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K Y B E R N E T I K A — VOLUME 3 7 ( 2 0 0 1 ) , N U M B E R 2, P A G E S 1 0 9 - 1 2 6 

POSSIBILISTIC ALTERNATIVES OF ELEMENTARY 
NOTIONS AND RELATIONS OF THE THEORY 
OF BELIEF FUNCTIONS1 

IVAN KRAMOSIL 

The elementary notions and relations of the so called Dempster-Shafer theory, introduc­
ing belief functions as the basic numerical characteristic of uncertainty, are modified to the 
case when probabilistic measures and basic probability assignments are substituted by pos-
sibilistic measures and basic possibilistic assignments. It is shown that there exists a high 
degree of formal similarity between the probabilistic and the possibilistic approaches in­
cluding the role of the possibilistic Dempster combination rule and the relations concerning 
the possibilistic nonspecificity degrees. 

1. INTRODUCTION - CLASSICAL BELIEF FUNCTIONS 

First of all, let us explicitate the following methodological principle: this paper is 
conceived as a mathematical and theoretical one, so that the reader interested in the 
intuition and possible interpretations behind the notions introduced and statements 
claimed and proved below is kindly invited to consult appropriate sources from an 
already rich list of works dealing with belief functions and Dempster-Shafer theory. 
For the same reasons we shall not go into details when analyzing the intuition and 
interpretation behind the possibilistic alternatives of the notions and relations of the 
theory of belief functions, which are introduced, investigated and deduced below. 

The most simple combinatorial definition of classical non-normalized belief func­
tion over a finite nonempty space S reads as follows. Basic probability assignment 
(b.p.a.) over 5 is a mapping m which takes the power-set V(S) of all subsets of 
S into the unit interval [0,1] of real numbers in such a way that ^ A c 5 m ( A ) = 1. 
Hence, m is nothing else than a probability distribution over the power-set V(S). 
The non-normalized degree of belief belm generated by the b.p.a. m and ascribed 
to a subset A of S is defined by 

b d " W = £ * B C A m < f l > ' ( L 1 ) 

setting beim(0) = 0 for the empty subset 0 of S. 
1 This work has been sponsored by Grant A 1030803 of the Grant Agency of the Academy of 

Sciences of the Czech Republic. 
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An alternative way how to arrive at (1.1) reads as follows. Let S be taken as 
the set of all possible internal states of a system (answers to a question, solutions 
to a problem, medical or technical diagnoses, etc.), let E be the space of empirical 
values (observations, symptoms, hints) concerning the system in question, and let 
p : S x E —> {0,1} (or p C S x E) be a compatibility relation which defines the 
subjects's knowledge as far as the system is concerned. Namely, if p(s,x) = 0 for 
some s G S and x G E, then x cannot be the actual internal state of the system 
supposing that x was observed, hence, s and x are incompatible. If p(s,x) = 1, then 
the state s and the empirical value x are compatible. So, for each x G E, the set 
Up(x) = {s G S : p(s,x) = 1} of states compatible with x is defined. 

Let the observed empirical value x be of statistical (stochastical) nature, formally, 
let x be the value taken by a random variable X defined on a fixed probability space 
(fi,.y4,P) with the values in a measurable space (E,£) over E. Under some reason­
able measurability conditions, e.g., when E is finite and £ = V(E), the composed 
mapping U(X(-)) : tt —> V(S) is a set-valued (generalized) random variable. Setting 
m(A) = P({u G fi : U(X(u)) = A}) for each A C S, (1.1) transforms into 

belm(A) = P ({u G fi : 0 + U(X(u)) C A}). (1.2) 

Also the Dempster combination rule, which enables to combine the degrees of 
belief ascribed by two or more subjects to the same system charged with uncertainty, 
can be most easily defined at the algebraic combinatorial level. Let mi , m2 be 
b.p.a.'s on the same finite space S. Define the mapping mi ©m2 : V(S) -» ( -co, oo) 
setting for each A C S 

(rm em2)(A) = Y,B<Ccs^c=Ami{B)m^C)- ( L 3 ) 

An easy calculation yields that mi ©m2 is also a b.p.a. on /?, so that (mi ffim2) (A) G 
[0,1] holds for each A C S and ]CAcs ( m i ®mi) (-4) = 1. The b.p.a. mi©m2 is called 
the Dempster product of the b.p.a.'s mi and m2 and the operation © is called the 
Dempster combination rule. For more b.p.a.'s mi , m 2 , . . . , m n on the same S their 
Dempster product mi © rri2 © • • • © m n , or simply ©"= imi, is defined by recursion, 
i.e., by (mi © m2 © • • • © m u _i) © mn. As the operation © is commutative and 
associative, the bracketing is irrelevant and can be omitted. The so called vacuous 
b.p.a. ms is defined by ms(S) = 1, so that ms(A) = 0 for every A C 5, A ^ S, and 
plays the role of the unit element with respect to the operation © in the sense that 

(m © ms) = (ms ®m) =m (1.4) 

holds for each b.p.a. m on S, here = denotes the equality of the corresponding 
values for all subsets of S. 

The Dempster combination rule for belief functions, denoted with a certain toler­
ance also by ©, is defined by the Dempster product of the corresponding b.p.a.'s in 
the following way. If mi , 7712 are b.p.a.'s on S and belmi, belm2 are the corresponding 
belief functions (as S is finite, there exists a one-to-one relation between basic prob­
ability assignments and belief functions), then the Dempster product belmi © belm2 

of belmi and belm2 is defined by 

belmi © belmi =df belmi®m2- (1.5) 
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Also within the space of belief functions the Dempster combination rule is commu­
tative and associative, so that the way in which Dempster product of more b.p.a.'s 
is defined applies also to the case of belief functions. 

