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K Y B E R N E T I K A - VOLUME 27 (1991), NUMBER 3 

STRUCTURE AND SOLUTIONS 
OF THE LQ OPTIMAL CONTROL PROBLEM 
FOR 2D SYSTEMS 

MAURO BISIACCO, ETTORE FORNASINI 

The LQ optimal control problem of 2D systems is addressed and solved in an l2 environment. 
The optimal stabilizing control law does not preserve, in general, neither quarter plane nor weak 
causality. Some preliminary results on system and cost structures guaranteeing that the optimal 
feedback law is causal or weakly causal are discussed. 

1. INTRODUCTION 

This paper deals with 2D optimal control problems. The class of discrete time 2D 
systems we shall consider has as a prototype the linear model 

x(h + 1, k + 1) -= Ax x(h, k + I) + A2 x(h + 1, k) 

+ B, u(h, k + I) + B2 u(h + 1, k) (1.1) 

where x(h, k) e IR" and u(h, k) e Rm are the local state and the input value at (h, k) 
and Ax, A2, Bx, B2 are real matrices of suitable dimensions [1]. 

Assuming that the local states x(i, —i) have been assigned, we wish to choose 
the control sequence so that the system behaves in some desirable way. We have 
to settle two questions at the outset, namely what the control objective is and what 
sort of controls and initial conditions are to be allowed. 

As far as the first question is concerned, the cost of controls will be specified 
precisely by a scalar performance criterion of the following form 

£ xT(h, k) Q x(h, k) + uT(h, k) R u(h, k) (1.2) 
h + k § 0 

w i t h R > O a n d Q > 0. 

Denoting by 

<f r := {(ij)eZ x Z:i + j = t] 
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the tth separation set in Z x Z and by 

°llt := {u(i, t - /)}. 

Xt := {x(i, t — i)}t where t e Z , 

the restrictions of „(•, •) and x(% •) to S\, it is clear that, given any initial "global 
'State" 3CQ on <$0, 3Ct only depends on °U0, %x, ..., °ltt-x and the value of (1.2) is 
uniquely determined by the 2D control sequence {u(h, k)} via the updating equation 
(1.1). So in what follows the cost functional (1.2) will be denoted as J(u, 3CQ). We 
now turn to the problem of admissible controls and initial global states. It is apparent 
from the structure of J that admissible input functions must belong to the space 
l2D(Rm) of Mm-valued sequences u(-, •) defined on 

Z\ := {(h, k) G Z x Z: h + k = 0} = \J St (1.3) 
tgo 

and satisfying the finite norm condition 

M - . • ) [ - : - I uT(h,k)u(h,k)<oo (1.4) 
/i + fc = 0 

Furthermore, we are only interested in state dynamics x(%, •) that belong to 
llD(R"). Although this condition is not necessary for guaranteeing the finiteness if J 
in case Q is singular, it fulfills the natural requirement of imposing a stable pattern 
on the admissible state evolutions. 

In fact, x(-, •) e l\(R") implies that the associated global states 3Ct satisfy 
+ 00 

\%t\\ '• = __ xT(-i, t + i) x(-i, t + i) < 00 (1.5) 
(' = — CO 

00 

E W 1 = MS Ola <™ (1-6) 
t = 0 

showing that \\^t\\ -* 0 as t goes to infinity. 
Just putting t = 0 in (1.5), we argue that the allowable bilateral sequences of initial 

conditions must belong to l2(R"). 
Within this framework, the 2D optimization problems can be stated as follows: 

i) given 3CQ e li(Rn), derive conditions for the existence and the uniqueness of an 
input «(•, •) e l2D(Rm) that minimizes the cost J 

ii) whenever these conditions are satisfied, explicitly compute the optimal input 
and the corresponding value of J. 

