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KYBERNETIKA — VOLUME 30 (1994), NUMBER 6, PAGES 607-616

MINIMAL REALIZATIONS OF THE INVERSE
OF A POLYNOMIAL MATRIX USING FINITE
AND INFINITE JORDAN PAIRS

GEORGE I'. FRAGULIS

A simple method is given which uses the notions of finite and infinite Jordan pairs from
the theory of operators in such a way to find the minimal realization of the inverse of a
given polynomial matrix. An application of the proposed method is to find the generalized
state-space system which has as transfer function the inverse of the polynomial matrix.

1. INTRODUCTION

It is rather obvious that the connections between control theory and linear algebra
are very strong. Several formulas and notions, as well as, known techniques from
matrix theory and theory of operators are used efficiently in control theory. The
important treatise of [4] gives a nice example of how matrix theory can be applied
to the analysis and solution-finding of several difficult problems in control theory.
On the other hand Gohberg and other researchers [5] presented their work on oper-
ator polynomial and general operator-valued functions, and pointed out the striking
similarities among them and formulas and notions in control theory making the ob-
servation that “...from the systems theory point of view, we study here systems for
which the transfer function matrix is the inverse of a polynomial matrix” [5, page 7].
In this paper we present, a simple method which uses the notions of finite and infinite
Jordan pairs from the operator theory in such a way to find a minimal realization of
the inverse of a polynomial matrix. The notions of finite and infinite Jordan pairs
were found originally in {5] and are based on the notions of finite and infinite Jordan
chains [4,5]. Our analysis is based on the theory presented in recent papers (3,9, 10],
where simple and efficient methods of finding finite and infinite Jordan chains — and
as a consequence Jordan pairs — using the notions of finite and infinite elementary
divisors, are given.
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2. MAIN RESULTS

Let A(s) be a polynomial matrix:

Als) = Ao+ Ars+ - p Ay 50 € Rrxr(g] )
with Smith-McMillan form at s = oo [9]:
o — M 93 g2 1 1
Sp(s)(s) = diag 7,87 g 1 (2)
§9k+1 §97
where ] <k <rand g =—qi=k+1,.. rsuchthatqu >¢q2 > > qx 20,

G > s 22 Gen 20,

Let also the finite Jordan pair Cr € R7%* J, € R7%7 with n = deg|A(s)]. Let
also the infinite Jordan pair (Cw, J=) of A(s),with Co € RT¥#, Joo € R¥¥#, where
 is given by [9]:

k r
p==Da -3 g+ Y g, (3)
i=2 j=k+1
where g ,i=1,...,kand §,j = k+1,...,r denote the orders of the poles and zeros

at s = oo of A(s) respectively. It is well known [11] that the rational matrix A7 (s)
can be written:

A™N8) = Cylske = ) By + Colsow — 1] B, )

where By, B can be found [11]

B 11 [Sqe2] . .
[ Bolo ] =L, JG l] [v } {Oxo;u-»O;I']T 5)
1 ql_l i
V=[4aCp) T, = Y AC=J2 7T (6)
i=0
C! COQJ&:-Z

Cf]] Coché_s

Sq1-2 = . :
CiIE™? Cw
First of all we shall show the following:

Proposition 1. Let A(s) € ®7*7[s] be a polynomial matrix as in (1). Let also the
finite Jordan pair C; € R7%", 7, ¢ R**", and the matrix B; € ®X7 55 defined in
(5) with n = deg |A(s)], such that:

Hepe(s) = Cilsn - J!]-IBJ, (8)
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where Hypr(s) is the strictly proper part of A~2(s). Then the triple (Cy, J;, By) is
a minimal realization for Hypc(s).

