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K Y B E R N E T I K A — VOLUME 35 ( 1 9 9 9 ) , NUMBER 4, P A G E S 3 9 3 - 4 1 3 

STATE OBSERVERS FOR NONLINEAR SYSTEMS 
WITH SMOOTH/BOUNDED INPUT1 

A L F R E D O G E R M A N I AND C O S T A N Z O M A N E S 

It is known that for affine nonlinear systems the drift-observability property (i. e. observ­
ability for zero input) is not sufficient to guarantee the existence of an asymptotic observer 
for any input. Many authors studied structural conditions that ensure uniform observabil­
ity of nonlinear systems (i.e. observability for any input). Conditions are available that 
define classes of systems that are uniformly observable. 

This work considers the problem of state observation with exponential error rate for 
smooth nonlinear systems that meet or not conditions of uniform observability. In previous 
works the authors showed that drift-observability together with a smallness condition on 
the input is sufficient to ensure existence of an exponential observer. Here it is shown that 
drift-observability implies a kind of local uniform observability, that is observability for suf­
ficiently small and smooth input. For locally uniformly observable systems two observers 
are presented: an exponential observer that uses derivatives of the input functions; an ob­
server that does not use input derivatives and ensures exponential decay of the observation 
error below a prescribed level (high-gain observer). The construction of both observers 
is straightforward. Moreover the state observation is provided in the original coordinate 
system. Simulation results close the paper. 

1. INTRODUCTION 

Many authors pointed out the peculiarities of the problem of s tate observation 
for nonlinear dynamic systems in comparison with the much simpler linear case 
[1, 6,8,11-17]. A main property of nonlinear systems is tha t , differently from linear 
ones, state reconstructabili ty in general depends on the input: drift-observability 
(i.e. observability for zero input) is not a sufficient condition for existence of an 
asymptotic observer for any input . This fact induced some authors to find condi­
tions on nonlinear systems tha t ensure s ta te reconstructability for any input . Classes 
of nonlinear systems are then defined for which observers can be constructed tha t 
work independently of the input applied (uniformly observable systems). However, 
such classes are characterized by limitative conditions, tha t are not met in many 
significant applications. 

1 Paper presented at the 5th IEEE Mediterranean Conference on Control and Systems held in 
Paphos (Cyprus) on July 21-23, 1997. 
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Uniformly observable systems admit a map that transforms the input and output 
derivatives up to a given order into the system state. If such map can be explicitly 
computed then high-gain observers can be implemented: some estimates of input 
and output derivatives are used in the map to compute an estimate of the state 
[15]. Moreover, if the observer is inserted in a control loop in which the input is 
computed by a dynamic law, the input is known together with its derivatives up 
to the desired order. Then, estimates of the output derivatives together with the 
known input derivatives can be used to compute the state estimate [5,10,13]. The 
main problem with this approach is the availability of the above mentioned map. 

In [6] it is shown that uniformly observable systems admit a sort of canonical 
coordinate system. In [7] an observer is presented that provides a state estimate in 
such coordinate system, so that the inverse coordinate transformation is needed to 
obtain the state estimate in the original coordinate system. 

Following the researches presented in [2-4] this paper studies conditions not only 
on the system structure, but also on the input functions, that guarantee existence 
and practical computation of a state observer with exponential error decay. In [3-4] 
it is shown that an exponential observer can be constructed for systems that are not 
uniformly observable, provided that the input is sufficiently small. Both global and 
semi-global results are reported. In [4] the case of multi-input multi-output systems 
is also analysed. 

In this paper a condition of uniform observability is defined for systems whose in­
puts are bounded together with their derivatives up to a given order (smooth/bounded 
inputs). Moreover, it is shown that smooth systems under drift-observability prop­
erty own the uniform observability property for sufficiently small and smooth inputs. 
For systems that are uniformly observable for smooth/bounded inputs, two kind of 
observers are presented. The first is an exponential observer and uses the derivatives 
of the input function. Since in most open-loop applications input derivatives are not 
available, this observer is denoted Theoretical Observer. The second is an observer 
that does not use input derivatives, and therefore it is called Practical Observer, 
and allows exponential decay of the observation error below a prescribed level. For 
this reason it can be classified as a high-gain observer. However, differently from 
high-gain observers in [5,10,13] it does not require the explicit computation of the 
function that maps input and output derivative into the system state. Proofs of 
convergence are given for both observers. 

Due to pages limitation, only global results are reported in this paper, that require 
stronger assumptions but are easier to prove, and only the case of single-input single-
output nonlinear systems is analysed. 

In this work nonlinear systems of the form 

x(t) = f(x(t))+g(x(t))u(t), (1.1) 

y(t) = h(x(t)), (1.2) 

are considered, where x(t) e X C Hn
y u(t) e U C JR and y(t) e -K, g(x) and 

f(x) are C°°(X) vector fields and h(x) is a C°°(X) function. It is assumed that the 
inputs applied to the system are such that the state is well defined and bounded for 
every time (no finite escape-time). 
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Throughout the paper the symbol OaX& denotes a matrix of zeroes of dimension 
a x 6, the symbol Ik denotes the k x k identity matrix, and cn(P) denotes the 
condition number of a matrix P. The following properties for symmetric positive 
definite matrices are used 

СП(Р) = ^ ^ = С П ^ " 1 ) , \\Р\\ = Амах(Р) = д - ^ Т ) • (1.3) 

where \M*X(P) and Amin(-P) denote the maximum and minimum eigenvalues of 
matrix P\ respectively. 