In Section 2 we will summarize from [2] the solution to these problems and outline 
the structure of the resulting control law. Under suitable natural assumptions on the 
matrices of (1.1) and (1.2), the optimal input sequence exists and is expressed as 
a linear feedback law that stabilizes the closed loop system. Although the closed loop 
solution is quite appealing from the control point of view, it conceals the serious 
drawback that the resulting system doesn't exhibit a 2D causal structure. Actually, 
preserving quarter plane causality and obtaining a control law that minimizes (1.2) 
constitute in general a pair or conflicting objectives. 
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In Section 3 we shall discuss the possibility of implementing the optimal control 
law by means of causal and weakly causal [3] feedback structures and discuss the 
important property that weakly causal feedbacks provide a family of suboptimal 
control strategies, that converge to the optimal one. 

2. EXISTENCE AND STRUCTURE OF THE OPTIMAL CONTROL LAW 

As well known, the existence and the uniqueness of a stabilizing optimal solution 
for the ID infinite time least squares problem can be decided independently of the 
explicit computation of the control law. Indeed these questions can be settled a priori 
by analyzing a couple of rank conditions on the polynomial matrices 

[ I - A z j B z ] and Г Í - - Æ І 

We might expect that the corresponding polynomial matrices in two indeterminates 
play an analogous role in the 2D case. This is the gist of the following proposition. 
It gives conditions under which the optimization procedure admits a unique solution 
and supplies an input function that stabilizes the system, in the sense that the corres­
ponding values of x(h, k) converge to zero as h + k goes to infinity. 

Proposition 2.1 [2]. Consider the 2D system (1.1) and the cost functional (1.2). 
The following facts are equivalent: 
1. for every global state 9£0 in l2(R

n) there exists a (unique) l2D solution of the optimal 
control problem, i.e. there exists an input sequence «(•, •) in l2D(Rm) such that 
x(', •) belongs to l\D(R") and the corresponding value of J is minimized. 

2. the 2D polynomial matrix 

[I - A1z1 - A2z2 | B.z, + B2z2] (2.1) 

has full rank on the set 

J{ = {(zu z2)eC x C: \zx\ = \z2\ = 1} 

and the 2D polynomial matrix 

---?--—] (2.2) 

has full rank on the unit torus 

ST = {(zuz2)eC x C: |zjj = \z2\ = 1} 

Remark 1.1. In case Bx = B2 = 0, Huang's theorem [4] implies that (2.1) is full 
rank on Ji if and only if is full rank on ^ — {(zl5 z2): \zx\ ^ 1, |z2 | ^ 1}. This 
property does not extend to more general situations. Indeed, assuming At = 1, 
A2 = 2, B1 = 1, B2 = 0, R = Q = 1, we see that the matrix (2.1) is full rank on Ji. 
Yet (2.1) vanishes at (O,\)e0>

1. 
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From now on we shall steadily assume that the rank conditions on (2.1) and (2.2) 
are fulfilled. Then, using a well established result of the LQ ID theory, we are allowed 
to conclude that the co-dependent algebraic Riccati equation (AREco) 

P(co) = Q + A*(co) P(co) A(co) - A*(co) P(co) P(co) 

[R + B*(co) P(co) B(co)]~* B*(co) P(co) A(co), (2.3 

with A(co) = Ax + e,co A2, B(co) = Bx + elt0 B2, is pointwise solvable in [0, 2n] 
and admits for every co a stabilizing hermitian positive semidefinite solution. This 
solution provides a key tool for evaluating the minimum cost and computing an 
input function that minimizes (1.2). 

Let us first start with a somewhat heuristic analysis of the system dynamics in terms 
of Fourier transforms. We assume that 3C0 and °ttt ,t = 0, 1, ..., belong to l2. Clearly 
all global states 3Ct, t = 1, 2, ..., are in l2 and the Fourier transforms 

+ 00 
AWt(co) = Y^u(t + h, -h)e-ihco 

(2-4) 
A3Ct(co) = £ x(t + h, -h)Q-ih0) 

ft= — 00 

have components in L2[0, 2n]. Furthermore, equation (1.1) can be rewritten as a first 
order recursive equation 

A3Ct+x(co) = A(co) A3Ct(co) + B(co) AWt(co) , (2.5) 

which provides the global states updating in the co-domain. : 
Suppose in addition that the /2

