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K Y B E R N E T I K A — V O L U M E 28 ( 1 9 9 2 ) , N U M B E R 6, P A G E S 4 8 4 - 4 9 3 

P O R T F O L I O C H O I C E B A S E D O N 
T H E E M P I R I C A L D I S T R I B U T I O N 

GUSZTAV MORVAI 

It is shown that a slightly modified version of the empirical log-optimal portfolio selector achieves 
the asymptotically optimal growth rate of capital on independent and identically distributed random 
stock market return vectors. 

1. INTRODUCTION 

Let X_ € Rm denote a random stock market return vector, where X_- is the value of a 
one unit investment in stock j at the end of the trading day. We require that Xj > 0 
for j = 1,2,... ,m, that is, an investor cannot lose more than the invested capital. Let 
k, fy > 0, 53^=i fy ~ -, denote a portfolio, that is, an allocation of investor's capital 
across the investment alternatives. Let B denote the set of such portfolios. Thus bj 
is the proportion of current capital invested in stock j . The resulting wealth is S = 
•Cj=i bjXj = bX. This is the wealth resulting from a unit investment allocated to the m 
stocks according to portfolio 6. If the current capital is reallocated according to portfolio 
b{ at time i in repeated investments against stock vectors X__,Xj_,... then the wealth Sn 

at time n is given by 

1=1 

Suppose th.e stock market return vectors X^,^,... are independent and identically 
distributed.'A portfolio b* is called log-optimal if Eln b*_X. — sup Eln&X. Let B* denote 

be B 
the set of log-optimal portfolios. Since the portfolio selection may depend on the past 
outcomes, an investment scheme can be described as a portfolio selector 

0,(^,12 U C -
that is, a series of measurable functions bn (2£i> X*, • • • ,2Cn-i) mapping from the past 
outcomes of the stock market return vectors to the set of portfolios. It can be shown 
that 
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lim sup - In Sn < lim - In S* = E In 6*2: a.s., 
n_oo n n—oo n 

where Sn = f\ _j(__i,2:2> • • • ,-_,-i)__., a n d S* = j ] 6*2:, denote capitals achieved by an 
v=i ;=i 

arbitrary portfolio selector {6?l (2:_i, 2:2, • • •,__n-i) }„_> a n ( l t n e log-optimal portfolio 6* 
in n repeated games, respectively. (That is, sup E In bX is the highest asymptotic growth 

b€B 

rate of capital a portfolio selector may achieve. See Algoet and Cover [1].) For more 
about the log-optimal portfolio see [1], [3]—[11], and [13]. 

If the probability distribution of the stocks is not known in advance, consider as a goal 
to find a portfolio selector {6n \2L\,2£JI, • • • ,2 : n - i )} _, which achieves the asymptotically 
optimal growth rate of capital, that is, 

lim — ln5 n = E In 6*21 a.s., 
n—oo n 

where S„ = ft _i(_-i,2_2, • • • ,2:._,)2_.-

2. THE PROPOSED PORTFOLIO SELECTOR 

Let {6n (2:i,2:2, ••• >2-n-i)}n_i b e a measurable selector of the empirical log-optimal 
portfolios, that is, 

6j = ( l / m , l / m , . . . , l / m ) 

_n (2_i,2:2, • • • ,2-n-i) - M g m a x i J In 62:. if n > 2. 