Proof. Consider the degree d (in the finite complex plane). We have d(Hss:(s)) =
d(A~'(s)). The right hand side equals to the total zero multiplicity of A(s) at finite
points, hence is equal to n = deg|A(s)|. Thus by classical realization results, any
realization of dimension n for Haer(s) is automatically minimal. o

Now we define the dual polynomial matrix A(w) of A(s) as in [5]:

~ 1
A(w) = Aow® + Aiw™ 14 4 A, = wq‘A(;) € R [w] (9)
Definition 2. [5] The infinite elementary divisors (IEDs) of A(s) are defined as
the finite elementary divisors of A(w) at w = 0 i.e. as the finite elementary divisors

of A(w) that have the form:
whi, pi > 0. (10)

In order to examine the structure of the IEDs of A(s) we thus see that we need
the zero structure at w = 0 of A(w). Let S%( )(w) denote the local Smith form of
w

A(w) at w = 0. Then it can be proved that:
Proposition 3. [10] Let A(s) € R%"[s] as in (1) and let S%«( )(w) be the local

Smith form of /i(w) at w = 0. Then:

S%(w)(w) = w"‘S:') (%) = diag[l,w?7%,. ..,w""q",w"‘_;’\"“,.A.,u)‘“';'] (11)

and the infinite elementary divisors of the polynomial matrix A(s) are given by:

whi j=2,3,...r (12)
wi=qn—-¢>07=23,.. .,k (13)
Bi=q +§G >0, j=k+Lk+2,...n (14)

Remark. We see that polynomial matrices have in general two kinds of IEDs. The
first kind of IEDs that correspond to poles at s = oo of A(s) with orders ¢; < ¢y,
7 =2,3,...,k. The second kind of IEDs correspond to poles and zeros at s = co.
Notice that the first kind of IEDs exist if us = ¢: —¢; > 0,7 =2,3,...,k and that
the second kind of IEDs exists only when A(s) has zeros at s = oo. The first kind
of IEDs, i.e. the ones with degrees p; = q1 —¢; > 0, j = 2,3,..., k we call “infinite
pole IEDs”. The second kind of IEDs, i.e. the ones with degrees ji; = q1 + §; > 0,
j=k+1,k+2,...7r we call “infinite zero IEDs”.

In a recent paper [10] a method was introduced which showed how to find infinite
Jordan chains that correspond to the “infinite zero” IEDs of the polynomial matrix
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A(s). Each infinite zero IED with degree w;f, Gi=q4+g, j=k+1,...,r form
infinite Jordan chains of lenghts fi;, j =k +1,...,r.
We define the matrix:

Ceos = [Bj0, B2, By ) €RH j=kt 1 (15)

which consists of those infinite Jordan chains. If we now find in a similar way the
infinite Jordan chain to “infinite pole” IEDs of A(s) with degrees: w"i, ui = g1 —gqs,
i=2,3,...,k we can define the matrix:

Cooi = [wio, T, &5, 1] ERTH, i=2,3,.. .k (16)

The index ¢ has starting value i = 2 because w*! = 1 as we can see from (11) and
no infinite Jordan chain is obtained from this infinite pole IED of A(s). Now from
(15) and (16) we define the following matrix:

Coo = [0002) 0003: EERS) Cock | CDOJH—I: Coo,k+2; ey cocr] € §R""“ (17)
with

k T k T
p=k=-Dg = g+(r=kg+ > G=C-Da— ¢+ 3. & (18)
=2 i=2

j=k+1 j=k+1

Now to each infinite pole IED w#, ui = q1—¢i, 1 = 2,3, ..., k corresponds a nilpotent
matrix: Jeo: € R°**. Similarly to each infinite zero IED whi, i, = q1 + §5,§ =

k+1,...,7 corresponds a nilpotent matrix: Joo; € R

matrix:

. Finally we define the

Jeo = blockdiag [Joo2, Joos, - - -, Jook | Joo,k 41 Joo k42, - - Joor) € %‘:“”] (19)

with g as in (18).

In the sequel we shall present a method which shows how to reduce the degree of
p and make it minimal. If we take the oth power of Jeo in (19), because of its block
diagonal form, we shall also take the same powers of Jwi, i = 2,3,...,7. But the
matrices Jooi, ¢ = 2,3,...,r are nilpotent, hence they shall have o-zero rows in the
end.Clearly the index of nilpotency of J is equal to the index of nilpotency of its
maximum Jordan block i.e. equal to g1 + g-. We consider again the form of B as
given in (5):

[ g; ] = [0, J&] [ Sq{/—z ]_l [0,0,...,0,I]". (20)