D norms of the input sequence «(•, •) and of the state 
dynamics x(', •) are both finite, i.e. 

oo 

||M(., .)||2 = (27c)"1 J** £ Afy*(co) AaUt(co)dco < 00 

7 (2.«) 
||x(-, -)I|i = ( 2 * r l j ? T A ^ » A^,(co)dco < oo 

t = 0 

Then, by applying the squares completion method we are able to express the cost 
functional (1.2) as [2] 

J = (27T)-1 \2n A3C*(co) P(co) A3C(co) dco 

+ (2TI)-1 ft" I A^*(co) [R + B*(co) P(co) B(co)] A^t(co) dco 
(2.7) 

where 

K(co) : = - [R + B*(co) P(co) B(co)] "' B*(co) P(co) A(co) (2.8) 
A¥t(a>) = A%t(co) - K(co) ASCt(co) (2.9) 

It is easy to see that the minimum value of J 

Jmin = (2K)'1 JJ" A3C*(CO) P(CO)
 A3C0(co) dco (2.10) 
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is attained using the closed loop control given by ' 
A%(co) = K(co) A SCt(co) ' ,; ; (2.11) 

The conclusions we have drawn so far depict the situation in a way that may 
convince of the intuitive reasonableness of the result. However, some caveats are 
in order, since the validity of the procedure heavily depends on the fact that (2,11) 
and (2.5) give rise to 2D sequences «(•, •) and x(-, •) that belong to /2

D. 
More precisely, the solution of the optimal control problem outlined' above makes 

sense if we are able to give a positive answer to the following questions: 

i) does the matrix K(co) map the space L2[0, 2n~\ into itself? This requirement is 
necessary for guaranteeing that the feedback law (2.11) (reinterpreted in the time 
domain) always transforms an l2 global state 9Ct into an l2 input sequence °Ut. 

ii) does the solution of (AREco) ensure the asymptotic stability of the closed loop 
system, in the sense that, for any SCQ e l2, the resulting global states sequences {SCt} 
can be viewed as an element of /2

D? 
To answer these questions, we need the following technical lemma. 

Lemma 2.1 [2]. The stabilizing hermitian positive semidefinite solution P(elco) : = 
:= P(co) of (AREco) extends to an analytic solution of the polynomial algebraic 
Riccati equation (AREz) 

P(z) = Q + (A\ + Alz"1) P(z) (A, + A2z) 

- (A] + Alz'1) P(z) (B, + B2z) [R + (BT + Biz"1) P(z) (B, + B^)]"1 

(BI + Biz"1) P(z) (A, + A2z) (2.12) 

in an open annulus that includes the unit circle yv 

A major consequence of viewing the pointwise solution P(co) of (AREco) as the 
restriction to yx of an analytic matrix P(z) is that K(co) enjoys the same property. 
Indeed the matrix 

K(z) = - [ R + (BT + BT
2z-l)P(z)(B1 + B.z)]"1 

(BI + B ] V 1 ) P ( z ) ( A 1 + A 2 z ) ••••• ' ••" (2.13) 

analytically extends K(co) in the annulus and therefore admits a Laurent power 
series expansion 

00 

K(z)=^Khz
h , , .- ,; (2.14) 

This implies that the matrices Kh exponentially decay as \h\ increases and the feed­
back law (2.11) associates an input A^,(co)eL2[0, 2K] to every global state A$\(co) e 
e L2[0, 2TT]. In time domain this is consistently expressed by 

+ OO . . , , 

u(h, k) = X Ki x(h + i,k - i) ' (2.15) 
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This positive answers the first question. 
As far as the second question is concerned, note that the Lyapunov equation 

V(co) = I + t*(co) V(co) t(co) , (2.16) 

with E(co) := J£(m) + B(co) K(co), admits a unique positive definite solution, given 
by the sum of the following pointwise convergent series 

oo 

v(co) = £ r*(cof EH* 
h = 0 

Furthermore, the linearity of (2.16) and the uniqueness of its solution for every co 
in [0, 2ft] imply that the matrix V(co) is a continuous function of co and hence its 
spectral radius Q(CO) is uniformly bounded by some positive Q. 