The proposed portfolio selector {bn (X_X,X__,.. •,X_n_x)}
c° is defined by 

i (2:„2:2, • • •,_Cn-i) = (i - *n)6n (2:i,2:2, • • •.2:n_,) + Ane, 

where lim A„ = 0, An € (0,1) for all n, and e = ( l / m , l / m , . . . , 1/m). That is, the 

empirical log-optimal portfolio is combined with the uniform one. 
The following theorem says that the asymptotically optimal growth rate of capital is 

achieved by the proposed portfolio selector if the random stock market return vectors 
are independent and identically distributed. The portfolio selector proposed in Cover 
[8] achieves this goal also but our selector is simpler. It has been shown in Morvai [13] 
that even the pure empirical log-optimal portfolio selector {6n (2:i,2_2> ••• ,__n_i ))n*=i 
achieves the asymptotically optimal growth rate of capital if the random stock market 
return vectors are independent, identically distributed, and none of the stocks Xj, j = 
1,2, . . . , m, may take on the value of zero. 
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Theorem 1. Suppose the random stock market return vectors ALi, X_2,... are independent, 
identically distributed, and -oo < supEln&Jf < oo. (Note Eln6*X = supEln&X.) 

t€B 66B 

Then 

lim — In Sn = E In V"X_ a.s., 
n-»oo n 

where Sn = f[ U2Li,2L2,.. .,X^_r)Xi-

3. PERFORMANCE ANALYSIS OF THE PROPOSED PORTFOLIO SELECTOR 

Here we prove several lemmas in order to be able to prove Theorem 1. 

Definition. Consider a function h(-) : Rn —* R U {oo}. ep'ih(-) denotes the set 
{(l,a) GRn x R : h ( y ) < a } . 

Lemma 1. Let (E,U,V) be a probability space, where E = Rm, and U denotes 
the Borel cr-algebra completed with respect to V. Let 0 denote the set {x £ Rm : x, > 
0 for i = 1,2,... ,m). Consider the function 

ri, N f - ln&x : & € B, and x € 0 
f(k,x) = < — - ' . -

t oo : otherwise 

that is, / (•, •) : Rm x E -» R U {oo}. Then 
a) for each x e E the set epi / (•, x) — {(&, a) £ Rm x R : / (&, x) < a} is convex, 
b) the set epi / (•, x) is closed, and 
c) {x € E : epi / (•, x) n F ^ 0} 6 u for all closed subsets F C R"^1. 
d) Consider the product probability space (E ( n ) ,U ( n ) , 'P ( n )) . 

Then for each (x j ,x 2 , . . . , x„) e E (n) the set epi | £ n
= 1 / ( ' , £ , ) is closed, and 

e ) { f e , I . ) . . M 2 n ) € E (n) : epi i ^,\l
=l / ( • ,x.) n F ± 0} € U (n) for all closed subsets 

F C Rm+'. 

P r o o f. a) If x ^ 0 then epi / (•, x) is empty, hence it is trivially convex. 
Suppose x e 0 . If ( ^ a i ) , (&2,a2) € e p i / ( - , x ) then &,,&2 £ B, and aj > - l n ^ x , 
a2 > — In 62x. Furthermore, 

A a j + ( 1 - A ) a 2 > - A l n 6 1 x - ( 1 -A)ln&2x = 

- (Aln6 1 x + (1 -A)ln&2x) > -ln((A61 + ( 1 - A ) 6 2 ) x ) 

by Jensen's inequality. Thus the set e p i / (• ,x) is convex. 

b) If x $ 0 then epi / (•, x) is empty. 
Suppose x 6 0 . If (&',a') is from the boundary of the set epi f (• ,x) then let (&;,»,) 
converge to (b',a') such that (&_,-, a,-) £ ep j / ( • ,x). (Thus &,-,&' g B, a,-,a' G R.) 
Let e > 0 be arbitrary. Since a' is finite, a, < a' + e for large i. Thus 
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- In 6jX <aj<a' + e for large i. 

The function — In bx is continuous in 6 G B, hence 

— In 6'x = lim — In 6,x < a' + e. 