2. PRELIMINARIES 

Consider the vector Yn of the first n output derivatives (from 0 to n — 1) for system 
(i . i) 

Y» = 

It is well known that, for u(t) = 0, 

where $ ( i ) is the square map 

УУ >--) 

Yn = Ф(x) 

Ф(x) 

h(x) 
Ljh(x) 

lLn~lh(x)\ 

(2.1) 

(2.2) 

(2.3) 

(it is assumed that the reader is familiar with the concept of repeated Lie derivative 
of a function along a vector field). The knowledge of the vector Yn at a given time 
t and of the inverse map $ _ 1 ( - ) would allow exact state reconstruction. 

Definition 2.1. System (1.1), (1.2) is said drift-observable in an open set Q C Mn 

if the map $(x) is a diffeomorphism from Q to $(fi). If fi = Mn than the system 
(1.1), (1.2) is said globally drift-observable. 

For systems that are drift-observable in fi the Jacobian of the map <$(•) 

« * > i ^ (2.4) 

is nonsingular in Cl. Although in general the inverse map of z = $(x), that exists 
in $(fi) a n d is denoted x = $~ 1 (z), is difficult to compute, its Jacobian can be 
computed as 

«*-'<'> I - « - ' ( , ) . (2.5) 
дz ! = Ф(l) 

In the state observation problem it is important the following concept, that is a 
weaker version of the well-known concept of relative degree (see e.g. [9]). 
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Definition 2.2. The system (1.1), (1.2) is said to have observation relative degree 
r in a set fi G Mn if 

VxGf i , LgL
s
fh(x) = 0, 5 = 0 , 1 , . . . , r - 2, 

(2.6) 
3xGfi : LgL

rfxh(x)^0. 

Note that nonlinear systems may not have relative degree, but they always have 
observation relative degree. 

Consider now the expression of the output derivatives in the general case in which 
u ^ 0 . From the definition of observation relative degree it follows that the output 
derivatives from 0 to r — 1 are functions of the state x only, while the rth derivative 
is also function of the input 

y<*> = L)h(x)} 4 = 0,1, . . . , r - l , 
(2.7) 

y(r) = Lrh(x) + LgL
rf1h(x)u. 

It is readily proved that higher order derivatives are functions of the state x, of 
the input u and of its time derivatives until a suitable order. More precisely, if Us 

denotes the vector of the first s time-derivatives of the input (from 0 to s — 1), that 
is 

(2.8) u ù ... ví* ^ 

it can be readily proved that the kth output derivative can be written, for k > r, as 

y(*> = L*/i(x) + V>fc(*,£l*-r+i) (2-9) 

where the function xpk(x)Uk-r+i) is recursively defined as 

Vv(-r,£M = LaL
r
}-

lh(x)u, 

t/>*(x,£/fc_r+1) = LgL)-lh(x)u + Ljxkk.^xM-r) (2.10) 

+ Lg\l)k-l(x,Uk-r)u + 
0 дфk-i 

дUк.r 

í/jt-г+l, £ > 

xj)k — 0 for k = 0 , 1 , . . . , r—1, is assumed also. Using the scalar functions ipk(x, Ujt_r+i) 
for k = 0 , 1 , . . . , n — 1 a n-components vector function ^(x , Un-r) can be defined 
such that 

Yn = $(x, Un-r) = $(x) + tf (x, Un-r)- (2.11) 

(The jth component of #(x, Un_r), with r + 1 < j < n, is ^ _ i ( x , Uj-r)>) If r = n 
the function \P vanishes, and formula (2.11) can be simply written as (2.2). It is 
also easy to check from definitions (2.10) that the function ^(x}Un-r) satisfies the 
property 

tf(x,0) = 0, VxelRn. (2.12) 

In general, drift-observability of system (1.1), (1.2) does not imply invertibility of 
(2.11) for x. In general, invertibility of (2.11) for x strongly depends on the input, 
through the vector of derivatives C/n-r. that can be considered as parameters in the 
mapping <l(x, C/n~r)- Thus, the following definition can be given. 
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Definition 2.3. If for any Un_r in a set U C Mn r the map Yn = <J>(x, Un-r) 
in (2.11) is a diffeomorphism from an open set ft C Mn in $(ft,£/), the system 
(1.1), (1.2) is said uniformly observable in ft x U. If ft = Mn and W «= Mn'r 

than the system (1.1), (1-2) is said globally uniformly observable. If ft = Mn and 
Z7 — {Un-r : ||Un_r | | < UM}, for a given UM > 0, then system (1.1), (1.2) is said 
uniformly observable for smooth/bounded input. 

For systems that are uniformly observable in ft x U the Jacobian 

<;(*, </„..) i * C . « - 0 (2.13) 

is nonsingular in ft x £/. The inverse map of rj = <j>(x, f/n_ r), that exists in $(ft) x U 

and is denoted x = <$ (r;,Un_ r), is difficult to compute in general. However, its 
Jacobian can be directly computed as 

: - l Ф (77,Un_r) 

дrj 
= Q-\x,Un.r). (2.14) 

n=*(r,CI n_ r) 

If a system is uniformly observable, the knowledge of vectors Yn and Un_r G W 
would allow exact state reconstruction. Note that in the case r = n (maximal 
relative degree) the maps $ and $ coincide, so that drift-observability guarantees 
state reconstructability for any input. Moreover the following theorem holds. 