Combining together all these properties and applying B. Levi's and Parseval's 
theorems one gets 

oo 

IK-. -XII = Z Mi 
t = o 

oo 

- C2*)"1 S fa" A ^ o H r*(co)< EH' ^0(co) dco 
t = 0 

= (27U)-1 J2" ^J (co) V(co) A ^ o H <-* = ^ | |^0 | |2 . 

So x(% •) and, obviously, ./(•, •) belong to llD. 

Example 2.1. Consider once more the system of Remark 1.1. By solving the 
associated (AREco), one obtains a unique positive definite solution 

ft/ v (5 + 4 cos co) + v
7(5 + 4 cos co)2 + 4 

P(co) = ^^ 
V 2 

and the corresponding feedback matrix is 

g, v = - ( 1 + 2e i c o)[(3+ 4 cos co) + V(5 + 4 cos co)2 + 4] 

2(5 + 4 cos co) 

Obviously the inverse Fourier transform of K(co) is an infinite support /2-sequence. 
This shows that in general the computation of u(h, k) depends on an infinite number 
of local states. 

3. OPTIMAL CONTROL LAWS THAT INVOLVE A FINITE NUMBER 
OF LOCAL STATES 

The control law (2.15) we obtained through the solution of (2.12) provides a state 
feedback that stabilizes (1.1) and minimizes (1.2). The input value at (h, k) depends 
in general on infinitely many local states x(h — i, k + i), ieZ (see Example 2.1). 
So, implementing (2.15) destroys the quarter plane causality of the original system 
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and produces an half plane causal 2D system [3], whose updating equation requires 
in principle to cope with an infinite dimensional state vector. 

Now it seems quite natural to ask whether there exist 2D systems and cost functionals 
that give rise to causal or weakly causal optimal control laws. In other terms, the 
problem we address in this section is to explore what conditions on (1.1) and (1.2) 
do guarantee that the stabilizing feedback matrix given by (2.13) belongs to 
R\z, z~x_\mX" and, in particular, to RmX". We shall provide only partial results on 
this subject. The feeling they give, however, is that the possibility of achieving 2D 
optimal control while preserving 2D weak causality is extremely rare. So, if preserv­
ing weak causality is the main issue, we must in general put up with suboptimal con­
trol laws. 

Confining ourselves to single input 2D systems of dimension 1, we are able to get 
a complete classification of systems (1.1) and cost functions (1.2) that produce 
feedback laws with the following structure 

+ N 

u(h, k) = _H K{ x(h - i,k + i) (3.1) 
i=-N 

for some integer N. Matrices in (l.l) and (1.2) are scalars, that will be henceforth 
denoted by the corresponding lower case letter au a2, bx, b2, q, r. The same con­
vention will be adopted for all scalar quantities we will deal with in the sequel. So, 
letting 

a(z) = ax + a2z b(z) = bt + b2z , (3.2) 

the Riccati equation (2.12) and the corresponding feedback matrix are given by 

p(z) = q + a(z)a(z~x) - a(z) a(z~x) b(z) b(z~x) p2(z) . 

x [r + b(z)b(z~1)p(z)yx (3.3) 

k(z) = -b(z~x) a(z) p(z) \r + b(z) b(z~x) p[z)Y' ' (3.4) 

Since we are interested in feedback laws k(z) whose Laurent series expansion has 
finite support, it seems useful to summarize here some properties of the ring of 
bilateral polynomials R\z, z~x_\. 

Given any nonzero polynomial ; 

N 

x(z, z~x) = £ T;z' , with xNxM + 0 
i = M 

the integer 5(x) := N — M is called the degree of x. If x = 0, by definition deg (T) = 
= — oo. Clearly every polynomial of zero degree, i.e. every monomial azl, a + 0, 
i e Z, is a unit of R\z, z~x_\. Moreover, R\z, z~x_\ is an euclidean domain and a for­
tiori an UFD. 