The approach to Dempster combination rule through random sets reads as follows. 
Consider two subjects observing and investigating the same system, hence, S is the 
same for both of them. Also the observational space E, probability space (ft,.4,P) 
and random variable X are supposed to be the same for both the subjects. This 
assumption may be accepted without a too great loss of generality, as E can be 
a many-dimensional vector space Xj^-Ei , so that observations of different nature, 
possibly made by different subjects, can be described by values from different E^s. 
What matters are possibly different compatibility relations pi, p2 ' S x E —> {0,1}, 
defining the perhaps different kinds and degrees of knowledge of both the subjects as 
far as the decision or testing problem in question is concerned. The basic idea, when 
combining the pieces of knowledge of both the subjects, reads that any assertion 
of one of them, claiming that a particular s € S and x G E are incompatible is 
taken as valid and, consequently, accepted by the other subject. In symbols, the 
combined knowledge of both the subjects is defined by a new compatibility relation 
P12 : S x E —> {0,1} such that 

Pu(s,x) = pi(s,x)Ap2(s,x) (1.6) 

holds for every s G S and x G E\ here A denotes the usual operation of infimum 
(minimum, in this particular case) in the unit interval of reals. Hence, for sets of 
compatible states (1.6) yields that 

UPl2(x) = UPl(x)nUP2(x) (1.7) 

and, supposing that x = X(u) for a random variable, as above, we obtain the 
set-valued mapping UPl2(X(-)) defined, for each u G ft, by 

UPl2(X(u)) = UPl(X(u)) n UP2(X(u)). (1.8) 

If this mapping is measurable with respect to the cr-field V(V(S)), we can define, 
for each A C S, the value m\2(A) by 

ml2(A) = P({uen: UPl(X(u)) n UP2(X(u)) = A}). (1.9) 

As S and, consequently, also V(S) are finite, 17112(A) can be written as 

m12(,4) = E B C C 5 Bnc=AP{{cJ G n:UPl(X(u)) = B}n{u € Sl:UP2(X(u)) = C}). 

(1.10) 
If the set-valued random variables UPl(X(-)) and UP2(X(-)) are statistically inde­
pendent in the sense that the equality 

p({u e n . upi(x(u)) = B}n{uen-. uP2(X(u)) = c}) (1.11) 
= P({u e n : UPl(X(u)) = B})-P({ueSl: UP2(X(u)) = C}) 
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holds for every £?, C C 5, and if we set 

m{(A) ^P({ueft: UPi (X(u)) = A}) (1.12) 

for each A C S and both i = 1, 2, (1.10) implies that 

m12(A) = J2Rr^ Rnr=P({uen:UPl(X(u)) = B}) (1.13) 

E 
hence, 

B,CcS,BnC=л 
P({u€Ïl:UP2(X(u)) = C}) 

m i ( В ) m 2 ( С ) , 
B,CCS,BГ\C=A ч ' v n 

mi2(Ä) = (mi m2) (A) (1-14) 

according to the definition of Dempster product by (1.3). 
In what follows, a common and important feature of the formal model explained 

above consists in the fact that all the values ascribed to a subset A of S by various 
basic probability assignments and belief functions are defined by probabilities, i.e., 
values of the probability measure P given by the probability space (17, .4, P) in 
question and ascribed to random events (measurable subsets of ft, i. e., subsets from 
the cr-field A) appropriately induced by the subset A of S under consideration. In 
their turn, probability measures are particular cases of numerically quantified sizes 
of sets (or at least of certain subsets of the universe of discourse), namely those 
fulfilling the demands of normalization (values from the unit interval of reals) and 
cr-additivity. So, an immediate idea arises: to modify the model of belief functions 
from above in such a way that the sizes of corresponding sets of elementary random 
events (subsets of ft) will be quantified by set functions alternative to probability 
measures. In the rest of this paper we shall try to do so replacing probability 
measures by the so called possibilistic measures. It could and should be a matter of 
further investigation to generalize the approach developed below also to the case of 
so called fuzzy measures. 

2. POSSIBILISTIC MEASURES - DEFINITION AND PRELIMINARIES 

Possibilistic measures were introduced by L. Zadeh in [12] and have been widely 
developed since, let us recall the works by D. Dubois and H. Prade ([2, 3, 4]), or 
the detailed work [1] by G.deCooman dealing with non-numerical (lattice-valued) 
possibilistic measures. It is just this work [1] which discovers and proves far go­
ing and deep formal analogies between possibilistic and probabilistic measures, for 
which possibilistic measures deserve to be taken into consideration when looking for 
possible alternatives to probability measures. In the sequel we shall very often take 
profit of these analogies. 

The most simple definition of possibilistic measures reads as follows. 
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Definition 2 .1 . Let ft be a nonempty set, let 'P(fi) denote the set of all subsets 
of ft. A possibilistic measure on ft is a mapping I I : 'P(fi) —r [0,1] such that 

n(0) = 0, n(ft) = 1 (2.1) 

U(A UB) = U(A) V U(B) (2.2) 

for every A, B C ft, here V denotes the standard supremum in the unit interval (and, 
dually, A denotes infimum). A possibilistic measure II on ft is called distributive if 
the equality 

n(A) = V , n(M)" (2.3) 

holds for all 0 ^ A C ft (it holds for A = 0 as well, if we apply the convention 
according to which the supremum over the empty set of nonnegative items equals 
zero. As a matter of fact, we shall apply this convention in what follows). If (2.3) 
holds, then the mapping ir : ft —r [0,1] defined by 7T(CJ) = II({a;}) for every u G ft 
is called the possibilistic distribution induced by and generating the possibilistic 
measure II. 