Since e was arbitrary, — In 6'x < a', that is, (b',a') G e p i / ( • ,x) . 

c) Suppose G is a bounded and closed set from Rm+1. 
Let(7c;(x)= max — f(b,x)+a= sup —/ (6, x)+a, where D is a countable dense 

(6,a)eBxRnG (i,or)€0 

subset of B x R n G. (We used the continuity of the function In 6x, and the compactness 
of the set B x R n G.) Since for each 6 € B, a G R, the function / (6, x) + a is measurable 
thus the function sup / (b,x) + a is measurable as well. (The supremum is taken over 

(i«)6D 
a countable set.) 
Let F denote a closed set from Rm+1. The following statements are equivalent: 

{ x € S : ep i / ( - , x )n i=V0}eu . 

{ x £ 0 : {(b,a)€BxR : - I n k < "} n F -- 0} e U. 

( J { x G 0 : {(b,a)£ Bx R : - l n 6 x < a} n F, ^ 0} € U, 

where F. are bounded and closed sets (countable many) such that (J F. = F . 

l j { x € 0 : max lnfex + a > 0 } € u . 
V (6,a)6BxRn/=\ 

(We used the continuity of the function In 6x + a, and the compactness of the set B x 
Rn Ft.) 

M { x e E : max -f(b,x) + a > 0} € U. 
Y (6,a)€B xRnFj 

\J{xeE:gFl(x)>0}eU. 

We have already proved that {x G E : gFi (x) > 0} € U. (The function gFi (x) is 
measurable.) Thus 

IJ{x G E : gFi (x) > 0} G U. 

d) Similar argument works as in b. e) Similar argument works as in c. D 
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Lemma 2 . Suppose X,- > 0 a.s. for i = 1,2,... ,m and —oo < sup Eln6X < oo. Let 
beB 

6 = (l/m, l/m, •• •, 1/m). Then E/ (6, X) < oo, and there exists a measurable function 

u (•) : H —• Rm such that 

f(b,x) > f (l,x) +u(x) (b - b) for all 6 £ Rm,x £ E, and 

E | | u ( X ) | | < o o . 

P r o o f . Since 

- o o < sup Eln6X < E l n V X , = Eln ( m Y " - X , ) = Eln&X + In (m), 

** tr v txm ) 
hence E ( - l n i x ) < oo. Thus E/ (i,X_) < oo. 

Let u(x) — \ —!— ' — ' - - Obviously, u (X) is measurable. 
t 0 : otherwise 

If x = Q or x £ 6 then oo > oo + 0. 

If 6 ^ B,x^0 and x € 0 then oo > In 6x + —xfbx (6 - 6 j , since In bx is finite. 

If 6 G 5 , x ^ 0 and x € 0 then 
6x ((b-b)x + bx 

- I n 6 x + ln6x = - l n = = - l n ' 
6x \ bx 

(b-b)x \ (b-b)x __„ , . 
_h, L J - + 1 > - v . ; =^(b-b). 

\ bx J ' bx bx \- 'J 
Furthermore, E || - X / 6 X ||< m3 < oo. • 

Lemma 3 . (A.J.King and R.J.-B.Wets [12]) Let Y be a directly given random 
variable on the probability space (T, A, Q), where A denotes a <r-algebra completed with 
respect to Q. Consider the following assumptions: 
Assumption A. g(-, •) : R ' x T - t R U {oo} is a convex normal integrand, that is, 

(i) the set epig (• ,y) is closed for each J/ € T, 
(ii) the set valued mapping y_ —• epi g ( •, y) is measurable, that is, for all closed subsets 

F C R*+!, {j, € T : ep i 5 (•, y) n F ^ 0} G A, 

(iii) the set epi <j (• ,y) is convex for each y_ £ T, and it is not empty a.s. 

Assumption B. There exist a c € R* such that J g (c,y) Q (dy) is finite, and a measurable 
function u (•) : T - • Rfc such that 

(i) 9 (c,y) >g(c,y_)+u(y)(c-c) for all c € R*, y_ £ T, and 
(n) J\\u(y) || Q(dy) is finite. 

