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K Y B E R N E T I K A — V O L U M E 30 ( 1 9 9 4 ) , N U M B E R 6, P A G E S 725 - 743 

ROBUST CONTINUOUS-TIME TRACKING AND REGU­
LATION FOR MULTIRATE SAMPLED-DATA SYSTEMS 

OSVALDO M. GRASSELLI, SAURO LONGHI AND ANTONIO TORNAMBĚ 

In this paper, the robust ripple-free tracking and disturbance rejection problem is solved 
for multirate sampled-data systems whose matrices are assumed to depend on some "phys­
ical" parameters. Making use of a hybrid control system structure, including a continuous-
time internal model of the exogenous signals and a periodic discrete-time subcompensator, 
a ripple-free null steady-state error response is obtained in a neighbourhood of the nomi­
nal "physical" parameters of the plant, and a ripple-free dead-beat error response at the 
nominal ones. 

1. INTRODUCTION 

The problem of the asymptotic tracking and disturbance rejection of a linear multi-
variable system subject to unmeasurable disturbances was studied by many authors 
— see, e.g., [2, 3, 5, 7, 8, 9], [19, 20]), and the references therein. In most of these 
contributions it is required the compensator to maintain stability, asymptotic track­
ing and output regulation in spite of independent perturbations of the elements of 
matrices describing the system. In [14, 16, 17] such a problem was solved for un­
certainties or perturbations of "physical" parameters affecting the description of the 
system. 

If the problem of the asymptotic tracking is faced for a continuous-time plant 
making use of a multirate digital control system, the undesirable ripple which may 
arise between sampling instants may become unacceptable, especially if the sampling 
rates are small, and should be avoided [4, 10, 21, 24, 25]. For the single-rate case 
this can be robustly obtained if a continuous-time internal model of reference signals 
is included in the forward path of the feedback control system [4, 10]. 

Here a method for deriving such a continuous-time internal model of both ref­
erence signals and disturbance functions is presented for a multirate hybrid control 
system structure, including a periodic discrete-time subcompensator as in [6], For 
the case when the only uncertainties about the description of the plant concern 
the values of some "physical" parameters, such a control system allows the control 
requirements to be robustly satisfied, at least in a neighbourhood of the nominal 
physical parameters of the plant to be controlled, and, in particular, a continuous-
time null (i.e., ripple-free) steady-state error response to be guaranteed for all the 
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values of the physical parameters in such a neighbourhood of the nominal ones. 
Making use of the hybrid control system structure here presented, a continuous-
time dead-beat (i.e., ripple-free) convergence of the error response is also obtained 
at the nominal parameters. 

2. PRELIMINARIES 

Consider the linear time-invariant plant V described by 

i(t) = A((3)x(t) + B((3)u(t) + M(p)d(t), (2.1) 

y(t) = C(P)x(t)+N(p)d(t), (2.2) 

where t £ IR is time, x(t) £ IR" is the state. u(l) £ lit'' is the control input, 
d(t) £ IRm, is the immeasurable disturbance input, y(t) £ IIt? is the output to be 
controlled — which is assumed to be measurable — and A(f3), B(j3), C(,8), M(j3), 
N((3), are matrices with real entries depending on a vector fj of parameters, which 
are subject to variations and/or uncertain, /? £ 0, C IR , and play the role of the 
"physical" parameters of the plant. The nominal value /?0 of j3 is assumed to be 
an interior point of the set fi. It is assumed that each of the first q components 
yi{t),... ,ijq(t) of y(t) must track the corresponding component of the reference 
vector r(t) £ lit'', q < q. Therefore, the error signal e(t) £ lit1' for V is defined by 

c(t) := y(t) - Vr(t), V := [I,j 0]T, (2.3) 

where Iq is the identity matrix of dimension q. 
It is also assumed that the reference signals ?•(•) to be asymptotically tracked 

and the disturbance functions d(-) to be asymptotically rejected arc the free output 
responses of the following exosystem £, whose initial state z(0) is unknown: 

z(t) = Fz(t), z(t)<=\Rl (2.4) 

r(t) = Gz(t), d(t) = Uz(t). (2.5) 

Denote by «,:,?'= 1,. . . , (J,, the \i distinct eigenvalues of matrix F, and by ki £ '£+ 

the multiplicity of a,- in the minimal polynomial of F, i = 1 , . . . , ft,where Z + is the 
set of positive integers. It is assumed that the «i, i = l,...,/j., are all real and 
non-negative. 

