ^ „ * • - " • 

x..(t) 
x 2 ( t ) 

- - x 3 ( t ) -
- - - - x 4 ( t ) 

1 1 1 1 1 1 

0 . 6 0 . 8 
T i m e [s] 

Fig. 4. Transient response and control input of the system via state feedback [19]. 

Example 2. Consider the dynamic equation of the multi-input linear time-varying 
system 

0.1e-2 t -0 .1 0 \ / 0 0 
x(t) = ( 0.1 0.1 O.le"' x{t) + 0.1 O.le"4 j u{t). 

O.le-* 0 0.1 / \ 0 0.1 
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This system is unstable and the zero-input transient response of open-loop system 
is shown in Figure 5. 

0 .5 

-0.5 

•2- 1 

CD - 1 

-1.5 

-2 

-2.5 

x 10 

1 0 2 0 

1 1 1 1 1 1 1 ' 1 1 

-

1 1 1 1 1 

* N 

\ 
\ -

\ 
т 

I I i 

X 1 ( t ) 
x2(t) 

" - - * 3 (t) 
1 1 1 1 1 

* N 

\ 
\ -

\ 
т 

I I i ł 1 1 1 1 1 

* N 
\ 

\ -
\ 

т 

I I i 

3 0 40 50 60 
Time [s] 

7 0 8 0 9 0 100 

Fig. 5. Zero-input transient response of open-loop system. 

The controllability indices are pi = 2 and /X2 = 1- The controllability matrix and 
its inverse are 

0 -0.01 0 \ / 10 10 - l O e - * 
0.1 0.01 0.1e_* and R'\t) = -100 0 0 
0 0 0.1 / \ 0 0 10 

R(t) = 

It is clear that the controllability matrix is a full rank in the time interval of interest 
t G [to, oo) and the system is lexicographically-fixed. The rows of the transformation 
matrix can be computed as 

q\ = e^R'1 = ( -100 0 0), q\ = q\A + q\ = ( - 1 0 e " 2 ' 10 0), 

g? = eJ
r

2fi-
1 = (0 0 10). 

Then, the transformation matrix, inverse, and derivative are 

Q~\t) = ( q\ | = | -10e~ 2 t 10 0 | , Q(t) = 
-100 0 0 

-10e~2t 10 0 
0 0 10 

3<«"('» -
0 0 0 

20e"2 í 0 0 
0 0 0 

and Q(t) 

-0.01 0 0 
-O.Ole- 2t 0.1 0 

0 0 0.] 

0 0 м 
0.02e"2 i 0 o . 

0 0 o 

These matrices are continuous and bounded and the transformation matrix has a full 
rank at the time interval of interest t G [to, oo), then this is a Lyapunov equivalent 
transformation and the proposed technique can be applied. The computation of the 
feedback gain matrix can be done as follows: 

First, the vectors q\ , j = 1, . . . , m, i = 1, . . . , jij + 1. 
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__' = ._ = ( -100 0 0) , 

g _ ' = g _ ' ( A - A } l n ) + g } ' _ ( - 1 0 e - 2 t + 100A} 10 0) 

_í =__'(-*-A_I„)+__' 
= ( - e - 4 t + 10e-2t(A} + A_ + 2)-100A}A_ + l e"2 t - 10(A} - A_) + 1 e " 4 ) , 

2' 2 
9i = _i 

(0 0 10), 

ff?--9?'(A-A?/n) + 4 f f - - ( e - ' 0 1 

CIMiT)-
ЮA_), 

(Í)*M 
((3)-(á)--r 

$ ) „ - _ , „ ( > • • 

20e"2t - 100A}Л_ + 1 e"* \ 
- -. ч o __ + _ _ -. % o ! 

ìoл2 ; ' 
ì 

-20e - 2 t + 100A_A_ 
0 

1 
V -20e" 2 t + 100A}Л_ 10A_' 

9e-2t+A}+A_-10A}A_ 2e-2t-10A}A_+0.1 - 2 Є - З t + 10A 
0.1-A2(e-2 t Afe-4 Afe"4 

Finally, the state-derivative feedback gain matrix is 

ІA.Є-Л 
! t + i ) ; 

*»>- ( ( ' ! ) в - ( l ) - I ß Г ( l ) ^ 
--2t Ю(A} + Л_) 

2e- 2 t - ЮA} + A_ 

e - з t - 1 0 ( A } + Л | ) e 

V 2 e " 2 t - 10A}Л_ 

- 1 0 
-1 

2e -2t ЮA}Л_ 

__-t 
10 

2e" 2 t 10A}A_ 

10e" 

iг-10 

Given the desired closed-loop eigenvalues of the first block {Aj, A_>} = —2 ± i, while, 
the second block Af = —3 and the initial state conditions x(to) = [0.2, —0.1, — 1] T . 
The transient response and control input are shown in Figure 6. The elements of 
gain matrix are shown in Figure 7a. 

As a comparison with the state feedback, the elements of the state gain matrix 
is calculated from [19], and displayed in Figure 7b 

Ks(t) -C 
-e-4t+10e-2t(A}+A_+1.9)-100A}A_+l e~2ť - 10(A}+A_)+1 ІOA 

0.0 
.?e-*\ 
10A?j 

From these' results, we notice the high reduction in the state-derivative feedback 
gain matrix compared to the well-known state feedback approach with the same 
performance for the time-invariant and time-varying systems. 

In this work, it is shown that how the pole placement approaches can be used 
to design a controller-based state-derivative feedback control, which yields a closed-
loop system with specified characteristics. The approach is relevant for design with 
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ґ 
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x.,0) 

— x2(t) 

_ . x3(t) 

Fig. 6. Transient response of the closed-loop system via state-derivative feedback. 

preservation of stability when some necessary and sufficient conditions are provided. 
Compared to state feedback, the state-derivative feedback controller in some cases 
achieves the same performance with lower gain elements. From practical point of 
view, it is desirable to determine feedback matrices with smaller gains. Intuitively, 
this must be advantageous since small gains are beneficial to reduce noise amplifi
cation. 

5. CONCLUSIONS 

This paper has presented a new technique and tool for solving the pole placement 
problem. The main result of this work is a computationally efficient algorithm for 
solving the pole placement problem of linear multi-input systems with nonsingular 
system matrix by state-derivative feedback. This problem is treated both for a linear 
time-invariant and time-varying multi-input systems. It is the first general treatment 
for multi-input pole placement by state-derivative feedback in the literature. 

The technique is based on the transformation of a linear system into canonical 
form to derive the feedback gain matrix. This transformation provides a great 
simplification to this problem. The desired poles are placed within both a linear 
time-invariant and time-varying multi-input systems in such a way that the smoother 
transient response characteristics are preserved. 
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Fig. 7. (a) State-derivative feedback gain elements and 

(b) State feedback gain elements. 

The simulation results prove the feasibility and effectiveness of the proposed tech

nique. The achieved state-derivative controllers provide the same performance t h a t 

can be obtained by s tate feedback. An interesting feature of the state-derivative 

feedback is t h a t it gives in many cases the feedback gains with smaller absolute 

values than tradit ional s ta te feedback gains. 

(Received April 26, 2004.) 
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