First of all we remark that J2~! # 0 because its index of nilpotency is g, +§» >
¢: —1. Because of the block diagonal form of Jw we must take also the (g, —1)-power
of Jeoi, i =2,3,...,k and (g: — 1)-power of the Jw;, j =k +1,...,r. The index of
nilpotency of the Jordan blocks Jeoi, i =2,3,...,kis clearly ¢ —¢i, i =2,3,...,k,
le JE ¥ =0fori=23,...,k Butgn —1>q —gq, i =1,2,...k because
q1>q2>...>qx > 0. Hence

Just=0, i=1,2,... k. (21)
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If we take the (¢, — 1)-power of the Jordan blocks Jeoj, j = k+1,...,r then each
one shall have (g: — 1)-zero rows in the end. From the above analysis we have that
if we take the (g1 — 1)-power of Jeo, then Je has:

k k
=D (p-a)=tk-Da~-) ¢ (22)
i=2 i=2

zero-rows from the beginning because of the Jordan blocks Jw:, 1=2,3,...,k (see

(21)) and
me = (r— k) (g — 1) (23)

zero-rows in the end of each block Jeoj, j = k-+1,...,7 ((r—£) is the number of the

Jordan blocks Jeoj, j = k+1,...,7). From (22) and (23) it is clear that the (g: —1)-

power of Jeo has (i +m:) zero-rows. Now from the definition of B in (20) we have
-1

that the matrix [0n, J2 1] is multiplied with [ Sq{/'2 ] [0,0,...,0,I:] - which is
-1

nonsingular by definition — hence the product [0., J9~1] Sg{;z

[0,0,...,0, L]
has also (m: + ma) zero-rows. Then from the above it is clear that the matrix Be
has always (ma + m2) zero-rows which are not useful and we can eliminate them.
If from the matrix Be € R¥*” with x as in (18) we eliminate the appropriate zero-
rows( the i zero-rows from the start and the ma zero-rows which correspond to the
last Z€Io ToWs of each Jordan block Jeoj, j =k +1,...,7) we obtain a new matrix
B € ®¥%7 with:

k T k
E=p—(mit+ma) = (r—l)q;{q.«‘-Z gj— [(Ic -1aq —Zq; +(r—k) (g — l)ji
i=2

i=2 j=k+1
r (24)
s
j=k+t
rows. As we can easily see the value of /i (which is the value of p after the elimination
of the zero-rows) is equal to the order of a minimal realization of Hya(s) [9].
Hence if we eliminate now from Ce the columns which correspond to the (m: +

m2) zero-rows in Bee we shall obtain a matrix Ce € R Similarly if we eliminate
from Jeo the columns and the rows which correspond to the (m: + m2) zero-rows

in Beo we shall obtain a matrix Je € %”“ From the above it is clear that there

xr

exists a triple of matrices Co e R, Ju € %““ and B~ € R such that
Hyoi(8) = Coo[so0 — IZ] " B and b= (r —k)+ Z gj, is the least order among

=41 :
all realizations of Hea(s). Hence ji is the order of a minimal realization i.e. (Ceo,
Je, Be) is 2 minimal realization of Hya(s). We can now state the following:
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Proposition 5. Let A(s) € %rxr[s] be a polynomial matrix as in (1) with Smith—
McMillan form at s = co as in (2). Let also the infinite Jordan pair (Cee, Je) of
A(s) with Cee € RV Joo € "™, where p is given by (see (18)):

k r
p=E-Dg = g+ Y G (25)

i=2 j=k+1
and Be € R¥X# as this defined in (5)-(7). Let also A71(s) = Heer(s) + Hpa(s).
Then:
(1) The triple of matrices (Cw, Joo, Beo) is a realization for the polynomial part
Hypa(s) of A71(s).
(ii) From (Ces, Jo, B=) we can find a triple of matrices (Coo, Joo, Beo), with Coo €
R, Jo € " and Bw € R where fi is given by (see (24))

E=(r—k)+ > g (26)

j=k+1

Clearly fi < p and the triple (éﬂc,]w,ém) constitutes a minimal realization of
the polynomial part Hyw(s) of A7'(s), i.e.. Hpa(s) = Cw[sJo — -] Bw and
b=y (l/w A(l/w)].