T h e o r e m 2.4. If system (1.1), (1.2) is drift-observable in ft, then there exists a 
sufficiently small spherical neighborhood U of the origin such that the system is 
uniformly observable in ft x U (uniformly observable for smooth/bounded input). 

P r o o f . From (2.11) the map $(ar,Un_ r) satisfies the property 

$ ( x , 0 ) - - $ ( x ) . (2.15) 

As a consequence invertibility in ft of <H>(x) ensures that $(x,U n _ r ) can be solved 
for x G ft if Un_r = 0. Since, by smoothness assumption for system (1.1), (1.2), the 
map <$(x, Un-r) is continuous w.r.t. Un_r, then it can be solved for x G ft if fIn_r is 
sufficiently close to the origin. This means that there exists a spherical neighborhood 
U of the origin with sufficiently small radius that ensures uniform observability in 
ft xU. D 

If the system (1.1), (1.2) is uniformly observable in ftxW, the map rj = <£(x, C/n_r) 
can be considered as a time-varying change of coordinates (C/n_r is a function of 
time), as long as Un_r G U. Since rjj = j/W"1) for j = 1 , . . . , n, and then r)j = r/J+i 
for j = 1 , . . . , n — 1, in ^-coordinates the system is written 

r) = -An77+Bnm(77, Un_r+i)» 

V = Cn^ (2.16) 
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where 
mfo, £tn_r+1) = (L]h(x) + tfn(*, ř7„_r+1)) I (2.17) 

and matrices An G _R n x n , jBn € -^n an<- Cn £ -Kn are Brunovsky matrices 

"0 1 •• • 0 0 

o o •• . 0 0 
An = 

0 0 •• • 0 1 
.0 0 •• • 0 0 

cn = [ 1 0 •• • 0 0] 

вn = (2.18) 

If the coordinate change z = $(x) is considered instead, the system (1.1), (1.2) 
can be written in the new coordinates as 

i = Anz + BnL]h(^-\z))+Q(x)g(x)\x^_1(z)u, (2.19) 

y = Cnz. 

The product of the Jacobian Q(x) by the matrix g(x) is 

Lgh(x) 

Q(x)g(x)= (2.20) 

_LgL
n''1hj(x)_ 

From the definition of observation relative degree in fi, the first r — 1 rows of vector 
(2.20) are identically zero in fi, so that (2.20) can be rewritten as 

Q(x)g(x) = FH(x)y (2.21) 

•LgLŢlh(xУ 

where F = U(r-l)x(n-r+l) 
-ln-r+1 

, H(x)à 
_LgĽJllh(x)_ 

(2.22a) 

It is also useful to del ìne the function 

L(x) = L]h(x), 

so that system (2.19) can be rewritten 

z = Anz + BnL(^-\z))+FH(^-l(z))u, 

y = Cnz. 

(2.22b) 

(2.23) 

The pair _4n, Cn defined in (2.18) is observable, and it is an easy matter to assign 
eigenvalues to the matrix An — KCn) that has the companion structure 

An - KCn = 

—Лri 1 

- * 2 0 

-fcn-1 0 
-kn 0 

•• 0 0 

• • 0 0 

'•• 0 
•• 0 1 
•• 0 0 

(2.24) 
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Let K(\) denote the vector that assigns eigenvalues A = (Ai , . . . , \n). Matrix A — 
K(\)Cn is diagonalized by the Vandermonde matrix 

Vn = Vn(X) = 

A?-1 • • Ax 1 

A""1 ••• \n 1 

so that 

Vn(\)(An - KWCjV-'W = diag{A} = A. 

(2.25) 

(2.26) 

In [4] it is shown that if the n eigenvalues are chosen as a function of a positive 
parameter cr as \(a) = (—<T) —cr2,..., — <rn), then 

i™ HKTW))!! = i. (2.27) 

3. THE OBSERVER FOR SYSTEMS WITH BOUNDED INPUT 

In this section it is shown that the system 

x(t) = f(x(t)) + g(x(t)) u(t) + Q" 1 (x (0 )K (y (0 - h(x(t))) , (3.1) 

with the constant gain matrix K properly chosen, is an exponential observer for 
the system (1.1), (12), provided that the input is suitably smali and some technical 
conditions are satisfied. The results reported in this section are a modified version 
of those presented in [3] for the SISO case, and in [4] for the MIMO case. Although 
both local and global results are available, for shortness only global results are here 
reported. 

Theorem 3.1. Let system (1.1), (1.2) satisfy the following hypotheses: 

1. The system is drift-observable in JRn, and the map z = $(x) is uniformly 
Lipschitz together with its inverse x = $~~l(z) in J?n , with constants 7$ and 
7$-i respectively; 

2. the functions H(^"1(z)) and L(^"1(z))i defined in (2.22), are uniformly Lip­
schitz in J2n , with Lipschitz constants 7^ and 7^ respectively; 

3. a constant UM > 0 exists such that \u(t)\ < UM Vtf > 0; 

4. for a given a > 0 a vector K 6 lRn and a symmetric positive definite matrix 
P G Mnxn exist that satisfy the following HQO Riccati-like inequality 

(An-KCn)P + P(An-KCn)T + BnBn
? + u2

MFFT + 2aP + 7
2P2<0, (3.2) 

where j 2 = 7? + 7I-. 
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Then the observer (3.1) is such that 

\\x(t)-i(t)\\<fe-at\\*(0)-m\\ (3-3) 

with /i = y/cn(P)y<s>7$-i. 