By induction, (2.2) yields that II (U"=1 A{) = VlLi n 0^) i s v a l i d f o r e v e i T finite 

sequence A\, A2,..., An of subsets of ft, consequently, if ft is finite, every possibilis­
tic measure on ft is distributive. If ft is infinite, this need not be the case: consider 
the possibilistic measure Iln such that Iln (A) = 0 for finite subsets A of S (including 
the empty one) and Iln (-4) = 1, if A is infinite. If II is distributive, then for every 
nonempty system TZ of subsets of ft the following identity holds: 

n(U„")=V{l(M):»€U««} <"> 
= VR €N„ € f ln(M) = VB€Kn(")-

A possibilistic measure II is called compact, if there exists u G ft such that II({a;}) = 
1, if II is distributive, its possibilistic distribution is also called compact. If ft is 
finite, every possibilistic measure on ft is compact. Any function / : ft -» [0,1] 
such that Vcjen f(u) ~ * induces the distributive possibilistic measure 11/ on ft 
such that 11/ (A) = \JLjeA f(u) for every 0 ^ A C S and 11/(0) = 0; its possibilistic 
distribution coincides with / . If f(u) = 1 for some u G ft, 11/ is compact. 

A possibilistic measure II on ft is called two-valued, if II(.A) G {0,1} for every 
A C ft. If a two-valued possibilistic measure on ft is distributive and if Ku = {u e 
ft:II({a;}) = l } , then the kernel Ku of II uniquely defines II in the sense that, for 
every A C ft, II(.A) = 1, if A H Ifn ^ 0, U(A) = 0 otherwise. Obviously, the kernel 
Ku is nonempty. A two-valued possibilistic measure II on ft is single, if Ku = {^n} 
for some LJU € ft. Hence, for every A C ft, n(.A) = 1, if uu G A, U(A) = 0 otherwise. 

The conception of possibilistic measure has been modified in several directions. 

(a) Only distributive possibilistic measures are considered. 

(b) Also non-normalized possibilistic measures with n(ft) < 1 are considered. 
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(c) Possibilistic measures are defined as partial mappings, i. e., U(A) is defined for 
every A eTZ C V(ft), 7Z / V(Vt). Most often, 7Z is supposed to be a so called 
ample field, which is closed with respect to the operations of set-theoretic 
complement and unions (and intersections, consequently) of any nonempty 
systems of subsets of Q. Hence, ample field strengthens the notion of a-field 
which is closed with respect to finite and countable unions and intersections. 
As a matter of fact, an ample field 7Z C V(fl) can be identified with the 
power-set V(Q\ « ) of all subsets of the factor-space fi| « induced in fi by 
an equivalence relation « on $1. Introducing a term analogous to that used 
in probability theory, the triple (fi,7£, II) can be called the possibilistic space 
induced in the set £) by the ample field 7Z and by the possibilistic measure n 
defined on 7Z. 

(d) Also possibilistic measures with non-numerical values are considered. The 
space of these values must be equipped by a structure rich enough to define 
the supremum and infimum operations and to process them. Most often, the 
space of values is supposed to be equipped by a complete lattice. 

What is important in our context is the fact that possibilistic measures can simu­
late the probabilistic ones also when introducing a possibilistic analogy of the notion 
of integral or, in a more probability theory-like terms, the notion of expected value. 
This can be done due to the notion of Sugeno integral, the most simple but sufficient 
for our purposes definition of which reads as follows. 

Definition 2.2. Let (fi,7^(0),II) be a possibilistic space, let / : ft —r [0,1] be a 
function. The Sugeno integral of f over $1 and with respect to U is defined by 

/ fdU = \ / [aAU({u e fl : f(u) > a})}. (2.5) 
JQ V <*e[o,i] 

As proved in [9], if n is distributive, then 

/ an = V _ [ / M A n(M)] = V. , „ [ / » A TTM]. (2.6) 
/ 
JQ 

a/€Q v u;eír 

In [1], where only distributive possibilistic measures are considered, (2.6) plays im­
mediately the role of the definition of Sugeno integral. Replacing, just as a formal 
construction, Vweft ^y zC^ef. a n d A by product, we arrive at the common definition 
of integral for the most simple case of function defined on a finite probability space. 

It is, perhaps, worth saying explicitly, that the roles of supremum and infimum 
operations for possibilistic measures are not completely dual. Possibilistic measures 
are monotonous with respect to the set-theoretic inclusion, as for any A C B C fi 
the inequality 

U(A) < U(A) V U(B -A)= U(A U(B- A)) = U(B) (2.7) 
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easily follows. Consequently, for each A, B C ft, U(A n B) < 11(A), U(A n B) < 
11(B), so that 

U(A HB)< U(A) A n(J5). (2.8) 

However, the equality in (2.8) does not hold in general. Indeed, take ft such that 
card(ft) > 2 and consider the most trivial possibilistic measure n on ft such that 
n(0) = 0, U(A) = 1 for every 0 ^ A C ft. Then, for every 0 / A C ft, A ^ ft, we 
obtain that 

o = n(0) = u(A n (s - A)) < i = i A i = n(A) A n(5 - A). (2.9) 

If the possibilistic measure n is single, the equality U(A H B) = U(A) A U(B) 
holds for every A, B C ft. Evidently, the only thing we have to prove is that 
if U(A n B) = 0, then either 11(A) = 0 or 11(B) = 0. But, U(A Pi B) = 0 iff 
cjn ^ -4 fl B, where {u;n} is the singleton kernel of the single possibilistic measure 
n . Consequently, OJT\ £ A fl B implies that either uu £ A or un £ B, so that either 
U(A) = 0 or 11(B) = 0. 