It is also stressed that (2.4), (2.5) do not imply that r(t) and d(t) are restricted to 
contain the same modes; e. g., this is not true for F = diag{ai/j , o ^ m } , £ = q + m, 
G = [Ig 0],H = [0 Im], and ax ± a2-

When a multirate digital control system is used for plant V, it seems to be 
reasonable to require for the error e(t) at the nominal parameter ft = /?o not only 
the dead-beat convergence to zero at the sampling times, but the stronger ripple-free 
dead-beat convergence, i.e. 

e(t) = 0, Mt > i, t £ IR (2.6) 
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for some i £ IR,^ > 0. Since it seems to be unrealistic to maintain such a property 
despite of parameter perturbations, for /? different from j3o and belonging to a suit­
able neighbourhood of f30 this requirement is weakened to the ripple-free convergence 
to zero, i.e., 

lim e(t) = 0 (2.7) 

(which is much more than the convergence to zero at the sampling times). It is known 
that a continuous-time internal model of reference signals is needed in the forward 
path of the feedback control system for such ripple-free requirements to be satisfied 
(see [10] for the single-rate case). Therefore, if such an internal model is not entirely 
contained in the plant V for /? = flo and for all /? in some neighbourhood of fio, a 
continuous-time precompensator hZc to be connected in series with V should provide 
the missing part of the internal model. This justifies the use of the control scheme 
reported in Fig. 1, where Kc is a continuous-time time-invariant subcompensator 
described by 

Fig. 1. Structure of the hybrid multirate sampled-data control system E. 

wc(t) = Qcwc(t) + Rcuc(t), 

u(t) = Jcwc(t) + Ucuc(t), 

uc(t)єJRp, (2.8) 

(2.9) 

KD is a discrete-time periodic subcompensator described by 

wD(k + \) = QD(k)wD(k) + RD(k)cD(k), eD(k)£lRq, (2.10) 

uD(k) = JD(k)wD(k), uD(k)eW, (2.11) 

and the block Hi, i = 1 , . . . ,p, represents a zeroth-order holder, whose hold interval 
is N(T, Ni £ Z+, which connects the fth component uc,i(t) of uc(t) with the ith 
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component uo,i(k) of «£>(/;). It is assumed that for each component y , ( ) of y(-), 
i = 1 , . . . , q (or, respectively, r,-(-) of r(-), i — I,..., q), a discrete-time signal yo,i(-) 
(or, respectively, r#,,•(•)) is obtained by sampling y,() (or, respectively r,-(-)) with 
sampling period Z{F, Z{ £ E+, i.e., 

VD.iUZi) = yf(jZiT), j = 0,1,2,..., (2.12) 

yBii(t) = o, fc#iz., V j e z + , (2.13) 

(or, respectively, 

rD,,(jz,) = n(jZiT), j = 0 ,1 ,2 , . . . , (2.14) 

rD,i(Jb) = 0, k^jZi, V j € Z + ) . (2.15) 

Denoting by j/z>(-) and rjj(-) the discrete-time vector functions whose components 
are yD,i(k), i = l , . . . , g and ro,i(k), i = l,...,f, respectively, fi£>(&) in (2.10) is 
expressed by 

e r , (£ ) :=y i>(A; ) -Kr D (» , (2.16) 

and coincides with the multirate sampling of e(t). It is also assumed that the integers 
Ni, i = l , . . . , p and Z{, i = l,...,q have 1 as their greatest common divisor, 
and that all the hold devices and samplers are synchronized at time t = 0. The 
period u> characterizing the periodic matrices QD(), RD('), JD(-) in (2.10), (2.11) 
is chosen equal to the least common multiple of the integers TV,-, i = 1 , . . . ,p and Zi, 
i=l,...,q. 

In view of requirement (2.6), to be considered for ft = fto, it is natural to require 
also, for 0 = p\, a dead-beat convergence of the free state response of the over-all 
hybrid control system E represented in Fig. 1, instead of the mere exponential decay. 

Therefore, the following control problem will be studied here. 

P rob l em 1. (Robust ripple-free tracking and regulation problem) Find, if any, 
linear dynamic compensators KD and fCc, described by (2.10), (2.11) and (2.8), 
(2.9), respectively, with the matrices QD(-), RD(-) and JD() being periodic of period 
w (briefly, ^-periodic), such that the following requirements are satisfied by the 
overall hybrid control system E represented in Fig. 1: 

(a) at the nominal parameters of the plant V, i.e., for ft = 0O, for all the initial 
states of E at the initial time t = 0, the free state response of E (i.e., the state 
response of E for ^(0) = 0) is identically zero for all times t > t, for some t > 0; 

(b) for all the initial states z(0) of £ and for all the initial states of E, relation 
(2.6) is satisfied for some t > 0, I £ III, at the nominal parameters of the plant V, 
i.e., for/?-=/?(,; 

(c) there exists a neighbourhood $ C S] of ft such that, for all ft £ $ , E is 
exponentially stable and relation (2.7) is satisfied for all the initial states z(0) of £ 
and for all the initial states of E. 