P r o o f . For system (1.1), (1.2) and for observer (3.1) consider the following co­
ordinate transformations and the following definitions of observation errors 

z = $(x), ex=x-x, 

z = $(£), ez = z — z. 

From assumption (1) they are such that 

IMI<7*IM|, ||e-||<T*-«||e,||. (3.5) 

System (1.1), (1-2) can be written in ^-coordinates as (2.19), while the observer is 
written 

k = Anz + .BnL(*-1(.5)) + FH(<t>-\z)) u + I<(y - Cnz). (3.6) 

The dynamics of the observation error in ^-coordinates is governed by the linear 
perturbed equation 

ez = (An - KCn)ez + Bnvi(z, z) + Fv2(z, z) ti, (3.7) 

where 

(3.8) 
Vl(z,z) = L(*-l(z))-L(*-l(z)), 

v2(z,z) = BT*-1^)) - Br*-1^)). 
From assumption (2) the perturbations satisfy the inequalities 

IMI<7ilWI, . M I N I M I - (3.9) 

In order to prove that ez(t) exponentially goes to zero, consider the positive definite 
function of ez 

v(ez) = eJP~lez, (3.10) 

where the positive definite symmetric matrix P satisfies inequality (3.2). The deriva­
tive of v along the error trajectory is 

v = eJ(p-1(A-KC) + (A-KC)TP-l)ez 

+VlB
TP-lez + eJp-'Bv, + uvjFTP-lez + ueJP~lFv2. ^ ' ^ 

The following inequalities can be easily checked 

ViBTp-ht+eJP^B^ < eTp-iBnBTp-iez+vl 

uvTFTp-'et+ueJP-'Fvi < u^JP^FF^P^e, + vjv2, ^'U' 
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and substituted in (3.11). Using (3.5) and inequality (3.2), after simple transforma­
tions one has 

v < -lav, => v(t) < e"2a ti/(0), (3.13) 

(last implication is due to Gronwall's inequality). From this, recalling the definition 
(3.10) of u) we have 

| |e,(.) | | < v / ^ ) e - * ' | M 0 ) | | . (3.14) 

Given the properties (3.5), inequality (3.14) becomes 

IMOII < »e-at\\ex(0)\\, (3.15) 

with /i = \ /cn(P)7$7$_i, and the theorem is proved. • 

The uniform Lipschitz assumptions in JRn in Theorem 3.1 are rather strong, and 
can be relaxed to prove local convergence of the observation error to zero (see [4]). 

The key point for the existence of an exponential observer of the form (3.1) for a 
drift-observable system is the existence of a pair (K,P) that solves inequality (3.2). 

An interesting point is that the Hoo Riccati-like inequality admits solution (K, P) 
for any a > 0 and 7 > 0 if the term FFT is not present in the expression. 

Lemma 3.2. For any triple a,/?,7 of positive real the Hoo Riccati-like inequality 

(An - KCn)P + P(An - KCn)
T + p2BnB

T + 2aP + j2P2< 0, (3.16) 

admits solution (A", P) with P symmetric positive definite. 

P r o o f . Choose vector K so to assign a set of real eigenvalues A, and set P = 
(Vr

n(A)TVn(A))-1. Left-multiplying (3.16) Vn(X) and right-multiplying it by VT(X) 
the Hoo Riccati-like inequality becomes 

2A + p2VnBnB^ + 2aln + 7
2 Vn

l V " T < 0. (3.17) 

Matrix inequality (3.17) is satisfied if the following scalar inequality holds 

2 m a x { A } < - / 9
2 | W n 5 n | | 2 - 2 a - T

2 | | l C 1 | | 2 . (3.18) 

The product VnBn and the norm ||Vn-9n|| are easy to compute 

VnBn = [I ... If e Rn, => | |K l5„5Tl/„T | | = n. (3.19) 

With the choice of eigenvalues \(<T) = (—cr, —cr2,...,—crn), with a > 1 so that 
max{A} = —cr, inequality (3.18) becomes 

-*<-«- \n/32 - ^IIKT1^))!! . (3-20) 

Thanks to (2.27), inequality (3.20) can be satisfied for a sufficiently large, and the 
lemma is proved. • 

Theorem 3.1 and the properties of the Hoo Riccati-like inequality (3.2) originate 
two important results: 
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1. Existence of exponential observers for systems driven by sufficiently small in­
put; 

2. existence of an observer with assigned exponential rate for systems that have 
observation relative degree equal to n and a bounded input. 

The theorems that state these results are reported below. 