If the relation U(AC\B) = U(A) AU(B) is valid, the sets A and B (random events 
A and B, when preferring the probabilistic terminology) are called possibilistically 
independent or, more correctly, independent with respect to minimum-based relation 
of possibilistic independence (cf. [5, 7, 8, 12] for a more detailed discussion), even if 
also alternative definitions of the notion of possibilistic independence are suggested 
and investigated. We shall take profit of this notion later in this paper. 

3. BASIC POSSIBILISTIC ASSIGNMENTS AND POSSIBILISTIC BELIEF 
FUNCTIONS - COMBINATORY MODEL 

In this chapter we shall try to develop a possibilistic analogy to the notions and 
constructions developed in Chapter 1 following, as far as possible, the methodological 
pattern consisting in a more or less routine substitution of summations by suprema 
and products by infima in our considerations from above. 

Definition 3 .1 . Basic possibilistic assignment (b.poss.a.) on a nonempty set S is 
a mapping ir : V(S) -> [0,1] such that VAcS7 r(^) = l j hence, b.poss.a. on S is a 
possibilistic distribution on V(S). Possibilistic belief function BELn induced by the 
b.poss.a. 7r on S is a mapping such that, for all A C 5, 

BEL„(A) = \/^BcA<B) = U(V(A) - {0}), (3.1) 

where n is the possibilistic measure induced by n on S. Hence, BELn($) = II(P(0) -
{0}) = n(0) = 0. 

Contrary to the case of probabilistic belief functions over finite set 5 , there is, in 
general, no one-to-one relation between b.poss.a.'s and possibilistic belief functions. 
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Lemma 3.1. If 7r(S) < BELn(S), then there exists a b.poss.a. 7r* such that 
TT*(S) ^ n(S), hence, 7r* ̂  TT, but BEL„.(A) = BELn(A) for every A C S, so that 
BELn. = BELn holds. 

Proof. Set TT*(A) = 7r(A) for every A C S, A ^ S, set TT(S) < TT*(S) < 
BEL„(S). Then, for every A C S, A # 5, if B C A, then B^S, so that 

BEL„.(A) = \JUBCA«*(B) = \j^BcA*(B) = BEL^A). (3.2) 

As 7r(5) < 7r*(S) < BEL„(S), we obtain that 

BELn(S) = W <B) = W *(B) (3.3) 
v ' V0^BC5 v ' V 0 /BC5,B/5 v ' v ' 

BELK.(S) = V - ^(-5) = V *'(B)> (3-4) 
V ' V 8/BCS V ' V0^BC5,B#S V " V ' 

but for all I? C 5, B ^ S,TT and 7r* coincide, and for some B ^ S, n*(B) = n(B) > 
n(S), so that BEL„(S) = BELn. (S). • 

Lemma 3.2. If there exists 0 ̂  B C S such that 7r(B) > 7r(0) holds (in particular, 
if TT(0) < 1), then BELn(S) = 1. 

Proof. If TT(B) > TT(0) for some tyj^BcS, then 

BEUiS) = \/^BcS«(B) = yBcSAB) = 1, (3.5) 

as 7T is a b.poss.a., hence, a possibilistic distribution on V(S). If 7r(0) < 1, then 
there must exist B C S, B £%, such that 7r(B) > 7r(0), as \jBcS^(B) = 1. • 

Lemma 3.3. Let 7r be a basic possibilistic assignment on S. Then 

(a) BELn(A) < BELn(B) for every AcB CS, 

(b) BEL„(A l)B)> BEL„(A) V BELn(B) for every A,BcS, 

(c) BEL„(A HB)< BEL„(A) A BEL„(B) for every A,BcS. 

Proof . All the statements follow directly from the fact that possibilistic measures 
are monotonous with respect to the set-theoretic inclusion. In more detail, if A C 
B CS, then V(A) C V(B) and (a) follows by 

BELAA) = y^ccA n(C) < \ / 0 / C c B * ( 0 = BEL.(B). (3.6) 

The assertions (b) and (c) follow immediately. • 

Let A C S, let 7TA be such a b.poss.a. on 5 that ITA(A) =• 1, TTA(B) = 0 for 
every B C 5, B ^ A (note that in the case of b.poss.a.'s the later condition does 
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not follow from the former one). In this case, the b.poss.a. ITS is called vacuous and 
the b.poss.a. 7T0 is called inconsistent and we shall prove below, that they play the 
same roles with respect to the Dempster combination rule and with respect to the 
corresponding compatibility relations as the basic probability assignments labeled 
by the same adjectives. Moreover, let us define the trivial b.poss.a. 7r* setting 
TT*(A) = 1 for every A C S. Obviously there is no analogy to this notion within the 
space of basic probability assignments. Denoting by BELA the possibilistic belief 
function BELnA, we obtain that BELA(B) = V0-*CcB7r^(^') = 1> -f -4 C B, and 
BELA(B) = 0 otherwise. Hence, BELS(B) = 0 for every B C 5, B ^ S, and 
BELs(S) = 1. For BEL$ we obtain that BEL$(A) = \J^BcA ^ ( B ) = 0 for every 
A C S (for A ̂  0 by convention accepted above). Finally, 