By the periodicity of all the time-varying subsystems appearing in Fig. 1, a so­
lution of Problem 1 guarantees requirements (a), (b) and (c) to be satisfied for any 
(nonzero) initial time. Such a problem will be studied under the following technical 
assumptions. 
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Assumpt ion 1. There exists a closed neighbourhood ^ a C fi of /?o such that all 
the entries of A(@), B((5), C(/3) are continuous functions of/? in *Pa. 

In order to state the second technical assumption, denote by a(E) the set of the 
eigenvalues of a square matrix E, and define 

T(P):=a(A(f3))Ua(F). (2.17) 

Assumpt ion 2. For each element 7 of T((30), none of the values 7 + ftxi/uiT, 
i ^ 0, i G Z, is an element of r(/?o), where j is the imaginary unit. 

R e m a r k 1. A proper choice of T trivially allows Assumption 2 to be satisfied. In 
addition, Assumption 2 implies that none of the values ftiri/T, i ^ 0, i G E, is an 
element of r(/?0). 

Before giving conditions for the existence of a solution of the above stated control 
problem — together with a design procedure of it — call Sc the series connection of 
K.c and V (see Fig. 1), rewrite its equations (2.1), (2.2), (2.8), (2.9) in the following 
more compact form: 

xc(t) = Ac((3) xc(t) + Bc(P) uc(t) + Mc(P) d(t), xc(t) := [xT(t) wT(t)]T (2.18) 

y(t) = Cc((3)xc(t) + Nc(P)d(t), (2.19) 

and notice that, if Assumption 1 holds, then the elements of matrices Ac(P), Bc(P) 
and Cc(P) are continuous functions of/? in \Pa. Then, denote by SD the discrete-
time state-space model, having uD(k) as control input and eD(k) as output, of 
the multirate sampled-data system obtained by connecting the hold devices Hi, 
i = 1 , . . . ,p, the continuous-time system Sc, the q samplers of the scalar components 
yi(t), i = 1 , . . . , q, of y(t) and the q comparators (see Fig. 1). The following lemma 
can be deduced directly from [22], [23] (see also [18]). 

L e m m a 1. For each /? G fi, the discrete-time system SD is described by equations 
of the following form: 

xD(k + l) = AD(p,k)xD(k) + BD(p,k)uD(k) + MD((3)zD(k), xD(k)emnD(2.20) 
eD(k) = CD(P,k)xD(k) + ND(p,k)zD(k)-VrD(k), (2.21) 

where zD(k) = z(kT) and rD(k) satisfy the equations: 

zD(k + l) = eFTzD(k), (2.22) 

rD(k) = 0(k)zD(k), (2.23) 

with 

0(*) := diagín (k),..., r9(k)}, (2.24) 

TÍ(JZÍ) := 1, j = 0 ,1 ,2 , . . . , i=l,...,q (2.25) 

n(k) := 0 k^jZi, V j G Z + , i=l,...,q, (2.26) 
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the matrices AD(P, k), Bo(l3,k), Co(P,k) and No(P,k) are periodic of period u for 
each {3 £ Q, and, if Assumption 1 holds, all the elements of AD(P, k), BD(P, k) and 
CD(P, k) are continuous functions of /? in ^a for all k £ E. 

3. MAIN RESULT 

A solution of Problem 1 is given by the following theorem, whose proof provides a 
design procedure of Kc and KB . 

T h e o r e m 1. There exist an w-periodic discrete-time compensator Ko and a time-

invariant continuous-time compensator Kc which constitute a solution of Problem 1, 

under Assumptions 1 and 2, if the following conditions are satisfied: 

(i) the triplet (A(/3a), B(/30), C(/?o)) is reachable and observable; 

,.., , U(/?0)-tt,/„ B(A>)1 • , o 
( l l ) r a n k[ C(Pa) í ) ] = " + - ' '=--.-.--.«• 

P r o o f . It will now be shown the existence of /i continuous-time sub-compensators 
!Ci, /C2, • • •, Kft of /Cc such that, for each j — 1 , . . . , /i, the series connection <Sj of 
Kj, Kj-i, ..., K\ and V, having the input Uj(t) of Kj as input and y(t) as output 
(see Fig. 2), and described by: 

d(t) 

"cWîV0 ! ViW uj(0 

; *c ІEF--
Uj.2(t) u,(t) ^ t ) = u(t) 

Fig. 2. Structure oi system Se-

ij(t) = M0)xj(t)+Bj(l3)uj(t)+Mj(l3)d(t), Xj(t)eMn', uj(t)eW, (3.1) 

y(t) = Cj(p)xj(t) + Nj (P)d(t), (3.2) 

satisfies the following conditions: 

Condition 1: Assumptions 1 and 2 and conditions (i) and (ii) of the theorem, rewrit­
ten for system Sj and the matrices describing it, hold; 

Condition 2: there exists a neighbourhood \P;- C fi of 0Q such that, for each j3 £ ^j, 
the pair (Aj(P),Cj(f3)) is observable. 