i

3. AN APPLICATION

The proposed method can be applied to the so-called realization theory of transfer
function matrices of Linear Multivariable Systems [6], i.e. physical systems of the
form () :
A@B(E) = B u(t)
y(t) = C(p) B(8),

where p := d/dt is the differential operator, A(p), B(p), C(p) are polynomial matri-
ces and B(t), y(t), u(t) are respectively the pseudostate, the output and the input
vectors of the system (). The transfer function matrix of (}°) is (in frequency-
domain): G(s) = C(s)A~!(s)B(s) which is a rational matrix(not necessarily proper)
in general. It would be interesting to find certain singular systems in generalized
state-space form [1], i.e. physical systems of the form (3°,) :

(27)

Epz(t) = Az(t) + Bu(t)
y(t) = Cz(1),

where E, A, B, C are constant matrices with appropriate dimensions and z(t), y(t),
u(t) are respectively the generalized state,the output and the input vectors of the
system (3, ), which give rise to the transfer function matrix G(s). In other words the
transfer function matrix of system (3_,) which is given by: G1(s) = C[sE — A]—lB
satisfies the following condition: Gi(s) = C[sE—A]” B = C(s)A~!(s) B(s) = G{(s).

(28)
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Definition 6. [2] Assume that Gi(s) € R7*7(s) is a rational matrix. If there
exists a quadruple of matrices (E, 4, B,C) such that: Gi(s) = C[sE — A]_lB ~
where E, A € ®R"*" B € R"*" C € R™*" are constant matrices with 7 € N—{0},
then the generalized state-space system described by (3°,) will be called a singular
system realization of G (s), or simply a realization of G1(s). Furthermore the system
(3=1) is called a minimal realization of Gi(s) iff any other realization of G:1(s) has
order greater than 7, or equivalently iff the generalized state-space system (3", ) has
the least number of generalized states (z(t)).

Any rational matrix G(s) (not necessarily proper) may be represented as the
sum of its strictly proper part Hsp(s) and its polynomial part Hpa(s), i.e. G(s) =
Hip:(8)+ Hooi(s). We know that the inverse of a polynomial matrix F(s) € R7%"[s] is
a rational matrix in general. If we now consider the case where F~!(s) := G(s) then
the proposed method finds a minimal realization — as this defined in Definition 6
- of a transfer function matrix (G(s)) of a system (}) which has the property its
inverse to be a polynomial matrix.To be more precise let a system (") which give
rise to a transfer function matrix G(s) = C(s) A~1(s) B(s), (s) € R*", and assume
that G(s) has the following property G(s)~* := F(s) € R"*"[s]. Now Proposition 1
states that we can find a triple of matrices C; € R7%", J, € R**" B, ¢ gnxr

-1
with n = deg|F(s)|, such that: He:(s) = Cy[sI» — J;] B;, where Haps(s) is
the strictly proper part of G(s) = F~!(s) and the triple (Cy, Js, By) is a minimal
realization of H.i(s). Also Proposition 5 states that we can find a triple of matrices
(Coo, Joo, Beo), with Cow € R*F, Joo € RXF, Boo € RPX with i = (r—k)+ 3° g
=kl
- - -1 .

such that Hya(s) = Ce[sJo — I’Iﬂ Beo, where Hya(s) is the polynomial part of
G(s) = F~1(s) and the triple (Ceo, Joo, Beo) is 2 minimal realization of Hya(s). Let
now define:

E = [ Ié‘ jom ] € Rn+DX(n+i) (29)
A= [ Jof 10; ] € Rr+Rx(n+i) (30)
B = [ g:o ] € Rnta)xr 31)
C:= [C;, C‘N] € Rrx(H), (32)

We can now define the following generalized state-space system:
Epz(t) = Az(t) + Bu(t)
y(t) = Cz(1).
It is easy to verify that: G(s) = Huw(s) + Hpa(5) = C[sE — A] ' B. Hence the

system (33) determined by the matrices (29)~(32) is a realization of G(s). Further-
more this realization is also a minimal one.