BEL*(A) = BEL^M) = \I^BCA^B^ = X ^ 

for every 0 / A C 5 , BEL*(<b) = 0 by convention. 
Also the well-known relation between probabilistic belief and plausibility func­

tions can be modified to the case of possibilistic measures. Given a basic probability 
assignment on a finite set 5, the corresponding plausibility function plm takes V(S) 
into [0,1] in such a way that 

plm(A) = Y m(B) (3.8) 
r m\ J -^BcS ,BfW0 V ' V ' 

for every 0 ̂  A C 5 , pim(0) = 0 by convention. In the terms of random sets we can 
write that 

plm(A) = P ({u; G fi : UP(X(LJ)) n A / 0}). (3.9) 

As can be easily proved, the relation 

plm(A) = belm(S) - belm(S - A) (3.10) 

holds for every A C S, sometimes (3.10) is immediately taken as the definition of 
Pim-

For a possibilistic distribution n on V(S), i.e., for a basic poss.a. on 5, we can 
define the possibilistic plausibility function PLn, setting 

PLn(A) = \l ATT(B), (3.11) 
7rv J VBcs,BnA?-0 v n v ' 

so that PLT-(0) = 0 by convention. 

As for every 0 ?- A, B cS either I?cS-_4orJ3ri-4/0 hold, we obtain that 

PLn(A)VBELAS-A) = (VBnA^(B))v(\J^Bcs_An(B)) (3.12) 

= \/htB<B)=BELn{S); 

this relation obviously corresponds to (3.10) above. 

Before examining the alternative approach to possibilistic belief functions through 
set-valued random (or rather possibilistic) mappings, let us introduce the possibilistic 
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alternative to the Dempster combination rule at the abstract algebraic and combi-
natoric level. For the sake of simplicity we shall use the same symbol © also for 
the possibilistic Dempster combination rule hoping that it will be always clear from 
the context, whether it denotes the classical Dempster rule or its possibilistic mod­
ification. Considering b.poss.a.'s 7Ti and 7r2 on S and replacing, in a routine way, 
summations by suprema and products by infima, we obtain, for any A C 5, that 

(TTi ©7T2) (A) = d f V B , C c 5 , B n C = ^ [ 7 r i ( i ? ) A7T2(C7)]- ( 3 1 3 ) 

As 7ri and 7r2 are b.poss.a.'s on 5, the relation VAcs7 1"1^) = VAcs7 1"2^) ~ ^ 
holds. Hence, for each e > 0 there exist J3n, Co C S such that 7Ti(F?o) > 1 — £ and 
7r2(Co) > 1 — e is valid, so that, setting AQ = B0 n Co, we obtain that 

(7ri©7r2) (Ao) = V ' B t C c S t B n C = A o i ^ ( B ) A ^ ( C ) ] > ^(Bo)A7r2(G0) > 1-e, (3.14) 

consequently, \/AcS(^i ©7^) (A) = 1 and 7Ti ©7T2 is a b.poss.a. on S. The operation 
© is evidently commutative, so that (7Ti © 7^) (A) = (7^ © 7Ti) (A) for every A C S. 
It is also associative, as for every A C S, 

((7ri©7r2)©7r3)(A) = \/BnC=A [(*i © ̂ 2) (B) A ir3(C)] (3.15) 

= V B , , i C , D n , n C = . ^ W A - 2 ( ^ A 7 r 3 ( O ) ) . 

However, we arrive at the same expression when analyzing, analogously, the expres­
sion (7Ti © (7r2 © ^3)) (A), so that the equality 

((TTi © 7T2) © 7T3) (A) = (TTi © (TT2 © 7T3)) (A) (3.16) 

holds for every A C S. Hence, when defining recurrently, for b.poss.a.'s 7Ti, 7r2 , . . . , 7rn 

on 5, 
©?= 1 TTi = TTi © 7T2 © • • • © 7Tn =df (TTi © • • • © 7Tn_i) © 7Tn, (3.17) 

the definition is correct, as the bracketing is irrelevant. 

So, the most elementary properties of possibilistic Dempster operation © are the 
same as in the classical probabilistic case. Also the roles of the vacuous b.poss.a. 
7rs as the unit element and the inconsistent b.poss.a. 7T0 as the zero element with 
respect to © are the same as in the probabilistic case (if taking © as product; if 
taking it as summation, the roles of 7rs and 7T0 are interchanged). Or, for every 
b.poss.a. 7r on S and for every A C 5, 

(TT © TTS) (A) = \/BnC=A«B) A TTS(C)) = *(A) A 7r5(5) = n(A), (3.18) 

as (B, C) = (A, S) is the only pair of subsets of S such that B n C = A and 
7rs(O) > 0, hence, 7r © 7T5 = 7r. Dually, for 0 ^ A C 5 , 

(TT © TT0) (A) = \JBnC=A AB) A 7r0(O) = 0, (3.19) 
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as for A ^ 0 there is no B, C C S such that B n C = A and TTQ(C) > 0. For A = 0 
we obtain that 

( 7 r e 7 r 0 ) ( A ) = \ / f l c 5 ^ ) = l, (3.20) 

as BDC = 0 holds for every B C S supposing that C = 0. Consequently, 7T07T0 = n$. 
The trivial b.poss.a. 7r* (let us recall that ir*(A) = 1 for every A C S) is not so 
trivial with respect to the possibilistic Dempster rule, as for every A C S 

(7T © 7T.) (.4) - \JBnC=A[*{B) A M O ) ] = V B D y l ^ = GW> (3"21) 

as the last expression could be taken as the possibilistic analogy of the commonality 
function defined, for probabilistic b.p.a. ra, by q(A) = YIBDA171^)-

4. COMPATIBILITY RELATIONS AND BASIC POSSIBILISTIC 
ASSIGNMENTS 

The following construction copies, in its first steps, the pattern briefly outlined 
above in the case of basic probabilistic assignments and belief functions. Let 5 be a 
nonempty set of possible states of a system (alternative interpretations are above), 
let E be a nonempty set of possible values of empirical data (observations, e.g.) 
concerning the system in question and its environment. Let p : S x E —> {0,1} be 
a compatibility relation and let Up(x) = {s G S : p(s,x) = 1} be the set of states 
compatible with an empirical value x G E. 

