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K Y B E R N E T I K A — V O L U M E 30 ( 1 9 9 4 ) , N U M B E R 5, P A G E S 5 0 7 - 5 1 5 

REMARKS ON THE THEORY OF IMPLICIT 
LINEAR CONTINUOUS-TIME SYSTEMS1 

K. MACIEJ PRZYLUSKI AND ANDRZEJ SOSNOWSKI 

Given a (not necessarily regular or square) linear implicit system Ex'(t) = Fx(t)+Gu(t)t 

we study the space of admissible initial conditions and the controllable space of the system. 
Distributional trajectories are considered. 

0. INTRODUCTION 

We shall consider implicit linear continuous-time systems described by a differential 
equation of the form 

Ex'(t) = Fx(t) + Gu(i). (1) 

It may happen that for some initial conditions the above differential equation 
has no solution. For such reason, it is reasonable to extend the concept of solution 
to include a class of distributions as solutions. It will require introducing a distri
butional version of the considered differential equation, as explained in [17], and also 
in [4,5,7]. 

In the paper we sketch the distributional theory of equation (1). In particular, 
we determine the space of admissible initial conditions and the controllable spaces. 

Let us note that some aspects of the distributional theory of equation (1) have 
been previously studied in [4,5,7,13,17], and also in other references. The above 
mentioned papers treat the same circle of problems we are considering but only for 
the case when the pencil (XE — F) is regular (cf. [9]). This restrictive assumption 
is not used in our paper. When the first version of the paper (i.e. [18]) has been 
completed, some new results concerning not necessarily regular systems have also 
been obtained by other researches; the results are briefly reported in [10] and [16]. 
More results can also be found in [11,12]. The framework of [10,11,12] is very 
similar to that of our paper since the above-mentioned references study the same 
class of solutions of a distributional counterpart of (1). In consequence of this fact, 
some results of [10,11,12] are very close to the results of our Sections 2 and 3. The 
presentation of the theory of implicit systems given in [16] is different from that of 

1 Presented at the IFAC Workshop on System Structure and Control held in Prague on September 
3-5, 1992. 
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our paper. The starting point of [16] are some concepts from [4]. More importantly, 
the class of distributions considered in [16] is different from that considered in our 
paper. Unfortunately, no proofs of presented results are provided in [16]. 

1. BASIC NOTATION 

We now recall some standard notation from the theory of distributions we shall use 
in the sequel. As usual, we write V and V for the space of test functions X>(IR) and 
the space of distributions X>'(IR), respectively. If / _ V', then /(°) := / and, for 
k = 1,2,... /(*) := the fcth distributional derivative of / . Let us recall that every 
locally integrable function on 1R can be canonically identified with an element of 
V. (Such distributions are called regular.) A prominent member of V is 5 (Dirac 
measure at 0). 

The symbol V'+ will stand for the space of distributions with support contained in 
M,Q (ffi-o := [0, oo).) It is well known that V'+ is a convolution algebra; in particular, 
if / and g belong to V'+ then their convolution product / * g exists and belongs to 
V'+. Let us observe that _W _ V'+, and § « * / = / * «5<0 = /W, for i = 0 , 1 , . . . and 
/ £ V'+ (of course, the formula is also valid for all / _ V). 

Let / be a function IR ~> 1R. We say that / is smooth on IRjj" iff / | ( - o o , 0) = 0 
C|' means restriction) and there exist e > 0 and an infinitely differentiable function 
/ : (—£, oo) —* IR such that /JIRQ" = /|IRo"- It is obvious that every function smooth 
on IRj defines a regular distribution which belongs to V'+. Following [14], we denote 
by CjmP the smallest subalgebra of V'+ containing 6, fit1) and all / smooth on IRj. 
The elements of eimp are called impulsive-smooth distributions. It is well known and 
not difficult to prove that for any / £ Cimp there exist a nonnegative integer k and 
a function / s m smooth on Kg" such that 

/-/«+ £/-.«« 
i-0 

for some real numbers /_,•, which vanish for i > k. Let us note that the smooth 
(on IRQ") function / s m and numbers /_,• are uniquely defined by / . In particular, 
/imp := Ei_o f-i6{i) i s a l s o uniquely defined by / . For any / £ C;mp, /__ and / i m p 

are respectively called the smooth and impulsive part of / . We say that an impulsive-
smooth distribution / is smooth iff / = / s m , and / is impulsive iff / = / i m p . For 
a n y / G C i m p , / (0+) : = / s m ( 0 ) . 