The proof of the existence of K\, ..., K^ with the above stated properties -
whose series connection will constitute the over-all compensator Kc (see Fig. 2) -
will be carried out constructively by induction. Then, assume that Sj-\ satisfies 
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Condition 1 written for Sj-i (for j = 1 this is true if V is denoted with So). Let Kj 
be described by 

wj(i) = QjWj(i) + RjUj(i), Wj(i) e I R > , Uj(t) G m>\ _c(-) = -„(*), (3.3) 
uj-1(k) = Jjwj(i) + Ujuj(t), _j- i (-)G-Rp . «o(*) = «(*). (3-4) 

where 

«.Iï I. 0 0 •• • 0 o -
0 o.I. I. o •• • 0 0 
0 0 «.I5 I. •• • 0 0 

Qr= 

o o o o 
o o o o 

Jj ••={ Ej 0 0 0 

• «ІI. 

Я. := 

"0 0" 
0 0 
0 0 

0 0 
.0 IJ 

,(3.5) 

0 atjlqj 

0 0 ], Uj~[Ě, 0] . (3-6) 

with _7j G IR p X 9 and _5, G IRP><(P-<') being such that 

[ q_ г(/.0) o 
det [ Ą f,- ў^O, 

(3.7) 

(3.8) 

whose existence is guaranteed by the assumption that <_>_•_i satisfies Condition 1 
rewritten for Sj-i. Thus it is readily seen that (3.3) - (3.8) and Condition 1 rewritten 
for Sj-i, imply that Condition 1 holds and, in addition, that Condition 2 too holds. 

Define tyj := Hi'-i ^j • Notice that, following the above procedure for the design 
of Kc, the Jordan form of Qj has q Jordan blocks of dimensions kj corresponding to 
the eigenvalue a_. Notice also that <_i, a2, ..., <_/_ are the only eigenvalues of Kc, 
and that Sc = _>/. is reachable and observable at (3 = /5b, and satisfies the whole 
Condition 1 rewritten for SC-

Therefore, by Corollaries 3.1 and 3.2 in [23] (see also [22]) and Assumption 2, 
system SD is reachable at all times and reconstructible for /. = /?„• Then, call __£) 
the feedback connection of KD and SD, as in Fig. 1, and choose KD so that, for 
fj = /50 and for all the initial states [-^(O) wJ(0)]T of Eo , the free state response 
of __/> (i.e., the state response of Y*D for __j(0) = 0) is zero for all integers k > k, 
for some k £ Z+ (see, e.g., [11] or [12], [13] for algorithms for the design of KD)-
This ensures that requirement (a) is satisfied. 

Since, by Assumption 1 and Lemma 1, all the entries of AD(P, k), Bo(P,k) and 
CD(P, k) are continuous functions of /? in _•„ for all k £ Z, such a compensator /Co 
guarantees also the exponential stability of T,D for all /? within some neighbourhood 
* c Cf i of/?0. 

Notice that all the eigenvalues of Ac(P) belong to F(/5) and that, by the continuity 
of A(f3) in ^ a , there exists a neighbourhood _"_• C fi of f}0 such that Assumption 2 
rewritten with (3 instead of (30 holds for each /? G _*d- Since, for 2_,(0) = 0, SD can 
be seen as the series connection [22], [23] of three subsystems, namely an ai-periodic 
discrete-time system, the single-rate sampled-data system corresponding to V with 
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both hold interval and sampling period equal to T, and a non-dynamic ^-periodic 
system, by Theorem 4 in [6] the exponential stability of T,D for all /? € \Pc implies 
the exponential stability of the overall hybrid control system £ for all /? £ \PC n ^d 
(see also Remark 1), thus ensuring the first part of requirement (c). 