In order to describe the random or at least nondeterministic, nature of the empir­
ical data we shall suppose that x = X(u), where X is a measurable mapping which 
takes the measurable space (ft,V(ft)) into a measurable space (E, £) generated in E 
by a nonempty cr-field £ of subsets of E] if E is finite, we take as a rule £ = V(E). 
Combining together the mappings U : E -> V(S) and X : ft —> E, we obtain a set-
valued mapping UP(X(-)) : ft -> V(S) ascribing to each uo G ft the subset Up(X(u)) 
of S. Given A C S, we can define its inverse image {u G ft : Up(X(u)) = A} with 
respect to this mapping and we may quantify somehow the size of this subset of 
ft. Contrary to the model explained in Chapter 2 above we shall not use, for these 
sakes, a probability measure P, but rather a possibilistic measure U0 defined on the 
power-set V(ft). In other terms, we shall define a possibilistic space (ft,V(ft),Uo) 
and we also define, for every A C S, the value n(A) by 

TT(A) = n 0 ({u G ft : Up(X(u)) = A}). (4.1) 

As can be easily seen, 

\JACS TT(A) = \JACS Ho ({uett: Up(X(u)) = A}) (4.2) 

= n0 (\JAcs{u-.uen-.up(x(u)) = A}) = n0(fi) - i, 

as UP(X(-)) is total on ft and IIo is a possibilistic measure on V(ft). Hence, the 
mapping n : V(S) -> [0,1] is a basic possibilistic assignment on S. 

As a matter of fact, every b.poss.a. on S can be defined by (4.1) as the following 
statement proves. 
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T h e o r e m 4 .1 . For every b.poss.a. on S there exist possibilistic space (ft, 7>(ft), IIo), 
empirical space E, mapping X : ft —> E and compatibility relation p : SxE —r {0,1} 
such that (4.1) holds for every A C S. 

P r o o f . Let n : V(S) -> [0,1] be a b.poss.a. on 5, let IT be the possibilistic 
measure on P(ft) induced by n. Define the possibilistic space (ft, V(Q), Ho) such that 
ft = V(S) and n 0 = II, hence, consider the possibilistic space (V(S),V(V(S)),U). 
Set E = V(S) and suppose that X is the identity mapping on ft = V(S), so that 
X(A) = A for every A C S. Define, finally, the compatibility relation p : S x 
E -» {0,1} by the characteristic function (identifier) Xx of a subset x of 5 , so that 
p(s,x) = 1, if s G X, p(s,x) = 0 otherwise. Then we obtain, for every A C 5 , that 

n 0 {{u G ft : Up(X(u)) = A}) = n ({B C S : UP(X(B)) = A}) (4.3) 
= U({BcS: UP(B) = A}) = U({BcS:{seS: p(s, B) = 1} = A}) 
= U({B C S : {s e S : XB(S) = 1} = A}) = U({B C S : B = A}) = U({A}) 

The assertion is proved. • 

Analogously to the case of basic probability assignments, partial cases of b.poss.a.'s 
picked out above can be easily seen to be defined by particular compatibility rela­
tions. Let pA : S x E -> {0,1} be such that PA(S,X) = l i f f s E _ 4 c S holds, no 
matter which the value of x may be. Then Up(x) = A for every x € E, consequently, 
Up(X(u)) = A for every u e ft. So, 

TT(A) = n 0 ({u e ft : Up(X(u)) = A}) = Ilo(ft) = 1, (4.4) 

and 7r(.B) = IIo(0) = 0 for every B c S , B 7-- A, so that IT = TTA- The particular 
cases 7T0 and 7rs are obviously defined by compatibility relations PQ(S,X) = 0 and 
ps(s,x) = 1 for every s G 5, x e E. The trivial b.poss.a. 7r* such that 7r*(.A) = 1 
for every A C S can be obtained by the construction presented above in the proof 
of Theorem 4.1, supposing that ft = V(S) and IIo({ct;}) = 1 for every u e ft. 

For the possibilistic Dempster combination rule we may also proceed in a way 
copying as close as possible our reasonings for the probabilistic case presented above. 
Let pi, p2 be two compatibility relations taking S x E into {0,1} and let P12 = 
S x £ - > { 0 , 1 } be defined by 

Pn(s,x) = pi(s,x) Ap2(s,x) (4.5) 

for every s 6 5, x G E. So, for every x G .B, 

UPi*(x) = {seS: pi2(s,x) = 1} = UPl(x) H UP2(x). (4.6) 

Let ( f t ,^(f t ) ,n 0 ) be a possibilistic space, let X : ft -> -B be a measurable mapping, 
let 

T T ^ ) = n 0 ({CJ G ft : [/„ (XM) = .4}) (4.7) 
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for i = 1, 2 and 12 and for every A C S. Then 

7r12L4) = n0 ({a; € n : UPl2(X(u)) = A}) (4.8) 

= n0 (> € n: upi(x(u)) n uP2(x(u)) = .4}) 
= n ° {^B,ccs,Bnc=A({w G n : ^ • ( x ( w ) ) = ^> n {w e fi : vP2(XM) = C})) 
= V' B,Ccs,BnC=AUo {{uen: U»WH = B}n{ueSl: UP2(X(u)) = C}) 

- VBnc=A [n° {{UJ G ft : ^ ( X M ) = B}) A n ° ({W G " : ^ ( X ( C J ) ) = C»1 
= V B n c = ^ - i ^ ) A - 2 ( O ) ] . 