Assumption C. The random variables Y, a r e independent and identically distributed. 
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Under assumptions A, B, and C if c is a cluster point of any sequence {cn} with 

_n € a r S m i n n __ 9 (_> i_i) * n e n _ ^ a r g min E_ (c, J_) a.s. 
ceR* j=i ~ _eR* 

P r o o f . See King and Wets [12] Theorem 2.3 and Proposition 2.1, or Wets [15] 
Theorem 3.4. D 

L e m m a 4. Suppose that the random stock market return vectors 2Li a r e independent, 
identically distributed and —oo < supEln_v__ < oo. Then there exists a measurable se-

beB 
lector {bn (_¥,, _K_,.. .,_£__,)}^L, such that 

. n-l 

&B(2_i,___,---,_&.-i) - arg max r V l n & X -
_n V—l,_-2> >—n 1/ b

 keB n _ I /^ ' 

and the cluster points of {bn (X_\,2L2,...,2Ln-\)}^-i a r e log-optimal a.s. 

P r o o f . The existence of the measurable selector {bn (__!,___>••• >2Cn-i)}nl1 follows 
from Lemma 1, Rockafellar [14] Theorems 1C and 2K, and the fact that 

arg max — >^ l n fcY — a r g min — > — In bX: — arg min — > / (b, XA a.s. 
- e B n f=f P « ^ — b__Rmn j ^ J u ' — , ; 

Since ^ _{_ — ln 6.Y, = i __./(_,_(.,) f°r all 6 _ 2? a.s., the log-optimality of the cluster 
• i = i _ " i ' = i 

points follows immediately from Lemmas 1,2 and 3. • 

L e m m a 5. Suppose that the random stock market return vectors ___,,2__,... are 

independent and identically distributed. Then the cluster points of the empirical log-

optimal portfolio selector {bn (2L\,X_2,... ,__„_,)}__, a n d the proposed portfolio selector 

{_n (2_i>2_2> • • • >2_n_i)}n_i coincide and hence the cluster points of the sequence 

{kn (2_i>2_2> • • • >2Cn-i)}n_, a r e log-optimal with probability one. 

P r o o f . Suppose lim _̂ _ (____ H , 2L2 H , . . . , 2_,„_i H ) — -'• Since 

k ( 2 - , H , 2 _ 2 H , . . . , 2 _ , „ - i H ) = 

(i - A, J _••_ (2L\ H ,2_2 H , . . . ,__,„-, H ) + A,„e 

and A,„ —» 0, hence 

Um i(_ (_¥, (w) ,2_2 («)>••• 1__,--i H ) = 

lim _,-„ (2_, H ,_£_ (w),.. •, __,„-i H ) = _'• 

The other direction follows similarly. 
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Suppose lira bin (_<1 (w), X_2 ( w ) , . . . , 2C„-i H ) ~ h'-

lim hn (2d H , 2C2 H , . . . , 2C„-i H ) = ' 

lim r - V ^ » (-& H .2:2 H , • • • ,&.-i H ) - r ^ V - = -'• 
Now the log-optimality follows from Lemma 4. n 

Lemma 6. Let the random stock market return vectors 2C>2C2> - b e independent, 
identically distributed, and —oo < sup E l n _ _ < °°- Suppose {bn (2G,2C2 ,2Cn-i)} 

_iB n _ 1 

is a measurable selector of portfolios such that 6n(2G>2C2> • • • ,2Cn-i) € intf? for all n, 
and the cluster points of (bn (2Ci,2C2, • • • ,2Cn-i)}n=i a r e log-optimal a.s. (Here intS 
denotes the interior of the set B.) Then 

lim -__ln6,(2Ci,2C2>--->2Ci-i)2C = Eln6*2C a.s. 
«=i 

P roof . Let b*' be a log-optimal portfolio such that 6* = 0 implies b* = 0 for all 
b* _ B*, j = 1,2,... ,m, where B* denotes the set of log-optimal portfolios. Such a 
portfolio exists, since suppose b*j = 0 and i*^ 7- 0 for some j . Then for any A € (0,1), 
A6* + (1 — X)b2 G B* and contains less number of zeros than b* does. (Note that the set 
of log-optimum portfolios form a convex set. See Cover [7].) If this new portfolio does 
not satisfy the condition we can repeat this prucedure. After at most m steps we get a 
proper portfolio. 