Now, denote by nsc(t, P,xc(0), «c(0 , £!()) the output response y(t) of the continu­
ous-time system Sc from the initial state :cc(0) to the control function uc(-) and 
to the disturbance function d(-) for the actual value of vector /?, and denote by 
TjsD(k,P, xD(0), «£>(•), zD(0)) the output response eD(k) of the discrete-time system 
SD, from the initial state xD(0), to the control function uD(-), for the initial state 
zD(0) = z(0) of the exogenous system £, for the actual value of /?. Then, by the 
application of Lemma 4 of the Appendix with a j , kj, q, Sj, K,j, Sj-\ and Qj instead 
of a, i, q, S, Si, S2 and A\, respectively, Condition 2 for j = 1,2,... ,/. , and the 
above mentioned Jordan structure of Qj imply that, for each /? £ \Pj and for each 
z(0) 6 IR* in (2.4), (2.5), there exists xc £ IRn" (with n^ = n + qY!}=l ki) such that 

Vr(t)-nSc(t,i3,xc,0,d(-)) = 0, Vt > 0, t £ 1R. (3.9) 

Therefore, taking into account Fig. 1 and how system SD is obtained from system 
Sc, the hold devices and the samplers [22], [23], it is readily seen that: 
(a) for each /? £ ^b and for each zD(0) £ !Rf, there exists xD £ IRnD such that the 
state of the hold devices in xD is zero and 

nsD(k,(i,xD,0,zD(0)) = 0, \/k>0,k€Z. (3.10) 

Since the discrete-time feedback connection E# of ICD and SD is uj-periodic, its 
response from the initial time k = 0 can be obtained through the feedback connection 
of the time-invariant "associated systems of KD and SD at time 0" [15], whose input 
is the "stacked form" of zD(-) which has a proper rational 2-transform. Since such 
a time-invariant system is exponentially stable for all j3 £ ^ c as £ # is, then for 
each /? £ $ c , for each 2(0) = zD(0) £ JRl, and for each initial state of the over-all 
hybrid control system E, the corresponding responses of Ep in the [x]j(k) wJ)(k)]T, 
eD(k), uD(k) variables can be uniquely decomposed as the sum of the transient and 
steady-state responses, which will be denoted henceforth by the superscripts t and 
ss, respectively; hence, the corresponding uc(t) and e(t) responses in the hybrid 
control system E can be decomposed as the sum of the corresponding responses 
uc(t) and u'c and, respectively, el(t) and ess(t). 

Therefore, for each /? £ $ j n $ c D $ d , consider for the discrete-time system Ep its 
steady-state response to zD(0); by Lemma 3 of the Appendix and the above stated 
property (a), such a unique steady-state response is characterized by es

D
s(k) = 0, 

u'D'(k) = 0, u)D(k) = 0, for all k > 0, and, by Lemma 2 of the Appendix, it coincides 
for SD with the full response from some initial state xD(0) for which a zero state 
in the hold devices is maintained, thus implying u'c(t) = 0 for all t > 0. Therefore, 
since Assumption 2 holds in ^d, the application to the series connection of £ and V 
of a direct extension of Corollary 3.2 in [23] proves that 

e"(t) = o, Vi>o, t e r n , (3.11) 

for each /? £ $ t n * c n Vd and for all zD(0) £ 1R*. 
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On the other hand, for each /? € * j n * c n tfd and for all zD(0) 6 1R*, the corre­
sponding transient response of E D coincides with a free response of Erj from some 
initial state (see Lemma 2 of the Appendix). Hence, e?(t) and u'(t) are exponentially 
convergent to zero by the exponential stability of E in $ c n f , i . This, together with 
(3.11), since e(t) = el(t) + ess(t), proves that the second part of requirement (c) 
is satisfied too with ty := $ j n \PC n \P d, and, taking further into account that T,D 
and E have dead-beat free responses for j3 = /?Q, proves that also requirement (b) is 
guaranteed. D 

R e m a r k 2. The design procedure contained in the proof of Theorem 1 consists of: 

(1) choosing Kc as the series connection oiK\, . .., K^, with Kj, j = 1 , . . . ,/i, being 
described by equations (3.3)-(3.8); and 

(2) designing a dead-beat feedback w-periodic discrete-time controller KD for the 
discrete-time w-periodic system SD corresponding to Sc (see Fig. 1). 

Since, by the choice of Kc, Sc contains an internal model of the exogenous 
continuous-time signals for all 0 in some neighbourhood ty;, of /?o (see Lemmas 3 
and 4 of the Appendix), then SD contains an internal model of the corresponding 
discrete-time exogenous signals, thus guaranteeing eo(k) = 0 in the steady-state, 
for each value of /? ~ \Pi n \PC. This, since Assumption 2 is preserved for all 0 ~ $ d , 
and u(t) = 0 in the steady-state, guarantees a continuous-time null (i.e., ripple-free) 
error response in the steady state for all 0 ~ $ i , n f c n $ , i . 