In general, the inequality on the fifth line in (4.8) cannot be replaced by equality. 
This can be done at least in the two following cases: if the possibilistic measure 
n 0 is single (cf. the end of Chapter 2), or if the set-valued variables UPl(X(-)) and 
UP2(X(-)) are possibilistically (minimum-based) independent in the sense that the 
equality 

n0 ({uefl: UPl(X(u)) = B}n{uen: UP2(X(u)) = C}) (4.9) 
= U0({u;eCl: UP1 (X(u)) = B}) A n0 ({u; G fi : UP2 (X(LJ)) = C}) 

holds for every B, C C S. If (4.9) holds, then (4.8) yields that 

n12(A) = \/BnC=A MB) A 7r2(C)] = fa 0 TT2) (A) (4.10) 

according to (4.9). Hence, as in the case of probabilistic Dempster combination rule, 
also its possibilistic modification is based on two hidden assumptions: (i) minimum-
based combination of compatibility relations with the same semantics as above, and 
(ii) possibilistic independence of the sets of compatible states taken as set-valued 
variables. Cf. [6] for a more detailed analysis of the probabilistically based Dempster 
combination rule. 

5. POSSIBILISTIC NONSPECIFICITY DEGREES AND DEMPSTER 
COMBINATION RULE 

The intuition behind the Dempster combination rule can be read as follows. The 
pieces of knowledge of different subjects are such that any of these pieces enable to 
eliminate some states from the set of possible actual internal states of the investigated 
system. In other terms, the subject can focus her/his attention to a proper subset of 
S so approaching, partially, the desired final state of reasoning when only one state 
so E S remains as possible so that, consequently, the actual state of the system is 
identified. The way in which these pieces of knowledge are shared by two or more 
subjects is such that all the states which can be eliminated by at least one of the 
subjects are eliminated by all of them so that the cardinality of the remaining subset 
of S is as small as possible. 
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Hence, our informal feelings are that the better is a basic probability assignments, 
the smaller are, at least in average, its focal elements (elements to which positive 
probabilities are ascribed). So we can define, given a b.p.a. ra on a finite set 5, 
its (probabilistic) nonspecificity degree W(m) by the expected value of the relative 
(i. e., normalized to one) cardinalities of all subsets of S (including the non-focal ones 
when the probability is 0 so that the expected value remains untouched). Hence, we 
set 

W(m)=Y/AcS(\\A\\/\\S\\)m(A) (5.1) 

where \\A\\ denotes the cardinality of a subset A of 5; as S is finite, ||A|| denotes 
simply the number of elements in A. 

At least for the extremum cases this definition agrees with the intuition behind 
as sketched above. Indeed, W(m) = 1 (the maximum possible value for m) iff ra 
is the vacuous b.p.a. ms which does not contain any information concerning the 
actual value of 5 beyond the apriori accepted closed world assumption according to 
which all possible states of the system in question are supposed to be elements of the 
space S. On the other side, W(m) = 1/||5|| (the minimum possible positive value 
of W) iff ra = ra{s} for some s G 5, hence, iff m({s}) = 1; in this case ra uniquely 
determines the actual state of the investigated system. Of course, W(m^) = 0 for 
the totally inconsistent b.p.a. 7710, but this b.p.a. does not yield any information 
concerning the actual state s and will be avoided from our classification. 

As analyzed in more detail and proved in [10], Dempster combination rule im­
proves the qualities of the composed b.p.a.'s in the sense of reduction of the values 
of the nonspecificity degree W defined by (5.1). Indeed, for any basic probability 
assignments rai, ra2 defined on the same finite set S the inequality 

W(mi 0 ra2) < W(mi) A W(m2) (5.2) 

holds with A denoting, as above, the standard infimum operation within the unit 
interval [0,1] of reals. Moreover, let <g> be the combination rule dual to the Dempster 
one and defined by 

(mi ® m2) (A) = J2BtCcS>BuC=A
 m^B) m 2 ( C ) (5-3) 

for any b.p.a.'s rai, ra2 on S and any A C S. This rule can be defined also through 
compatibility relations pi, p2 and random sets, setting 

Pi2(s,x) = pi(s,x) V p2(s,x) (5.4) 

for every s e S and x £ E. Consequently, UPl2 (x) = UPl (x) U UP2 (x) for every x G E 
so that, setting x = X(u) and supposing that the set-valued random variables 
UPl(X(-)) and UP2(X(-)) are statistically independent, we arrive easily at (5.3). As 
could be expected, for any b.p.a.'s rai, ra2 on S the inequality 

W(rai 0 ra2) > W(mr) V W(m2) (5.5) 

dual to (5.2) holds with V as the supremum in [0,1] (cf., again, [10] for more details 
and proof). 
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In the rest of this chapter we shall try to "translate" the formulas (5.2) and (5.4) 
into the possibilistic terms, following the more or less routine pattern applied above, 
and to prove the resulting statements. Let us note that (5.1) is nothing else than 
the definition of the integral of the random variable | |.A||/| |5| | over the probability 
space (V(S),V(V(S)),M), where M(A) = J2AeAm(A) f o r e v e r y A c V(S)> h e n c e > 
(5.1) turns into 

W(m)= [ ( P | | / | | S | | ) d M . (5.6) 
Jv(S) 

The idea immediately arises to replace (5.6) by the corresponding Sugeno integral. 