Since there exists a set L such that P (2C € L) — 1 and b*x = b2x if x G L, &*, b* € B* 

(see Cover [7]), 

I \ S -«(2Ci,2C2,--.,2C-i)2C _ 1 A ____________i___ _ 
n ^ 6*2C, ~nht -*'£ 

^*(2Ci,2C2,---,2C-i)X 
. ! > k*'2L 

h _____ • • • > 2 C - i ) K i - _ G _ a _ _ _ • • • ,2C--i)2C-
b*'2Li 

where !», (2Ci,2C2, • • • ,2C-i) denotes the closest log-optimal portfolio to 
ki (2Ci>2:2, • • • >2C-i) it1 Euclidean distance. (Such a portfolio exists since the set of 
log-optimal portfolios B* C B is closed by the continuity of the function E In bX.) Thus 

ÌÊь Ž.-(2Ci,2Ca,--.,2C.-i)2C,-— 
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i » / (&(>£1,2C2,...,2£1-,)-6:(2£i,2C2,...,2C,-,))2Ci\ 
- V l n 1 + -̂  -_- '- > ÆЧ 1 + 

b*'X; 

*(«) 
ì ^ , &(2£,H,2£3И---,2ű-i(w))2ű-H , 1 v 

ь"2Ĺ,(ш) + ; E ь i - g 
i=fc(w)+i 

єаXÅш 

Ь"2L 

where aj = 1 if &*' ^ 0, a, = 0 if b*' = 0 and /*(w) is an integer such that 

II h (2£,H,2£2(w),• • • ,2£,_i H ) - I * (2£, H , 2 £ 2 H , . . . , 2 C _ , H ) ||< e fori > jbH, 
where 0 < £ < | min 6*', and / = {j : b*' ̂  0}. 

Thus 

i f , fc(2£i,2C3,.--,2£i-i)2£,-^ 

»tr ra 
IVi I(^'M'--a(u,)::• life(aj))-̂ (aj) 

*» S' " -"X ( w ) 

i f ! , / , e«2CH\ I f , /, e«*.H\ V l n 1 - -==-) + - > In 1 - — ' 
" p ' V & 2C.-H/ n/-r[ \ h 2CiH/ 

Thus 

.. . . i f , i-(2Ci,2C3,...,2C--i)2£i^E1 (, e__x\ 

Expanding the function ln(l — yaXjb"X) into Taylor series around 0 in the interval 
[0,e], we have, 

ln 1 -
yaX 

ІҐX 
m(l) + 

-yą2Ĺ 
b"X - taX 

for s o m e ! € [0,e]. Thus 

i-sëïl єaA' єaX єoЛ: 2єaЛ; 

b"XJ I _ 6*'X -ig_X~ b"2L - £«2£ ~ 0.56*'2£ &*'2£ ' 

Since EXj/b*2L < 1 for j = 1,2,... ,rn by log-optimality (see Bell and Cover [4])> hence 

Since e was arbitrary, 

_2єg_X . „ 
E—гr- < 2єm < oo. 