Theo rem 3.3. Let system (1.1), (12) satisfy the following hypotheses: 

1. The system is drift-observable and the map z = <b(x) and its inverse x = 
&~~l(z) are uniformly Lipschitz in Mn with constants 7$ and 7^-1, respectively; 

2. the functions H($~~l(z)) and L(<b~-(z)) are uniformly Lipschitz in Mn, with 
Lipschitz constants jjj and 7^ respectively; 

Then for any a > 0 there exist a gain vector K £ Mn and positive reals UM , A* s u c h 
that if \u(t)\ < UM V< then the observer (3.1) gives 

| | x ( 0 - x ( 0 | | < / i e - « ' | | x ( 0 ) - i ( 0 ) | | . (3.21) 

P r o o f . From Theorem 3.1, it is sufficient to show that for any positive a a 
sufficiently small UM exists such that the Hoo Riccati-like inequality (3.2) can be 
satisfied. This can be done by considering, for a given /?, the inequality 

(An - KCn) P + P(An - KCn)
T + BnB

T + 2aP + (7
2 + P2)P2 < 0, (3.22) 

which admits solution K, P, as proved in Lemma 3.2. 
Since FFT < In < Ya

 l/p\P2i as it can be easily verified, one has 

P3>Ln(P)FF'r < fP2> (3-23) 

and thus the solution for (3.2) exists with UM < /^minC^)-

This completes the proof. D 

Remark 3.4. The sufficient conditions for the existence of an exponential ob­
server given in Theorem 3.3 do not include the condition of observability for any 
input. It is the bound on the input that excludes bad inputs, i.e. inputs that make 
indistinguishable some system states. 

Theo rem 3.5. Let system (1.1), (1.2) satisfy the following hypotheses: 

1. The system is drift-observable and the map z = $(x) and its inverse x = 
$~~l(z) are uniformly Lipschitz in Mn with constants 7$ and 7^-1, respectively; 

2. the observability relative degree in JRn is r = n; 

3. the matrix functions H($~-(z)) and L($~~l(z)) are uniformly Lipschitz in 
JRn, with Lipschitz constants jj- and 7 l respectively; 

4. a constant uM > 0 exists such that |K0II < uM V< > 0; 
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Then for any a > 0 there exists a gain vector K £ JRn and a positive real /i such 
that the observer (3.1) gives 

\\x(t)-x(t)\\<^-at\\x(0)-x(0)\\- (3.24) 

P roo f . From Theorem 3.1 it is sufficient to prove that with the given assumptions 
the Hoo Riccati-like inequality (3.2) can always be satisfied. This happens because 
when r = n, then F = Bn (see definition (2.22 a), and thus inequality (3.2) can be 
rewritten 

(An - KCn) P + P(An - KCn)
T + (1 + u2

M)BnB
T + 2aP + j2P2 < 0. (3.25) 

Lemma 3.2 ensures existence of solution (A', P). D 

The result of Theorem 3.5 has been proved in [2] using different arguments. 

4. THE OBSERVER FOR SYSTEMS WITH SMOOTH/BOUNDED INPUT 

Theorem 3.3 states that for systems with any relative degree an exponential observer 
can be designed if the input is sufficiently small. Moreover, Lemma 3.2 can be used 
to show that the smaller is the input, the faster can be chosen the exponential rate. 
If the system has observation relative degree r = n and the input is bounded (not 
necessarily small) then an observer with arbitrary exponential rate can be designed 
(ineq. (3.16) admits solution for any triple a,/?,7) . 

In this section it is shown that in the case of relative degree r < n, an exponential 
observer with arbitrary exponential rate can be obtained if the derivatives of the 
input up to order n — r are known and bounded. Obviously, in many application the 
derivatives of the input are not known, and this observer can not be constructed. 
For this reason this observed is called theoretical. 

An observer that uses estimates of input derivatives is presented after. In this 
case the observation error is not driven to zero, but its norm can be reduced, with ex­
ponential rate, below a prescribed bound (high-gain observer). This kind of observer 
is called practical. 

4.1. Theoretical observer 

Here it is assumed that the input function is differentiable n — r times, with deriva­
tives uniformly bounded in [0,+co). The observer considered has the form 

i(t) = f(x(t)) + g(x(t)) u(t) + Q-\x(t), Un.r)K(y(t) - h(x(t))), (4.1) 

where Q(i(t)) Un-r) is defined in (2.13) and is the Jacobian of the map <$(#, Un~r). 
The observer (4.1) can be constructed as long as Un-r allows invertibility of the 
Jacobian. 

For brevity only global convergence of the observed state to the real one is proved 
in this section, under uniform observability assumption for smooth/bounded inputs 
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(remember that Theorem 2.4 shows that drift-observable systems are uniformly ob­
servable for smooth/bounded inputs), although local results can be derived under 
weaker assumptions. 

Theorem 4 .1 . Let system (1.1), (1.2) satisfy the following hypotheses: 

1. The vector of input derivatives is bounded by a positive constant UM, i.e. 
||Un_r-fi(/)|| < t-M VJ > 0 (smooth/bounded input); 

2. for ||Un_r | | < UM (implied by hypothesis 1) the system is uniformly observable 
in Rn and the map 77 = <£(£, C/n_r) and its inverse x = <l> (77, Un_r) are glob­
ally uniformly Lipschitz w.r.t. x and 77, respectively, with Lipschitz constants 
7 $ and 7^-1 (computed for ||Un_ r | | < uM)\ 

3. the function 771(77, £/n_ r + i) defined in (2.17) is uniformly Lipschitz w.r.t. 77 in 
lRn, under assumption 1. Let j m be its Lipschitz constant for | |Un_ r+i|| < % • 

Then for any a > 0 there exist a gain vector A' £ Mn and a positive /i such that the 
observer (4.1) gives 

lk(0-x(<)ll<^-a'IKO)-x(o)||. (4.2) 

P r o o f . From assumption 2 the map 77 = $(x,C/n_ r) can be considered a time-
varying change of coordinates. In 77-coordinates system (1.1), (1.2) and observer 
(4.1) can be rewritten 

77 = -4n77 + 5 n 771(77, Un_r+i), 

V = Cn77, (4.3) 

77 = An77 + JBn77i(77,Un_r+i) + A'(y-C n7)) . 

