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A GEOMETRIC SOLUTION TO THE 
DYNAMIC DISTURBANCE DECOUPLING 
FOR DISCRETE-TIME NONLINEAR SYSTEMS 

EDUARDO A R A N D A - B R I C A I R E AND ULLE KOTTA 

The notion of controlled invariance under quasi-static state feedback for discrete-time 
nonlinear systems has been recently introduced and shown to provide a geometric solu­
tion to the dynamic disturbance decoupling problem (DDDP). However, the proof relies 
heavily on the inversion (structure) algorithm. This paper presents an intrinsic, algorithm-
independent, proof of the solvability conditions to the DDDP. 

Keywords: controlled invariance, dynamic state feedback, disturbance decoupling, differen­
tial forms 

AMS Subject Classification: 93C10, 93C55, 93B25, 58A10 

1. INTRODUCTION 

The key concept in the geometric solution of the regular static disturbance decou­
pling problem (DDP), both in continuous-time and discrete-time, is the so-called 
largest controlled invariant distribution £>*, contained in the kernel of the output 
map [16]. In the discrete-time case, invariant distributions were first studied in 
[8, 15]. In the definition of V*, invariance is considered under regular static state 
feedback. 

Recently, for continuous-time systems, a generalized notion of controlled invari­
ance has been introduced under the enlarged class of quasi-static state feedback 
transformations [10, 11], and has shown to be useful to derive a geometric solution 
to the dynamic disturbance decoupling problem (DDDP). The proposed geometric 
solution to the DDDP is completely parallel to the solution of the static disturbance 
decoupling problem: the only difference in the solvability conditions is that the 
classical controlled invariant codistribution is replaced by the generalized controlled 
invariant subspace. 

In [3] a discrete-time analogue of the notion of controlled invariance under quasi-
static state feedback was given and shown to provide a geometric solution of the 
DDDP. However, the proof presented in [3] relies heavily on the inversion algorithm. 
Though this algorithm-based proof provides an explicit way to compute the small­
est controlled invariant subspace, our goal in this paper is to obtain an intrinsic 
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algorithm-independent proof. The proof follows the same line of reasoning as in 
[ii]. 

For other approaches to the DDDP in discrete-time, see [1] (a linear algebraic 
solution), [13] (a structural solution), [6, 12, 14] (an inversion algorithm based solu­
tion). 

The rest of the paper is organized as follows. The problem statement is given 
in Section 2. Section 3 recalls the notion of generalized controlled invariance with 
respect to quasi-static state feedback. An intrinsic algorithm-independent proof of 
the solvability conditions of the DDDP is given in Section 4. In Section 5 we present 
some examples, discuss differences between the continuous-time and discrete-time 
solutions and between linear and nonlinear solutions. Moreover, we discuss some 
properties of the quasi-static state feedback for systems with disturbances. Finally, 
the restrictiveness of the submersivity assumption of the control system is discussed 
here, and the means how this assumption can be relaxed, are suggested. 

2. PRELIMINARIES 

Consider a discrete-time nonlinear system E, described by equations of the form 

( x(t + l) = f(x{t)Mt)M*)), z(0)=xo, 
1 \ y(t) = h(x(t)), [ } 

where the state x(t) G Mn, the control u(t) G lRm, the disturbance w(t) G W and 
the output y(t) G W. The mappings /(•) and h(-) are supposed to be real analytic. 
Throughout the paper it is also assumed that the mapping /(•) generically defines 
a submersion, i. e. that generically 

r a n k 3 / J w O = n 
a(x,u) 

The algebraic framework, that we describe below, was formulated by Grizzle [9] 
for discrete-time nonlinear systems. This framework is related with Fliess' difference-
algebraic approach [7] and has been modified in [2] to end up with an inversive 
difference field. 

Let /C be the field of meromorphic functions of a finite number of the variables 
of the following (infinite) set {x(0),u(t),w(t),t > 0}. Denote by £ the formal vector 
space spanned by the differentials of the elements of /C; that is, £ := spanA:{d(/9 | 
if G /C}. The elements of £ are called differential forms of order one, or simply 
one-forms. The space £ can be decomposed into the direct sum of three subspaces, 
£ = X ®U © W, where X := span^{dx(0)}, U := span^{dtx(fc), k > 0}, W := 
spanA:{duv(fc), k > 0}. Define the difference output space y := spanA:{d?/(fc), k > 

o}. By (i),y c£ = ;r©zv©w. 
The forward-shift operator 6 : /C -> /C is defined by 

6ip[x(0)MJ)^(k)} = ip[f(x(0)M0),w(0)),u(j + l),w(k + 1)]. 
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The operator 5 induces a forward-shift operator A : £ —•> £ by 

2jaid</?; »-> ^(<5ai)d((fy?i), a*,^ G /C. 
i i 

Given a function ip e K, and a one-form u G £, sometimes we use the abridged 
notations </?+ = <5</? and Lj+ = ACJ. 