6 X 

limEln fl -1==^) =Elnl=0 
e-fO \ v 2LJ 
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by Lebesgue's dominated convergence theorem. The upper bound follows similarly, 

,. I f . l(2Ci,2:2,-.-,X-i)2C,-
hm.suP " 1_ln VV. = 

i f , / (Id2li,x2,...,xi_1)-K(x1,x2,...,xi_1))xi\ 
• - - P - £ >» \l + * - ^ J—J < 

I f , / eeJTA _, / eeJCN 

where e = ( 1 , 1 , . . . , 1). Since e was arbitrary, 

HmElnf 1 + ^ = ] = 0 a.s., 
«-o V fe X j 

by Lebesgue's dominated convergence theorem. Hence 

,. 1 lim -Y\nbi(X1,X2,...,Xi_l)Xi = £lnb*X a.s. 
n - . o o n f - ' -«v—1>—i) >—< w — 

Proof of Theorem 1. The cluster points of {_„ (2Ci,2G)- ••)2Cn-i)}n=1
 a r e l°g" 

optimal by Lemma 5. Since Sn (2Li,2i.2> • • • )2£n-i) € int B for all n, hence the theorem 
follows from Lemma 6. (Here int B denotes the interior of the set B.) Note that we could 
not have used the pure empirical log-optimal portfolio selector since it might lead us to 
ultimate ruin. That is why it was necessary to combine the pure empirical log-optimal 
portfolio with the uniform one. In order to force the cluster points of the proposed 
portfolio selector into the set of log-optimal portfolios B* we made the uniform portfolio 
vanish asymptotically. O 

(Received December 10, 1991.) 

R E F E R E N C E S  

[1] A.H.Algoet and T.M. Cover: Asymptotic optimality and asymptotic equipartition properties of 
log-optimum investment. Ann. Probab. 16 (1988), 876-898. 

[2] Z.Artstein and S. Hart: Law of large numbers for random sets and allocation processes. Math. 
Oper. Res. 6 (1981), 485-492. 

[3] A. R. Barron and T. M. Cover: A bound on the financial value of information. IEEE Trans. Inform. 
Theory IT-34 (1988), 1097-1100. 

[4] R. Bell and T.M. Cover: Game-theoretic optimal portfolios. Management Sci. 34 (1988), 724-733. 
[5] L. Breiman: Investment policies for expanding businesses optimal in a long-run sense. Naval Res. 

Logist. Quart.7 (1960), 647-651. 



Portfolio Choice Based on the Empirical Distribution 493 

[6] L. Breiman: Optimal gambling systems for favorable games. In: Fourth Berkeley Symposium on 
Mathematical Statistics and Probability, University of California Press, Berkeley, CA 1961, pp. 
65-78. 

[7] T. M. Cover: An algorithm for maximizing expected long investment return. IEEE Trans. Infrom. 
Theory IT-30 (1984), 369-373. 

[8] T. M. Cover: Universal portfolios. Math. Finance / (1991), 1-29. 
[9] T. M. Cover and J. A. Thomas: Elements of Information Theory. Wiley, New York 1991. 

[10] M. Finkelstein and R. Whitley: Optimal strategies for repeated games. Adv. Appl. Probab. 13 

(1981), 415-428. 
[11] J. Kelly: A new interpretation of information rate. Bell Sys. Tech. J. 35 (1956), 917-926. 
[12] A.J. King and R.J.-B. Wets: Epi-consistency of convex stochastic programs. Stochastics Rep. 34 

(1991), 83-92. 
[13] G. Morvai: Empirical log-optimal portfolio selection. Problems Control Inform. Theory 20 (1991), 

453-463. 
[14] R.T. Rockafellar: Integral functionals, normal integrands and measurable selections. In: Nonlinear 

Operators and the Calculus of Variations (Gossez, ed., Lecture Notes in Mathematics). Springer-
Verlag, Berlin - Heidelberg - New York 1976, pp. 157-207. 

[15] R.J.-B. Wets: Constrained estimation: consistency and asymptotics. Appl. Stochastic Models Data 
Anal. 7 (1991), 17-32. 

Gusztáv Morvat, Department of Mathematics, Technical University of Budapest, H-1521 Budapest, 

Sloczek u. 2. Hungary. 


		webmaster@dml.cz
	2012-06-06T00:21:04+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