Defining the function 

ufo *7i ^n- r+ i ) = rn(r]} Un_r+i) - 771(77, ^n- r+ i ) , (4.4) 

the observation error ê  = 77 — 77 in 77 coordinates is described by a linear perturbed 
system 

en = (An - KCn)en + Bnv, (4.5) 

in which the perturbation, by Assumptions 1 and 3, satisfies the inequality 

H < 7 m | | e - | | . (4.6) 

In order to prove that a properly chosen gain matrix K drives e^t) to zero with an 
assigned exponential rate a, consider a pair (AT, P) that solves the Hoo Riccati-like 
inequality 

(An - KCn) P + P{An - KCn)
T + BnBj + 2aP + ymP2 < 0. (4.7) 
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Existence of solution for (4.7) for any a and j m is guaranteed by Lemma 3.2. Con­
sider now the following positive definite function of the observation error 

v(ev) = eTp-len. (4.8) 

Taking the derivative of v along the error trajectory, after few passages yields 

v < eTp-l((An - KCn)P + P(An - KCn)
T + BnB

T+ 1lxP
2)P~le1u (4.9) 

and thus, from (4.7), 

v<-2av, => v(t)<e-2atv(0). (4.10) 

Recalling definition (4.8) of v 

IMOH < v /cnOP)e-°'IK(0) | | , (4-11) 

and using Lipschitz conditions in Assumption 2, inequality (4.2) is obtained with 
/i = x/cn(P)7$7$-i, and the thesis is proved. • 

Remark 4.2. As mentioned before, the observer (4.1) can be implemented only 
if input derivatives up to order n — r — 1 are known. It follows, obviously, that the 
observer can be always implemented if r < n — 1, since in this case no input derivative 
is needed (if r = n the observer (4.1) coincides with observer (3.1)). Moreover, the 
observer can be implemented in all cases in which the generation model of input 
u is known (e. g. the input u is generated by a smooth controller or simply by a a 
preprocessing filter). 

4.2. Practical observer 

With the assumption of existence and boundedness of the first n — r derivatives for 
the input function in [0, +oo), the input can be thought as generated by the system 

Un-r = An-rUn-r + Bn-ru<<n-r\ 
(4.12) 

U — O n _ r L / n _ r , 

where -4 n_ r, 5 n _ r , Cn-r is a Brunovsky triple of order n — r. The asymptotic 
reconstruction of the input derivatives can be made using an observer for system 
(4.12). Let xa G Mn"r be an auxiliary state and xe = [xT xJ]T be an extended 
state Xe G M2n~r. Consider now the observation problem applied to the augmented 
system 

ie = f(xe) + 9(xe)w) 

V = h(xe), (4.13) 

u = [0 Cn-r]xe. 

where 

0 
f(xe) = 

f(x) + g(x)Cn-rxa 

Лn—rxa 

g(xe) = 
Bn-r 

h(xe) â h(x). (4.14) 
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The auxiliary variable xa coincides with the vector of input derivatives Un_r. while 
the new input w is the (n — r)th input derivative, i.e. w = u^n"r\ and is unknown. 
Thus, the problem into consideration is transformed into a state observation problem 
with an unknown input w and two known outputs y and u. 

If system (1.1), (1.2) has observation relative degree r in a set Q C JRn, from 
definitions (4.14) it follows that 

LgLk
fh(xe) = 0, k = 0 , 1 , . . . , n - 2 

LgLj~ h(xe) = LgL
rj~ /i(x), 

and therefore 3 r c 6 f i x Rn~r : LgLn-"1h(xe) j - 0. 

(4.15) 

This means that system (4.13) has observation relative degree n. 
With a little abuse of notation, the map <£(•, •) defined in (2.11) can be written 

as 
$(xe) = ~(X, Xa) = ~(X, Un-r)\Un_r=x_ , (4-16) 

that is also 
h(xe) 

Lfh(xe) 
Ф(xe) = (4.17) 

Defining the square map 

Z 

Xa 

= Фe(xe) = 

LŢlh(xe)\ 

Ф(x,xa) 
(4.18) 

it can be easily recognized that Zj = y^ l\ j = l , . . . , n and, as a consequence, 
system (4.13) in the (z,:ra)-coordinates is written as 

z = Anz + Bn (m(z, 2ľa) + п(z,aľa)uv), 

Xa ~~~ A.n — rXa + IJП-.ГWÌ 

У = Cnz, 

U = U Г Í - r-Eд) 

г n - l j 

(4.19) 

where m(z,xa) = LJh(xe) and n(z,xa) = LgLj h(xe). Defining the matrices 

(4.20) Q(x,xa) = —, Qa(x>Xa) = — 

the Jacobian of the map 4>e and its inverse can be written 

ďФe 

дxe 

Q Qa 

O 7„_ г ' \dxe) 

^ - 1 
Q 

0 
-Q~lQa 

In — r 
(4.21) 
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The observer proposed for system (4.13), and therefore for (1.1), (1.2), is 

x = f(x) + g(x)Cn_rxa + 

+Q~\x, £a) (KX (y - h(x)) - Qa(x, xa)K2(u - C n _ r £ a ) ) , (4.22) 

xa — An-rxa + K2(u - C n _ r x a ) . 