At this point it is reasonable to note that from the control-theoretic point of view 
the space Cimp has some disadvantages one of them being the fact that the space is 
not invariant with respect to right translations. 

Let / 6 V be a regular distribution satisfying the following conditions: 

(a) / | ( - o o , 0) = 0 (so / e V'+), and 

C3) /l(0>oo) is (equivalent to) a locally absolutely continuous function for which 
/(0-f) := l im._ 0 + f(t) exists. 
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Then the (classical) derivative of/, to be denoted by / ' , exists almost everywhere 
(on lit), is locally integrable, and f^, the distributional derivative of/, is related 
to / ' in the following way: 

fM = f + f(0+)8. (2) 

Of course, (2) can be also applied to smooth distributions from C\mp. 
In the rest of the paper we use standard notion and elementary results of distri

bution theory which are presented e.g. in [15,19]. We are assuming that the reader 
is familiar with basic facts from the theory of distributions; as a consequence we are 
using many results from [15,19] without quoting them explicitly. 

2. IMPULSIVE-SMOOTH SOLUTIONS OF IMPLICIT LINEAR DIFFEREN
TIAL EQUATIONS 

We begin by formulating a distributional version of equation (1). We shall assume 
that E, F G I t ? x n and G G lElqxm. Let x : M -> ffi" be locally absolutely continuous 
on IRg" and u : I t —• IRm be locally integrable on EtJ. Let s | ( -oo,0) = 0 and 
w|(-oo,0) = 0 (so x G (T>'+)n and u G (V'+)m). Assume also that x|lRj and u|IEt£ 
satisfy almost everywhere on EtJ equation (1). It is immediate that then x and u 
satisfy (1) almost everywhere on St, i.e. Ex' = Fx + Gu. Put x := x(0+) and use 
formula (2). It follows that x and u, treated as (vector-valued) distributions, satisfy 
the following equation over V'+: 

£«<->= Fx+Gu + Ex06.\ (3) 

The equation can also be written in the following equivalent form: 

[EfP* - FS\ * x = Gu + Ex06. (4) 

In the rest of the paper we shall concentrate on properties of equation (3) (or 
(4)). We call x a solution of (3) (or (4)) with initial condition x0, corresponding to 
input u, iff x, u and x0 satisfy (3). Unless otherwise stated we assume that x and u 
are impulsive-smooth, i.e. x G (C\mp)

n and u G (Cimp)m-
Let x G (Cimp)" such that 

oo 

X = Xsm + X\mp = Xsm + 22X-i^ (5) 
1 = 0 

be a solution of (4), corresponding to an initial condition x0 and an input u G 
(Cimp)", where u is given by 

oo 

U = «8m + "imp = Uem + ^ U-,-tfo>. (6) 
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We determine the smooth part of _ and the coefficients __;. The left-hand side of 
(4) can be rewritten in the following form: 

(E6™ - F . ) * x = (E6W - E<5) * xsm + (E^ 1 ) - _*_) * _ imp = 

= (Ex'sm + Exsm(0) 6 - Fxsm) + IY E__,-5(i+1) - Y -5'--.-«(,') ) = 
Vt=0 i_o / 

= (Ex'srn + Exsm(0) 6 - Fxsm) + ( -Fx06 + JT(_J__i+ 1 _ Fx_ . ) .W J . 

The right-hand side of (4) is equal to 

Gu + Ex06 = Gusm + Guimp + Ex06 = 

= Gusm + Y G « - . - W + Ex06. 
.=o 

It follows that the smooth part of x satisfies the following differentia] equation: 

(7) Ex' = Fxsm + Gusm. 