The compensator used to control the system E is a dynamic state feedback C 
described by equations of the form 

c ( z(t + l) = xP(z(t),x(t),u(t)), z(0) = zo, 

\ u(t) = <p(z(t),x(t),v(t)), 

with state z(t) G IK9, with new control v(t) G Rm and with real analytic i/K") and 

¥>(•)• 
We call the compensator C described by equations (2) regular if the nonlinear 

control system 

x(t + \) = f(x(t)M*(t)Mt)Mt))Mt)) 
z(t + \) = i>(z(t)Mt)Mt)) (3) 

u(t) = ip(z(t)Mt)Mt))> 

with inputs v(t) and outputs u(t) is invertible; see [7, 9] for details about the notion 
of invertibility. 

The closed-loop system (1) - (2), initialized at (XQ,ZQ) is denoted by EoC. For the 
study of the closed-loop system E o C, we need to consider the field of meromorphic 
functions of a finite number of the variables {x(0), z(0), v(t), w(t),t > 0}. By abuse 
of notation, we use the same symbol AC to denote this new field. Notice that the 
invertibility of the compensator C implies that there exists a (x,z,uv)-dependent 
bijection between the variables u(t) and v(t). Therefore, v(t) and u(t) can be used 
indistinctly in the definition of /C. For the closed-loop system E o C , define Z = 
span^jd^O)}, V = span^jdi^A;), k > 0}, and y* = spam)C{dy(k), k > 0}. 

Definition 1 . (Dynamic disturbance decoupling problem DDDP.) Find, if possible, 
a regular dynamic state feedback of the form (2) such that the difference output space 
y* of the closed-loop system E o C satisfies y* C Z ® X © V. 

3. GENERALIZED CONTROLLED INVARIANCE 

Consider the discrete-time nonlinear system Eo which is obtained from E by setting 
w(t) = 0, for t > 0, that is: 

j x(t + l) = f(x(t)Mt)),x(0)=*o, (A, 
S ° : \ y(t) = h(x(t)). ( 4 j 

A feedback of the form 

u(t) = <p[x(t),v(t),v(t + l),...,v(t + f3)\, (5) 
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where /3 is a finite nonnegative integer and dim u = dim v is said to be a quasi-static 
state feedback for (4) if there exist an integer 7 > 0, and a map f such that, locally, 

v(t) = £[x{t)Mt)Mt + 1), . . . , u(t + 7)]. (6) 

When /3 = 7 = 0, this notion reduces to a regular static state feedback. 

R e m a r k 1 . The class of quasi-static state feedbacks may be considered as a math­
ematical tool used to describe intrinsic properties of the system under dynamic 
feedback, computed on the basis of the inversion algorithm, rather than a new class 
of compensators which are used in practical applications [11]. As a matter of fact, 
a quasi-static state feedback of the form (5) may be put in the form (2) defining 
Zi(t) = v(t + i — 1), 1 < i < /3, v(t + (3) = v(t). Conversely, a dynamic state feedback 
computed using the inversion algorithm has a structure which reduces to (5). 

For continuous-time systems the class of quasi-static state feedback was applied 
first in [17] and formalized in [4, 5]. In the discrete-time case, quasi-static state 
feedback was first considered in [1] for systems with disturbances. 

Denote by Ay the forward-shift operator induced by the dynamics of system (4) 
and by A ; the forward-shift operator that corresponds to the dynamics 

f[x{t)Mt\ ...Mt + P)] = f[x(t)M*(t)Mt), •••Mt + /?))] -

of the closed-loop system (4) - (5). Given a subspace fi C X, we define the subspace 
Af fi by Af fi = spa>nJC{AfUj | u G fi}. Subspace A^fi is defined in a similar 
manner. 

The following definitions are the discrete-time analogues of Definitions 2.1 and 
3.7 in [10]: 

Definition 2 . A subspace ft C X is said to be an invariant subspace of (4) if 
Afft C Q + span£{du(0)}. 

Definition 3 . A subspace f2 C X is said to be a controlled invariant subspace 
of (4) with respect to quasi-static state feedback if there exists a quasi-static state 
feedback (5), such that for (4) - (5) one has Ajil Cft + V. 