This is a block triangular system. The second block estimates the vector Un-r of 
input derivatives. In (z, xfl)-coordinates the observer becomes 

z = Anz + Bn (m(z, xa) + n( i , xa)w) + I<i (y - Cnz), 

Xa = An^rXa + K2 (u - Cn-rXa) , 

Defining the functions 

Vm(zizixa)xa) = fh(z,xa) - m ( i , i a ) , 
v n(- r , i ,x a ,x a ) = n(z,x a) - n(£,£ a) , 

the dynamics of the observation errors is described by equations 

(4.23) 

(4.24) 

ez = (A„ - XiC n )e , + fin(t;m + vnw) (4.25) 

ea = (_An_r - K2Cn-r)ea + Bn„rw. (4.26) 

For the linear system (4.26), the following lemma can be given (the proof is quite 
simple and is not reported for brevity). 

Lemma 4.3. Assume that in (4.26) a bound WM > 0 exists such that \w(t)\ < WM, 
V2 > 0. For a given positive a2 let (K2}Pa) be a solution of the Lyapunov-like 
inequality 

(An-r - K2Cn-r)Pa + Pa(An-r - K2On-r)T + Bn-rBiT-r + 2«2Pa < 0, (4.27) 

(Pa symmetric and positive definite). 
Then 

IM-)II3 < cn(P a )e- 2 ^ ' | | e a (0) | | 2 + - ^ < . (4-28) 

Remark 4.4. Note that for any a2 inequality (4.27) admits solutions (K2)Pa). 
Moreover, with the choice of eigenvalues A,- = — <r\ i = l , . . . , n - r for matrix 
j4n_ r — 7\2(A)Cn_r, the norm | |P a | | can be made arbitrarily close to 1 (see (2.27) 
and proof of Lemma 3.2. Therefore, Lemma 4.3 asserts that a gain K2 can be chosen 
so that the error ea decays below a prescribed bound with a prescribed exponential 
rate c*2. The bigger the constant a2 the faster is the convergence and the smaller 
is the final error bound. Also the approach in [15] can be followed for high-gain 
estimation for the auxiliary system in (4.19). 
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In the next theorem the following function definition is needed 

e" 

e(t;ai,a2)= \ - 2 ( « i - <*2) ' Í f "l * °2' 

te-2ait, if a1=a2. 

(4.29) 

Let a = min(a i ,a 2 ) . It can be proved that £,(f;ai,a2) < l / (2ae) V< > 0. 
Let Un-r(u>M,WM) be the set of input functions u such that | |Un_ r(/) | | < UM 

and u(n-r\t) < wM for / > 0. 

Theorem 4.5. Let system (1.1), (1.2) satisfy the following hypotheses: 

1. The map z = $(x, xa) admits inverse x = $ (z, xa) for all xa E Mn~r (global 
uniform observability). $ and $ are Lipschitz w.r.t. both arguments, with 
Lipschitz constants 7^ and 7^-1, respectively; 

2. the functions fn(z, xa) and n(z, xa) are Lipschitz w.r.t. both arguments; let jfn 
and jn be the Lipschitz constants; 

3. u eUn-r(uM,wM)\ 

Then there exist gain vectors K\ and K2 for the observer (4.22) such that for t > 0 

IMOII < c ie - a i t | | e r (0 ) | | + (c.C^ + c2y/e(t;aua2) )\\ea(0)\\ + c3. (4.30) 

Moreover, K\ and A"2 can be chosen so to make constants c2 and C3 arbitrarily small. 

P r o o f . From Lemma 4.3 for any a2 > 0 a gain K2 exists that ensures observation 
error decay for system (4.26) according to the law (4.28). 

The state observation error dynamics in z-coordinates (4.25) consists of a linear 
system with nonlinear perturbations Vfn and Vn. 

Assumption (2) states that 

km| <7ñ Ы < 7ñ ez 

Єa 

and therefore 

(4.31) 

(4.32) 
<4 < 7 n . ( e j e , + e j e a ) , 

v\ < 7 n ( e j e , + e j e a ) . 

Now, given positive constants «i and /?, consider a solution pair (Ki,P) (P sym­
metric and positive definite) of the /too Riccati-like inequality 

(An - KiCn) P + P(An - KiCn)
T + 2/?25nP£ + 2axP + j^P2 < 0, (4.33) 

where 72 = 7^ + 7nwh (solution is ensured by Lemma 3.2). 
Consider also the positive definite function of the error ez 

T D - V u = e\P (4.34) 
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It is not difficult to derive the following inequality 

i>(0<-2aiK0 + ^ M 0 H 2 - (4-35) 

Substitution of (4.28) in (4.35), after few computations based on Gronwall inequality, 
gives 

1/(0 < e-2-»«i/(0) + A«i||e.(0)||M.;ai,a2) + ^ g ^ 
(A *\(W 

where m = cn(Pa)=£, /.2 = g 1 ^ ^ 

and from definition (4.34) 

IMOH2 < cn(P)e-2^'| |e,(0)| |2 + | |P |HM0) | | W ( < ; «i , aa) + ||P|| * " ^ ' " V 

1 ( 4 3 7 ) 

Using the following inequalities, implied by assumption (1), 

INI2 < 7f(IM|2 + ||ea||
2), 

IMP < 7|-.(IW|2 + |M|2), (4'38) 

easy computations show that the observation error in original coordinates satisfies 
inequality 

IMOII2 < 7 i 7 i - . c n ( P ) e - 2 ^ ( | M 0 ) | | 2 + ||ea(0)||2) 

+7i-«ll-' l l(/-i | |e.(0)| |ae(.;ai loa)) + - = £ ^ . - 2 ) . 