The coefficients _•_,- of the impulsive part of _ are related to the coefficients u_,- of 
the impulsive part of u by the following difference equation: 

|_7__.+i = E__i + G__., | (8) 

where i = 1,2,.... Let us recall that both __,- and __,• vanish for large i. 
A relation between _Sm(0), _o, «o and _o is given by 

Exsm(0) = Fx0 + Gu0+ExQ.\ (9) 

Reversing the above argument one can easily check that the following result holds 
true. 

L e m m a 1. Let _ G (Cimp)n and _ G (Cimp)m be given by (5) and (6). Then x is a 
solution of (4) with initial condition x0, corresponding to the input u, if and only if 
_sm, __,-, wsm and __,• satisfy the relations (7), (8) and (9). 

We end this section with the following remark concerning equation (7). 

R e m a r k 1. The equality Ex'sm = Fxsm + Gusm, i.e. equation (7) is to be satisfied 
in the distributional sense. However both sides of the equality are regular and even 
smooth on M0 . It follows that (7) holds true if and only if the 'classical' differential 
equation E ( ^ xam(t)) = Fxsm(t) + Gusm(t) is satisfied for t £ JR0 . This property 
allows to determine the subspace of IRn to which the initial values of _sm should 
belong. More precisely, let Vci := {£ G ]Rn |3 smooth _sm and _sm satisfying (7), 
with _sm(0) = £}. Then a slight modification of the proof of Thm. 5.1 of [20] leads 
to the equality Vc l = V(E,F,G), where the space V(E,F,G) (which is defined in 
the next section) can be determined explicitly by algebraic means. 
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3. SPACES OF ADMISSIBLE INITIAL CONDITIONS 

As it was previously mentioned, the existence of solutions of equation (1) is not 
guaranteed for some initial conditions. The same may happen also for the distri
butional version of equation (1), i.e. for equation (3). We find now the space of 
admissible initial conditions. For any initial condition from this space there exists 
at least one impulsive-smooth solution of equation (3). 

Let the spaces V-i(E, F, G) C Mn be defined by the following formula: 

V0(E,F,G):=JR", 

Vi+1(E, F, G) := F~l (E(V{(E, F, G)) + Im(G)), 

for i' = 0 , l , . . . . 
Similarly, let the spaces Ri(E, F, G) C IRn be defined as follows 

R0(E,F,G) := {0} (i.e., the zero subspace of IRn), 

Ri+1(E, F, G) := E~l (F(R{(E, F, G)) + Irn(G)), 

for i -s 0 , 1 , . . . . 
It easy to observe (and well known, see e. g. [2]) that the sequence (V,-(i5, F, G)) 

is decreasing and the sequence (Ri(E, F,G)) is increasing. It follows that for i > n, 
the sequences (V{(E, F, G)) and (R{(E, F, G)) are constant. We shall denote respec
tively by V(E, F, G) and R(E, F, G), the limits of those sequences. 

Let 

V := {x0 G H n | 3 smooth xsm and usm satisfying (3)} . 

In other words, V is the space of all such x0 G IRn, for which one can find 
x £ (Cimp)n a n d w G (Cimp)"1 such that x = xsm, u = usm (so that they are smooth), 
and ExW = Fx + Gu + Ex06. 

Proposition 1. V = V(E, F, G) + Ker E. 

P r o o f . In view of Lemma 1, it is obvious that smooth xsm and usm satisfy (3) 
if and only if they satisfy (7) and (cf. (9)) £'xsm(0) = Ex0. Since the space of 
values of xsm(0) coincides with V(E,F,G) (cf. Remark 1 in Section 1), the equality 
Exsm(0) = Ex0 holds for some xsm(0) if and only if Ex0 € EV(E, F, G). Therefore 
the result is immediate. D 

Let 

R := {x0 € H n | 3 impulsive x\mp and u;mp satisfying (3)} . 

In other words, R is the space of all such x0 G IRn, for which one can find 
x G (Cimp)n and u G (Cimp)

m such that x = xlmp, u = u\mp (so that they are 
impulsive), and Ex^ = Fx + Gu + Ex06. 
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Proposition 2. R - R(E, F, G). 