4. GEOMETRIC SOLUTION OF THE DDDP 

In this section we give an intrinsic, algorithm-independent, proof for Theorem 4 in 
[3]. In order to state our main Theorem, we define 3^ = span^ (dy(0)}. 

T h e o r e m 1 . The DDDP is solvable if and only if there exists a controlled invariant 
subspace (l C X such that 

IĚL)1-yo C íí/(x,«,u,) C spán*; \ - r- > (7) 
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P r o o f . (Sufficiency) Since DDP is solvable by dynamic state feedback if and 
only if it is solvable by quasi-static state feedback [3], to prove the theorem, it suffices 
to show that the DDP is solvable by quasi-static state feedback. 

Controlled invariance of ft implies that there exists a quasi-static state feedback 
of the form (5) such that for the compensated dynamics 

Ajil Cfl + V. (8) 

By (7) and (8) one has that for the compensated system for V£ > 0 

dy(t) C ft + V. 

Thus in the closed loop system the output y is decoupled from the disturbance. 

(Necessity) Suppose that the quasi-static state feedback of the form (5) solves 
the DDP. Then for the closed-loop system on has for \/t > 0 

dy(t) C span^{dx(0), du(O),.. . , dv(/3 + t - 1)}. 

Define the sequence ft^ as 

ftp+i = span^fcj G ftu | Aju eilfl + V}, /x > 1 

and 
ft = lim ft„. 

/x—>>oo 

Notice that, by definition, ft/x+i C ftM. Since fin is finite dimensional, the sequence 
{ftM} necessarily stabilizes. Therefore, ft is well-defined. 

Obviously Aj ft C ft + V. Thus, ft is a controlled invariant subspace. By con­
struction, ft is the subspace decoupled from the perturbation dw. On the other 
hand, by the assumption the one-forms dy(t) of the closed-loop system are indepen­
dent of the perturbation duv, for all t > 0. Then, necessarily, spanA:{d7/(0)} C ft and 

ft C | | £ } , and so (7) also holds. • 

Condition (7) in Theorem 1 is not constructive. The corresponding constructive 
condition is obtained when considering the smallest controlled invariant subspace 
ft* containing 3̂ o = sPanK;{d2/(0)}. In [3] it has been proved, that ft* = X n y. An 
immediate consequence of Theorem 1 is then the following theorem. 

Theorem 2 . The DDDP is solvable if and only if 

" W ^ C s p a n ^ j ^ l . (9) 
^ KJUJ J ( x u w } 
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5. DISCUSSION AND EXAMPLES 

5.1. Differences wi th respec t t o t he cont inuous- t ime case 

The geometric solvability condition of the DDDP (9) differs from its continuous-
time analogue [10, 11], as well as from the linear case, in the following manner: the 
coefficients of the one-forms which define the subspace £2* must not be evaluated at 
time instant t, but at time instant t + 1. 

The difference between the continuous-time and the discrete-time cases can be 
explained because the time-differentiation operator ^ obeys Leibnitz rule, while 
the forward-shift operator A is a homomorphism. Therefore, both operators act 
differently on one-forms. 

For instance, consider the one-form u = Y^i a>idxi = adx. The time-derivative of 
the form u along the trajectories of the continuous-time system x = f(x,u,w) and 
the forward-shift of the form u along the trajectories of the discrete-time system 
x+ = f(x,u,w) are given, respectively, by 

û = à dx + a 

and 

дf - дf л дf ' 
—dx + —du + тr-dw 
ox ou ow 

df A 9 / J dfj 
— d x + — d u + -— dw 
ox ou ow 

It can be seen that the one-forms to and u;+ are independent of the disturbance dw 
if and only if the row vector a, respectively a + , annihilate the matrix g£, whence 
the difference arises. 

The difference from the linear case stems from the fact that in the case of linear 
systems, the notion of a one-form reduces to a constant row vector. In the example 
above, if the coefficients ai are constant, then a"1" = a. 

This is also the reason why the necessity of considering £1* at x+ is not apparent 
for all nonlinear examples. The next example demonstrates, that in general, one has 
to be careful at which point ft* should be evaluated. 

e 1 . Consider the system 

xг{t + l) = щ{t) 
x2{t + l) = x3{t)щ{t) + x2(t)x4(t) --xi(ť)xъ(t) 
ж3(í + l) = u2(t) 
xA(t + l) = xi(t)w(t) 
xь(t + l) = x2(t)w(t) 

yi(ť) = Xi(ť) 
У2(ť) = X2(ť). 