This inequality easily implies (4.30), with 

(4.39) 

c i = 7*7^-1 \ / c n ( P ) 

c2 = jQ-i\/\\P\\cn(Pa)l ^4e40j 

r _ ^ ^||PlH|Pa||ti;M 
C3 "~ 'i""1 2l3v̂ T5T ' 

The proof is completed observing that c*2 can be chosen arbitrarily large while 
keeping \\Pa\\ arbitrarily close to 1, while a\ and (3 can be made arbitrarily large 
while keeping ||P|| arbitrarily close to 1. As a consequence constants c<i and C3 can 
be made arbitrarily small. This concludes the proof. • 

Remark 4.6. Inequality (4.30) can be expressed by stating that the observation 
error exponentially tends to be bounded by C3, with prescribed exponential rate. 
Therefore, the observer (4.22) is a high-gain observer. The main difference with other 
approaches, as in [15], is that the estimated state is computed in the original coor­
dinate system, without explicit computation of the inverse map x = $ (z, Un-r)-
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R e m a r k 4.7. Assumption of global uniform observability made in Theorem 4.5 
can be relaxed to uniform observability for smooth/bounded inputs in the case the 
error on the estimate of the input derivatives can be kept small (for instance consider 
the case in which ||ea(0)|| is zero or small in (4.28)). 

5. NUMERICAL RESULTS 

In this section the theoretical and practical observers are numerically tested on the 
third order nonlinear system 

Xi = x2 + (x\ — X\) u 

X2 = -*з(l + *?), 
x3 = SІПXз, 

У = xľ. 

(5.1) 

The observation relative degree for this system is 1 in M3 (note that system (5.1) 
loses relative degree on the manifold x\ — x\ = 0). The maps <£(#) and ^t(x,u,u) 
defined in the paper are 

* ( x ) = [xi x2 - x 3 ( l + * 2 ) ] T , (5.2) 

and 

^ ( X j t i j T i ) = (5.3) 
0 

(a?§-*i) t i 

(2x3sin #2 ~ x2 - (#! — xl)u) u + (xl — xi)um 

It is easy to see that the map z = $(x) is globally invertible, and therefore the 
system is globally drift-observable. This means that if the input u and its derivative 
u are sufficiently small, also the map z = <J>(x) + \P(.r,u,i«) is invertible (uniform 
observability for smooth/bounded inputs). The initial true and observed states 
considered in the simulations presented are 

x(0) = [0.5 0.5 0.5]T, x(0) = [0.5 1 1]T . (5.4) 

and the input applied is 

u(t) = UQ + 2sin(27ri). with tzn = 5, (5.5) 

(with smaller tin all three observers worked well). With the chosen input (UQ = 5) 
and initial state the observer (3.1) does not work at all. Therefore only simulation 
of the theoretical observer (4.1) and of the practical observer (4.22) are reported. 
For the observer (4.22) the auxiliary system is simply 

i M = X° '2 ' (5.6) 
XQt2 = W. 

The initial observed state considered for the auxiliary system is xfl(0) = [5 0]T . The 
gain K in (4.1) and K\ in (4.22) are taken equal, and such to assign to matrix 
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A3 — KC3 eigenvalues A = — 4-[l 1.2 1.22]. In (4.22) the gain K2 assigns to matrix 
^42 _ K2C2 eigenvalues A — — 40 [1 1.2). The plots of the numerical simulations are 
reported in Figures 1-3. As expected, the behavior of the theoretical observer is 
somewhat better then the behavior of the practical observer. 

6. CONCLUSIONS 

This work considers the problem of state observation with exponential error rate for 
smooth nonlinear systems that do not meet conditions of uniform observability. It is 
shown that drift-observability, together with a smoothness/boundedness condition 
on the input, is sufficient to ensure existence of an exponential observer. Three 
types of observers are presented, that can be constructed under drift-observability 
assumption only. The first observer presented is suitable for systems with maximal 
relative degree or for general nonlinear systems driven by sufficiently small input. 
The second type of observer requires the input derivatives up to a certain order, 
and gives exponential error decay in the case of input sufficiently smooth. The 
third obseiver presented, applicable in the case of smooth input, does not require 
input derivatives, and ensures exponential decay of the observation error below a 
prescribed level. Computer simulations show good behavior of the last two observers 
in a situation in which the first observer does not work. 

X 1 

u, / -

0,6-
^^Jr observed state (2) 

0,6-

0,5 -0,5 -
: 

0,4-

0,3 -

0,2-

0,4-

0,3 -

0,2-

0,4-

0,3 -

0,2-
observed state (1) v< 

0,4-

0,3 -

0,2-
ГЄÍ 

1 i i ^ v 

il state X^ 

0,1 -
І : • 

— І 1 І 
0,0 0.4 0.8 1,2 1 1,6 

F i g . 1. Real and observed state variable x\. 
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x 2 

1 1.6 

Fig. 2. Real and observed state variable £2-

x 3 

t 1.6 

Fig. 3. Real and observed state variable X3. 
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