P r o o f . Let ximp and „imp be impulsive distributions given by 

Zimp = ] P _ _ . . ( t ) and u i m p = ]>~] __ . . ( , ) , 
t=0 i=0 

respectively. In view of Lemma 1, x[mp and itimp satisfy (3) if and only if the 
sequences (__,) and (u_.) satisfy equation (8) and (cf. (9)) _.(—XQ) = Fxo + Gu0. 
It follows that (—__) can be characterized as the 'final' value of an '_-trajectory' 
of (8), with i running through nonnegative integers. Now it is sufficient to note 
that (in view of results of Section 2 of [2]) these space coincides with R(E, F, G) so 
that R C R(E,F,G). The inclusion R(E,F,G) C R can be shown similarly, by 
constructing an appropriate _im p and «imp . • 

Let 

W := {x~0 G IR" | 3 impulsive-smooth _ and u satisfying (3)} . 

Proposition 3. W = V(E, F, G) + R(E, F, G). 

P r o o f . The inclusion V(E,F,G) + R(E,F,G) C W is a direct consequence 
of Propositions 1 and 2, and linearity of (3). To prove the reverse inclusion let 
us observe that there exist impulsive-smooth _ and u satisfying (3) if and only if 
the equalities (7), (8) and (9) hold, with _ and u given by (5) and (6). Using the 
argument presented in the proofs of Propositions 2 and 3, we can easily check that 
_o G R(E, F, G) and _sm(0) G V(E, F, G). It follows that 

__ G E-\EV(E, F, G) + FR(E, F, G) + ImG) = V(E, F, G) + R(E, F, G), 

where the last equality is a consequence of the modular distributive law, the inclusion 
(cf. [2]) ER(E,F,G) C FR(E,F,G) + ImG and the obvious relation KerE c 
R(E,F,G). • 

Remark 2 . Let us note that V(E, F, G)+R(E, F, G) is the largest almost invariant 
subspace of a suitably defined implicit discrete-time system (cf. [1]). In the case when 
the pencil (XE — F) is regular the space W coincides with the whole space IR" since 
then IR" = V(E, F, 0) © R(E, F, 0). 

4. CONTROLLABLE SPACE 

Let 

and 

C(E, F, G) := V(E, F, G) D R(E, F, G) 

Ci-S := {<_" G IR" 13 impulsive-smooth x and u satisfying (3) 

with __ = 0 and _(0+) = £} . 
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Proposi t ion 4. C z_, = C(E, F, G). 

P r o o f . Since x(0+) = xsm(0), C;_ s is contained in V(E,F,G) (cf. Remark 1). 
On the other hand, the inclusion C t _ s C R(E, F, G) can be easily proved using the 
relation (cf. (9)) Exsm(0) = Fx0 + Gu0. Hence C,_ , C C(E,F,G). The reverse 
inclusion can be proved in the same way. • 

We can now prove the following result about the uniqueness of solutions of 
equation (3) (see also [20]): 

Proposi t ion 5. x = 0 is the only impulsive-smooth solution of (3), with u = 0 
and x0 = 0, if and only if C(E, F, 0) = 0. 

P r o o f . (=>) Suppose C(E,F,0) ^ 0. Then Proposition 4 ensures the existence 
of a solution x of (3), with u = 0 and x0 = 0, and satisfying the condition x(0+) ^ 0. 
Such x cannot be equal to 0. 

(=>) Denote respectively by E and F the restriction of E and F to the subspace 
V(E,F,0). It is well known (see e.g. [2]) that the equality C(E, F, 0) = 0 holds 
true if and only if E injective. In this case there exists a left inverse, to be denoted 
by L, of E. Multiplying by L both sides of (3), with u = 0 and x0 = 0, we see that x 
satisfies x^1) = LFx, i.e. a standard homogeneous differential equation, with x = 0. 
Hence x = 0. • 

Let S be a subspace of IR". We say that values of a distribution x £ (D')n lie in 
S iff for every <p 6 V, x(tp) G S (of course, x(<p) denote the vector from IR" whose 
ith coordinate is equal to the value of the ith coordinate of x on ip). Let Cdv denote 
the smallest subspace of IR" in which lie the values of all impulsive-smooth solutions 
of equation (3), with x0 = 0. 