T h e o r e m 5.1. Let S be a nonempty finite set, let 7ir, 7r2 : V(S) —> [0,1] be basic 
possibilistic assignments on S. Then the following inequality holds for both i = 1, 2 

V , c s (<IWI/I|S|> A [V B . c c s , B n o = ,<*. W A MC))]) (5.7) 

< V Л C 5 ( ( И I / I І 5 І І ) Л ^ ( A ) ) 

P r o o f . The proofs for both i = 1, 2 are evidently analogous, so that we can limit 
ourselves to the case when i = 1. Let 7r* be the trivial b.poss.a. on S defined above 
by the identity n*(A) = 1 for each A C S. Consequently, TVI(A) < n*(A) holds for 
every A C S. Replacing 7r2 by 7r* in the left-hand side of the inequality (5.7) we 
obtain that 

VBnc=A {ni{B) A 7r2(C)) ^ VB n C = A (»-(*) A *•«?)) (5-8) 
= V (fi(B)Al) 

V B,CcS,BnC=AK v ' ' 

= V Ti(B) = V MB). 
V B, BnC=A for some CCS v ' » B , BDA V ' 

So we obtain that 

V^ c s ((IMII/IISII) A [V^nc^C'-fS) A'2(C))]) (5.9) 

< V.C S((MII/IISII>* [V„ M *.<*>])• 
As S and, consequently, also V(S) are finite sets there exists, for each A C S, a 
set BA C S such that BA D A and 7TI(BA) = VBDA^iC^)) -f there are more such 
B D A, no matter which of them will be chosen. Then 

V^cs (VBOA (dl^ll/H5!!)A MB))) (5.10) 

= VACS((\\M/\\S\\)A(VBDAMB))) 

= \/ACS((U\\/\\S\\)AMBA)) 

< V^c5((ll^ll/ll5ll)A7ri(^))' 
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asBADA implies that | |B4|| > \\A\\. Set 

V0(S) = {BcS:B = BAfor some A C S}. (5.11) 

Obviously, V0(S) CV(S), so that 

VA C 5 ( ( i i^n/ i i 5 i i )A 7 r i (^)) (5-12) 

< VBCS
((iiBii/n5ii)A7ri ( jB))-

Combining (5.9), (5.10) and (5.12) together, we obtain that 

V A C S ( ( n^i / i i 5 i i ) A [V B n c ^ ( 7 r i ( 5 ) A 7 r 2 ( c ' ) ) ] ) (5-13) 

< V^ c s ( ( P | l / | | 5 l l ) A 7 r i ( j 4 ) ) 
holds, so that the assertion is proved. • 

As a matter of fact, (5.7) is nothing else than (5.2) modified to the case of 
possibilistic measures. Indeed, let ir be a b.poss.a. on S, let II be the induced 
possibilistic measure on V(V(S)), let Q = V(S), let / : ft -» [0,1] be defined by 
f(A) = ||-4||/| |S|| for every ACS. Then, setting 

W*(TT) = / / M d n = / ( p | | / | | S | | ) d n , (5.14) 
Jn Jv(S) 

we obtain by (2.6), as II is distributive by definition, that 

W*W = \JAcS [(IIAII/II5H)A <W • (5-15) 

The value W*(it) is the possibilistic analogy of W(m) and can be called the pos­
sibilistic nonspeciRcity degree ascribed to the b.poss.a. -K. The relation (5.7) then 
reads as 

W*(TTI ©TT2) < W*(7r0, t = 1, 2, (5.16) 

for the possibilistic Dempster product 7Ti © 7T2, so that the analogy of (5.2) follows 
immediately. 

The following assertion is dual to (5.7). 

Theorem 5.2. Let S be a nonempty finite set, let 7Ti, 7T2 : V(S) —> [0,1] be 
b.poss.a.'s on S. Then the following inequality holds for i = 1, 2. 

V . c s ((WAW/\\S\\) A [ V B , C C S , B U C = > ( 5 ) A * 2 ( C ) ) D (5'17) 

> V,»c5 ( ( l | i l | l / , | 5 | l ) A , r i ( i l ) ) -
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P r o o f . Again, the proof for i = 1 is quite sufficient. As 7T2 is a b.poss.a. on a 
finite set 5 , there exists Co C S such that 7T2(Cn) = 1 (if there are more such subsets 
of 5 , denote by Co no matter which one of them). Denoting, for each A C S, by A\ 
the subset A U Co C 5 , we obtain that 

V B u C = y i . (7ri(5) A 7r-(c')) -- * - ( A ) A ^ o ) = * - w - (5-18) 

As .Ai D A, the inequality ||./li|| > ||;4|| follows, so that 

(Ui\\/\\S\\)A {\fBuC=AMB) An2(C))) > (\\A\\/\\S\\)**M) (5-19) 

holds as well. As such an A\ exists for every A C 5 , we can set 

Vi(S) = {BcS:B = AuC0 for some A C S} C V(S) (5.20) 

and we obtain that 

V,cs ((MII/MD A [VB,ccs.auc=,<"(fl) A -(O)]) (5.2D 

- V ^ M ( ( M I I / H S I D A f V ^ ^ M ^ I O ) ] ) 

> V^C S«I I - 4 I I / I IS I I>A ' " ( ' 4 ) ) -

The assertion is proved. • 

If we define the possibilistic dual combination rule 0 in the way copying the dual 
Dempster rule, i.e., if we set for every b.poss.a.'s 7Ti, 7T2 and each A C S, 

(TT! ®TT2) (A) = \JBCCS>BUC=A(MB) An2(C)), (5.22) 

the inequality (5.17) can be rewritten in the form 

W*(m ® TT2) > W*(in) V VV*(7r2) (5.23) 

dual to (5.16) and analogous to (5.5). 

(Received December 22, 1999.) 
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