Notice that condition (ii) implies that p > q (i.e., dimu(f) > dimy(i)). If, in 
particular, p = q, the construction of the continuous-time precompensator Kc can 
be simplified, since it can be chosen as a minimal realization of <f>~l(s)Ip, where <f>(s) 
is the minimal polynomial of F. If, on the contrary, p > q, such a simpler precom­
pensator Kc is not compatible with the detectability of sc and SD, whence with the 
asymptotic stability of E, while the use of a continuous-time postcompensator hav­
ing the transfer matrix <f>~l(s)Iq (see, e. g., Theorem 9-22 in [1]) is prevented by the 
hybrid control system structure of Figure 1. If p > q, however, the precompensator 
Kc here proposed still allows to satisfy the robustness requirement (c) in addition 
to (a) and (b), and has the same structure as asimi lar precompensator proposed in 
[18] for single-rate sampled-data control systems and for it,- = 1, t = 1 , . . . ,/i. Notice 
that the design of Kc needs merely the nominal description of the plant V, i.e., its 
description for 0 = 0Q. 

Notice also that the case a,- ^ IR for some j E {I,... ,fi) could be similarly taken 
into account in the design procedure of Kc, under the same conditions. 

It seems useful to clarify the application of Theorem 1 and the above mentioned 
design procedure by a numerical example. Then, consider the linear time-invariant 
plant V described by (2.1), (2.2) with 

A(ß): 
1 0 0 ' 1 0 

ßа 0.5+ßь 0 . B(ß) = -1 0 
1 1 - 1 + Ä 0 l+ßl 

1.5+ßа 

0 
- 1 

, M(ß) = 
0 
0 
1 

(3.12) 
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C(ß) = 0 1 0 
1 0 - 1 

N(ß) = (3.13) 

where the nominal value of /? = [(Ja /?;,]' is /?o = [0.5 0]', and assume that the 
first component y\(t) of y(t) must track a scalar reference signal r(t) 6 IR, and the 
second component 2/2(t) must be regulated to zero under the action of a disturbance 
d(t) £ IR, with the exosystem 8 being described by equation (2.4), (2.5) with 

F-
0 1 
0 0 

G = [ - l 0 ] , Я = [0 1 ] . (3.14) 

Moreover, suppose T = 1, Ni = 1, N2 = 2, N3 = 1, zi = 1 and Z 2 = 2. Thus, 
to = 2, and it is trivial to check that Assumptions 1 and 2 and conditions (i) and 
(ii) of Theorem 1 hold. Therefore, according to the step (1) in the above remark, 
the continuous-time time-invariant precompensator Kc described by (2.8). (2.9) is 
characterized by 

Qc = 

Jc = 

"0 0 1 o- -o o o-
0 0 0 
0 0 0 

1 
0 , Rc = 

0 0 0 
0 1 0 

.0 0 0 0. -0 0 1. 

" 1 0 0 °1 "0 0 0" 
0 1 0 o , Uc = 0 0 0 
0 0 0 o. 1 0 0 

(3.15) 

(3.16) 

Lastly, a 2-periodic discrete-time dead-beat controller KD is easily found with the 
help of the design procedure contained in [12], [13] in form of a dead-beat observer 
based controller; namely, KD is described by equation (2.10), (2.11), where 

QD(k) = AD(p0,k)-V(k)CD(Po,k}-BD(f]o,k)K(k)} RD(k) = V(k), JD(k) = -K(k) 
(3.17) 

with 

AD(ß0,0) = 

-o 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 1.7183 0 0.7183 

0 0 0 -0.8766 0 -0.4715 

L0 0 0 0.199 0.6321 0.0477 0.3679 1.4965 0.8539 0.3679J 

1.0696 1.6487 

AD(Po,\) = 

0 

1 

0 

0.5 

0 

1 

0 

0 0.2183 0 1.7183 

0 -0.1612 0 -0.8766 

.0 0.0093 0 0.199 
1.0696 1.6487 

0.6321 0.0477 0.3679 1.4965 0.8539 0.3679J 
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BD(ßo,0) = 

1 
0 
0 
0 
0 
0 
0 

3.4365 
0.8417 

L0.6531 

0 
1 
0 

0.5 
0 
1 
0 

0.2183 
-0.1612 
0.0093 

0 CD(ßo,0) = 

CD(ßoЛ) = 

0 
o 
1 
o 

0.5 
O 
1 
O 
O 

0.1321J 
0 0 0 0 

BD(ßoЛ) = 

0 0 0 0 0 0 0 

- 1 0 0 
0 0 0 
0 0 1 
0 0 0 
0 0 0.5 
0 0 0 
0 0 1 

3.4365 0 0 
0.8417 0 0 

.0.6531 0 0.1321 
1 0 ] 
0 -1 

ľo 0 0 0 0 0 0 0 1 0] 
0 0 0 0 0 0 0 0 0 0 

AҶO) = 
0 0 0 0.1465 -0.0341 
0 0 0 0.25 O 
0 0 0 -0.1187 0.9565 

0.4990 -0.0132 
0.75 O 

0.1187 1.4831 

1.0738 1.3041 -0.0175 
0 0 0 

0.0547 0.4136 -0.0222 

ftҶl) = 
O 0.4945 O -0.4271 -0.0320 0.3493 
0 0 0 0 O O 
O -0.0104 O -0.0052 0.9832 0.01037 