To prove our next result we shall need the following lemma being an immediate 
consequence of [3, Thm. 1]. 

L e m m a 2. There exist subspaces X C IR" and Z\, Z2 C IR,9 such that JR,q = 
Z\@Z2, IR" = C(E, F, G)@X2 and, with respect to this decomposition, the linear 
mappings E, F and G can be represented respectively by 

E\\ E\2 1 [ F\\ F\2 1 ,, , J G\ 
o E22 \ ' I 0 F22 \ a n d I 0 

with the property that C(En, Fn,G\) = C(E,F,G) and C(E22,F22,0) = 0. 

Proposition 6. Cdv = C._ , . 

P r o o f . The inclusion Cdv C C,_ , is an easy consequence of the decomposition of 
Lemma 2, which together with Proposition 5 ensures that the values of any impulsive-
smooth x satisfying (3), with x0 = 0, lie in C(Eu,Fn,G\) = C(E,F,G) = C,_ . . 
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To show t h a t C , _ s C C d v consider any TJ belonging to the or thogonal complement 
of Cdv so t h a t T] x(<p) = 0, for all <p G V and all impuls ive-smooth solut ions x of 
(3) , wi th x0 = 0. T h e n also T]Txsm(<p) = 0 so t h a t the regular d is t r ibut ion 77T_Sm is 
zero. Since 77T_ s m is smoo th on I R j , we obta in the equali ty TJT(0+) = 0 and hence 
(because x is an a rb i t r a ry solut ion of (3), wi th x0 = 0) r?T£ = 0, for all £ 6 C , _ s . O 

Let C^° denote the space of all infinitely differentiable functions IR —» IR with 

suppo r t conta ined in IR^. It is obvious t h a t C^° C C\mp. Let us also observe t h a t 

for every / _ C;m p , / * <p is a well defined element of C!jf, whenever <p G V and the 

suppo r t of <p lies in IRJj . 
Consider 

C := {£ G IRn | 3 x G ( C ~ ) n and u G ( C ~ ) m satisfying (3) wi th x0 = 0 

and such tha t _(T) = £, for some T > 0} . 

Since C+ is invar iant wi th respect to r ight t rans la t ions , C is a linear subspace of 

IRn . 

P r o p o s i t i o n 7. C = C , _ s . 

P r o o f . In view of Propos i t ions 6 and 4, we always have C C Cdv = C , _ s = 
C(E,F,G). It follows t h a t to prove the equal i ty C = C ; _ s it is sufficient to show 
t h a t the intersect ion of C ; _ s and the or thogona l complement of C is 0. For this , 
consider an a rb i t r a ry 77 belonging to the or thogona l complement of C . It is obvious 
t h a t there exist impuls ive-smooth x and u satisfying (3) wi th x0 = 0 and _ ( 0 + ) = TJ. 

Let <p <E ~D has its suppo r t contained in IR0 and xv = x * <p, uv := u * <p. T h e n 
xv G (C^°) n , u ¥ , (C™)m and they satisfy (3) wi th x0 = 0. I t is immed ia t e t h a t 
T]Txv = 0. Consider now a family of <p G V such t h a t 0 < <p, ftp = 1 and 
s u p p ( ^ ) —> {1} . T h e n i v —• _ * 6j in P ' ; i$i s t ands for the Dirac measure a t 1. 
It is obvious t h a t 0 = T) xv —* T]T(x * 6i). It follows t h a t 7) _ = 0; in par t icu lar 
i ) T i s m = 0. Hence ?i x(0+) = 0, and therefore 77 77 = 0. Hence 77 = 0, and we have 
proved t h a t C = C ; _ , , as required. • 

R e m a r k 3 . T h e above propos i t ion improves various results (see e .g . T h m . 4.4 of 

[8]) on control labi l i ty of implicit sys tems bv considering only "very" regular solut ions 

of (3). 

(Received March 18, 1993.) 
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