(33)
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Definition 7. The order # of the minimal realization of the transfer function
matrix G(s) defined by (29)~(32) is called the minimum generalized order of G(s).
Furthermore 7 is the dimension of the generalized state-space system (33) and is
equal to:

-
A=ntji=deg|F(s)|+(r—k)+ Y @, (34)

j=k+1
where ¢i, j = k+1,...,r denote the orders of the zeros at s = oo of the polynomial

matrix F(s) which can be found using the Smith-McMillan form at s = oo [8]).

We can now state the following:

Theorem 8. Let a linear multivariable system of the form (27) which give rise to
a rational transfer function matrix G(s) € R7%"(s) and has the property to have
a polynomial inverse F(s) € R7*"[s]. Then we can find a generalized state-space
system of the form (33) with [E, A, B, C] as in (29) - (32) and minimum generalized
order 72 as in (34), such that the system (33) to be a minimal realization of the
rational matrix G(s) (according to Definition 6). Furthermore since the two systems
(27) and (33)give rise to the same transfer function matrix G(s) they have the same
sets of finite and infinite transmission poles and zeros ([6,7]).

4. EXAMPLE

Let the following PMD:

(75t e Jro=]y 2 ]

The transfeflfunction matrix of the above PMD is given by:
G(s) = C(s)A™ (s)B(s) =

1 —s? 1 =1 _
G(s) = l: T ? jl = [ s+1 s+1 :I + |: g sl+1 :| :Hlpx(s)’}"Hpul(S)

G(s) is a rational matrix which has the property G~1(s) = F(s)e R2*2[4] where:

2 2
F(s) = [ 8 ?;1 31 ] with S57,y(s) = [ 50 2 } . A finite Jordan pair for F(s)
can be found,withn =1:C; = é ], J; = [~1] and an infinite Jordan pair for

11 -1 010
Fn=s0e=] ) o] o= 00 1.
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Then we can find By and Be as follows (according to equations (5) —(7)).

-1

[ By ]:[L,Jm] [ f/“ } (02, 1.]"

B(XJ
1000 1 -1 1 -1 00 _1_:1 B
Joo1o{fjo o 1 0 I P O
1o 001 01 0 0 tol o g
0000/{0 0 0 -1][01 *
0 0
0 0
Hence By =[1 —~1]and B» = | 0 -1 | and therefore (Cr,Js,Bs) is a
0 0

minimal realization of Hspe(s) of G(s). The triple (Ceo, Jw, Bw) is a realization of
Hya(s) but not minimal. Applying the proposed method we have that there is only
one block Joop in Jeo and therefore mi = 0 and m2 = 1. Hence if we eliminate the
last row of Beo, the last column of Ce , and the last row and column of Je we shall
obtain: Ceo = _01 i ) oo = g (1) }, Bw = [ 8 _01 } (with i = 2) which is
a minimal realization of Hya(s) of G(s). Let now define:

100 -1
E;:[‘;lfo]: 00 1 ,A;:“{IOJ: 0
° 000 2 0

1 -1
o ~Bf _ . = 11 =11
sl 2)-[1 3] omtoed-[s 2 1)

The quadruple of matrices [E, A, B, C] give rise to the following generalized state-
space system

100 -100 1 -1
{oo 1}@(:):[0 10}z(t)+{0 Oilu(l)
000 0 0 1 0 —1

1 -1 1

which is a minimum realization of the matrix G(s) with minimum generalized order
A =n+f=1+2=23, which represents also the dimension of the generalized state

z(t).

S - O

_—0 O
—_—

5. CONCLUSIONS

In the first part of the present paper we investigated the problem of finding the
minimal realization of the inverse of a given polynomial matrix by adopting the
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notions of finite and infinite Jordan pairs. In the sequel we applied the proposed
method in order to find the generalized state-space system which has as transfer
function matrix the inverse of a polynomial matrix. We remark here that the problem
of transforming a linear multivariable system of the form (27) to a generalized state
space system of the form (33) is called linearization and has been considered by
many researchers. In our paper we study a special case of linearization ; that is
linearization for the class of transfer function matrices G(s) of systems (27) with the
property of having a polynomial inverse, i.e.:

V= {G(s) € W7 (s)/ G (s) € R [s]} .

The structural properties of the elements of the class V as defined above, as well
as, the forms of the matrices A(-), B(-), C(-) of the system (}) in (27) which give
rise to a transfer function matrix G(s)e V is a topic of further research.
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