-0.0124 1.0711 1.2839 -0.0164 
0 0 0 0 

1.4935 0.0210 0.1594 -0.0086 

V(0) = V(l) = 

O 
o 
o 

1.1334 
-4.1200 
0.2990 
-1.9212 
15.8571 
6.3670 
7.5125 J 

0 0 -1 rO 
0 0 0 
0 0 
0 -1.5518 

-2.1320 -0.4686 
0 -0.6633 

-0.5782 -0.0766 
0 -0.9651 
0 3.1487 

L-1.5627 1.0812 . 

This solution has been found making use of an easy MATLAB implementation of 
the above quoted algorithm. The entries of K(k) and V(k) (as well as those of the 
other matrices) have been written above with only five digits. With the synthesized 
solution K-c and fCjj the requirements (a), (b) and (c) of Problem 1 are satisfied. 
This is shown by the results of the simulation tests, which are represented by the 
experimental diagrams reported in Figures 3,4, 5 and 6 showing the response of E 
for /? = /30, z(0) = 0 (i. e., the free response of E) and z(0) = [0 — 2]', as well as its 
error responses for some perturbation of vector /? from its nominal value (3Q. 

4. CONCLUSIONS 

For a given time-invariant plant whose description has a known and continuous 
dependence on some "physical" parameters, sufficient conditions and a design pro­
cedure have been given for obtaining (under Assumption 2) a ripple-free regulation 
and tracking by means of a multirate sampled-data control system, at least in a 
neighbourhood of the nominal physical parameters of the plant, and a ripple-free 
dead-beat error convergence at the nominal ones. "Large" regions $ 6 Q. of conver­
gence could be obtained by making use of robust stabilization design procedures for 
the choice of the discrete-time controller K,o. 
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10 12 14 16 

t (sec) 

10 12 14 16 

t (sec) 

F i g . 3 . The components of the continuous-time state response x(t) of the plant V for 

P = fa, z(0) = 0, x(0) = [1 - 0.5 2]', wc(0) = 0 and wD(0) = 0. 
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Obviously, the same sufficient condit ions and the same design procedure hold 

for t he case when there is no knowledge abou t the dependence on the physical 

p a r a m e t e r s of the mat r ices describing the p lan t V, and independent pe r tu rba t ions 

of their entr ies are considered. 

However, it is s tressed t h a t condi t ion (ii) of T h e o r e m 1 is not necessary in general 

for t he p a r a m e t e r dependence in (2.1), (2.2) (see, e .g . , the weaker sufficient condi­

t ions given in [18] for a similar p rob lem and for the case of single-rate s amp led -da t a 

control sys tems and fe. = 1, i = 1 , . . . ,fi). 

F i g . 4 . The components of the continuous-time error response for /? = /?o, 
z(0) = [0 - 2]', x(0) = [1 - 0.5 2]', wc(0) = 0 and w f l(0) = 0. 
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6 8 10 12 14 16 

t(sec) 

F i g . 5 . The components of the continuous-time control input response uc(t) of Sc for 

P = Po, z(0) = [0 - 2]', z(0) = [1 - 0.5 2]', wc(0) = 0 and wD(0) = 0. 
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Fig. 6. The components of the continuous-time error response for 
P = [0.5003 - 0.0008]', z(0) = [0 - 2]', x(0) = [1 - 0.5 2]', mc(0) = 0 and wD(0) = 0. 

A. APPENDIX 

Consider the linear time-invariant system £ described by 

Ax(t) = A^x(t) + B^u(t), (AT) 

y(t) = C^x(t) + D^i(t), (A.2) 

where t 6 T is time, A denotes either the differentiation operator (if T = IR) or the 
one-step forward shift operator (if T = Z), x(t) 6 IR", u(t) G IRP, y(t) £ IR'" and 
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A-j-, BJT, Cyj, D-g are constant matrices with real elements. Denote by 7p—(t,x0, «(•)) 
and ^ ( i jXo , «(•)) the state and output responses, respectively, at time t of system 
E to the initial state x(0) = x0 and to the input function u(-), and denote by U 
the class of input functions u(-) having a proper rational Laplace transform with all 
the poles in the closed right half-plane (if T = IR) or a proper rational ^-transform 
with all the poles outside the open disk of unit radius (if T= E). Lastly, whenev­
er system E is asymptotically stable, assuming that u(-) G U, consider the unique 
decomposition of 7p^(t,x0, Ti(-)) [fj-^(t,x0,u(-))} into the sum of the steady-state re­
sponse 7p^(t,v.(-)) [fj^(t, u(-))} and transient response 7pL(t,x0,u(-)) [^'-(t^o, «(•))], 
consisting, respectively, of the modes of u(-) and of the modes of system E. The 
following lemma can be proved directly. 