For this system, Q,* — spanK{da;i,da;2,u\6xz + a^da^j — i ida^} and 

= (0,0,0,a,i>.r2) . 
дw 
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We easily find that for u^ = U\dx3 + x2dxi — X\dx$ 

U3(x)-rT- = x\x2 - x2xi = 0; 

however, the DDDP is not solvable. The reason is that 

r\ r 

LJ3(X
+)-^— = -U\X2 + X1X3U1 + XiX2X4 - x\x*> y£ 0 . 

ow 

5.2. The role of the submersitivity assumption 

Throughout the paper we have assumed that the discrete-time control system under 
study is submersive. The forward-shift operator S might not be well defined for 
nonsubmersive systems, as it is illustrated by the following example 

Example 2 . Consider the discrete-time nonlinear system 

xi(t + l) = x2(t) 
x2(* + l) = -x\(t) (10) 
X3(t + 1) = xi(t)x2(t). 

System (10) is not submersive, because rank of the Jacobian matrix 

Ĺ 
дx 

0 1 0 
- 1 0 0 
x<i x\ 0 

is equal to 2. 
Define the function [i = —r- . Straightforward computations show that LL+ is 

not defined. Moreover, if we define rj = X3 + x\x2, then ST] = 0 does not necessarily 
imply 77 = 0, and therefore, the forward-shift operator S is not one-to-one. 

The effects are, however, shortlived and can be eliminated from the analysis by 
ignoring the first n (at maximum) time instances which means that submersitivity 
assumption can be relaxed. However, we have chosen to keep this technical assump­
tion in order to keep the proofs shorter and more transparent (see the proofs for 
nonsubmersive systems, related to invertibility problem in [9]). 

Example 3 . Consider the nonsubmersive system 

Ж l ( í + 1 ) = Щ(t) + XĄ(t)w(t) 

Я2Í- + 1) = xз(t)щ(t) 
x3(í + l) = u2(t)+x7(t) 
XA{t + 1) = xь(t) -x6(t) 
.-5(4 + 1) = x6(t) 
•r6(í + 1) = xe(t) 
x7{t + 1) = x7(t)w(t) 

Уi{t) = xi(t) 

!/-(*) = x2(t) 
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The solvability conditions of Theorem 1 (alternatively Theorem 2) are not satisfied 
since 

yi(t + l) = ui(t) + x4(t)w(t) 

and 

y2(t + 1)= x3(t)[yi(t + 1) - x4(t)w(t)] 

depend on disturbance w(t). However, the effect of the nilpotent part of the system 
on the output sequence is shortlived and can be eliminated from the analysis by 
ignoring the first n time instances. The compensator 

z(t + l) = Vi(t) 
m(t) = z(t) 
u2(t) = v2(t)/vi(t)-x7(t) 

will solve the DDDP. 

5.3. Properties of quasi-static state feedbacks 

A minor mistake in a previous publication is clarified in this section. Indeed, equation 
(13) in [1], which reflects the properties of the quasi-static state feedback, contains a 
mistake: despite of the fact that u(t) does not depend on w(t), v(t) may still depend 
on w(t)] see Example 4 below. Equations (5) and (6) do not depend on w(t) because 
they are defined for system Eo, which is obtained by setting w(t) = 0. 

Example 4 . Consider the system 

Xi(t+1) = x2(t)+щ(t) 
x2(t + l) = x3(t)+w(t) 
ж 3 ( í + l ) = X4(t) +Щ(t) 
x4(t + l) = Xi(t)x2(t) + u2(t) + w(t) 

УÁt) = Xl(t) 
У2(t) = x3(t). 

This example illustrates the fact that though the feedback of the form (5) that solves 
the disturbance decoupling problem does not depend on the disturbances w(t), 

ui(t) = vi(t)-x2(t) 

u2(t) = v2(t) - vi(t + 1) - xi(t)x2(t) + x3(t), 

the equation (6), reflecting the properties of the feedback, may still depend on w(t) 

vi(t) = ux(t)+x2(t) 

v2(t) = u2(t) + U!(t + 1) + xx(t)x2(t) + w(t). 
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6. CONCLUSIONS 

Recently the notion of controlled invariance under quasi-static s ta te feedback was 
given and shown to provide a geometric solution of the dynamic disturbance de­
coupling problem. However, the proof relies heavily on the inversion (structure) 
algorithm. This paper presents an intrinsic algorithm-independent proof for the ge­
ometric solution. Moreover, several worked examples have been presented to clarify 
the differences of the discrete-time case with respect to the continuous-time and the 
linear cases. Also, the role of the submersivity assumption is put forward, and some 
insights about its relaxation are suggested. 
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