L e m m a 2. If system E is asymptotically stable, then for each u(-) G U there exists 
a unique x~\ G IR" such that 

7p^(t,xuu(-)) = 7p^(t,u(-)), V £ > 0 , (A.3) 

?%(i, •?!,«(•)) = r^(t,u(-)), Vt>0, (A.4) 

7p^(t,x0-xu0) = pL(t,x0,u(-)), Wt>Q,Vx0eMw, (A.5) 

Ti15(t,xo~xu0) = rfL(t,xo,n(-)), Vt > 0,Vx0 e lR" . (A.6) 

Now, assume that u(t) = [fT(t) rf1'(t)f', with r(t) G ]Re, d(t) G IR" and 
J+fn = p, and that system E has the feedback structure depicted in Figure 7, where 
the block denoted by V is a linear static link represented by the constant matrix V, 
S is a linear time-invariant system described by 

&x(t) = Ajx(t) + Bje(t) + Mjd(t), (A.7) 

y(t) = Cjx(t) + Dje(t) + Njd(t), (A.8) 

with (/ + Dj) nonsingular, and f(t), d(t) and e(t) can have the meaning of the 
reference, disturbance and error vector, respectively. Denote by 6^(t,xQ,f(-),d(-)) 
the e(t) variable response at time t of system E to the initial state x(0) = XQ, and to 
the input functions f(-) and d(-); denote by fjj(t, x0, e(-), d(-)) the output response 
y(t) at time t of system S to the initial state x(0) = x0, and to the input functions 
e(-) and d(-); denote by TZ and V the classes of functions r(-) and d(-), respectively, 
having a proper rational Laplace transform with all the poles in the closed right 
half-plane (if T = IR) or a proper rational z-transform with all the poles outside the 
open disk of unit radius (if T = E); and, whenever E is asymptotically stable, for 
f(-) G Tl and d(-) G V denote by 0^(t, f(-), d(-)) the steady-state response of E in 
the e(t) variable. 

The following lemma can be easily deduced from Lemma 2 (see also [19]), and 
states a simple form of the internal model principle. 
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L e m m a 3. For each pair of functions d(-) £ V and r(-) 6 1Z, if the system £ 
represented in Figure 7 is asymptotically stable, then 

Ц(t,ř(-),d(-)) = 0 

t 
Эïi Є ï ï Г : ф,xлJ-(-),d(-)) = 0, Ví > 0 , 

%(ť, ь ř ( ) , ď ( ) ) = 0, V ť > 0 , 

Vr(t)-rjj(t,xi,0,d(-)) = 0. V < > 0 . 

(A.9) 

(A.Ю) 

(A.ll) 

(A.12) 

d(t) 

г(t) 
V 

ч (t) 
S 

y(t) 
V 

) * 
S 

) * 

Fig. 7. The feedback system E. 

Now, consider system S in the block diagram depicted in Fig. 8, where the block 
denoted by V has the same meaning as it has in Fig. 7 and S is assumed to be the 
series connection of two subsystems S\ and §2, which are described by equations 
similar to (A.7), (A.8), si being not affected by disturbance d(t) (i.e., the matrices 
corresponding to M-g and Nj for Si are zero). In addition, denote by Ai the matrix 
corresponding to Aj for si, and, assuming T = JR, for some non-negative a G ffi-
and some i £ Z denote by 7Za the subclass of It defined by: 

тv„ {ř(.) : f ( í ) = ^ 6 j J ^ — - e « \ Ví > 0, 6j G M ř }, (A.13) 

and denote by j ^ the subclass of V which is similarly defined. The proof of the 
following lemma is straightforward (see also [3, 7, 9] for the case of a feedback 
connection of 5 as in Fig. 7). 

L e m m a 4. If system S in Fig. 8 is observable, and the Jordan form of matrix Ai 
has q Jordan blocks of dimensions not lower than i corresponding to the eigenvalue 
a, then for each d(-) £ Va and for each r ( ) G ~RQ there exists x% £ HI" such that 
(A. 12) is satisfied. 
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-г̂ * 

F i g . 8. An open-loop connection. 

(Received December 2, 1993.) 
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