If T(Z, Z~X) = x(z~x, z), then N = — M and the polynomial is termed reciprocal. 
As an element of C\z, z~x_\, such a polynomial admits a (nonunique) factorization 

x(z,z~x) = t(z)t(z~l) , • ; , . . . (3.5) 

where t(z) e C\z] and deg (t) = <5(T)/2. 
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Proposition 3(.L Consider a single input 2D system of dimension 1, that satisfies 
the conditions of Proposition 2.1. The stabilizing optimal feedback law k(z) given 
by (3.3) and.(3.4) belongs to R[z, z"1] if and only if one of the following cases 
occurs: 
-1. a(z) b(z) = 0= .: 
2. a(z) b(z) is ah unit of R[z, z _ 1 ] 
3. q = 0 and« \a\\ + \a2\ < 1 f'-" 
Furthermore in these cases the allowable /c(z)'s reduce to the following three simple 
structures: 

k0 , kxz ,'" fc_1z
_1 (3.6) 

. Proof. 1. If a(z)!= 0 or &(z) = 0, one gets from (3.3) and (3.4) 

p(z) = qj[i - a(z) a(z~i)] , k(z) = 0 "" (3.7) 

2. If both a(z) and /3(z) are units of R[z, z - 1 ] , then a(z) a(z~l) and /3(z) /3(z_1) 
are both nonzero real constants and (3.3) reduces to a constant coefficients algebraic 
Riccati equation. Thus p(z) is a nonnegative real number and k(z) has structure (3.6). 

3. If q = O.and b(z) + 0, equation (3.3) admits two solutions: 

Pl(z) = 0 (3.8) 

' ^ - ^ f f ) - 1 1
 :

 ( 3 ' 9 ) 

The internal stability assumption l a j + ja2| < 1 directly implies that, for every co 
in [0, 2.x], p2(eUa) is negative. Thus px(z) is the stabilizing solution and k(z) = 0. 

It remains to show that the above classification covers all possible cases, in the 
sense that, whenever none of 1, 2 and 3 is satisfied, the support of k(z) is an infinite 
set. The proof is rather long and will be performed in several steps. 

Lemma 3.1. If conditions 1, 2 and 3 do not hold, then 

a) K-0*o ..; 
b) k(z) + 0 (3.10) 
c) a(z) + b(z) k(z) + 0 

Proof, a) Assuming p(z) = 0 gives q = 0 and k(z) = 0. Since condition 3 does 
not hold, \ax\ + \a2\ = 1 and the zero feedback matrix cannot stabilize the system. 

b) Assuming k(z) = 0 gives p(z) = 0 and case b) reduces to case a). 
c) Assume a(z) + b(z) k(z) = 0. We apply (3.3) and (3.4) first, to obtain the 

following relation connecting p(z) and k(z) 

p(z) = q + a(z-x) p(z) [a(z) + b(z) k(z)] , (3.11) 

It is clear from (3.11) that p(z) = q. Also, substituting q for p(z) into (3.3) and 
recalling that a(z) + 0, we get q = 0. Thus case c) reduces to case a) too. Q 
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Since a(z) + b(z) k(z) =j= 0, we are allowed to solve (3.4) with respect to p(z), 
namely 

p(z) = ^ (3.12) 
W b(z-1)\a(z) + b(z)k(z)\ K J 

Substituting (3.12) into (3.3), k(z) can be directly computed as a solution of the 
following equation 

k2(z) a(z~1) b(z) r + k(z) \r a(z) a(z~1) - q b(z) b(z~x) - r] -

- qa(z)b(z~1) = 0 (3.13) 

So we reduced to prove that, if conditions 1, 2 and 3 do not hold, equation (3.13) 
isn't solvable in R\z, z - 1 ] . 

Assume by contradiction that k(z) belongs to R\z, z _ 1 ] and satisfies (3.13). It is 
clear from (3.12) that p(z) is a rational function. Consequently, there exists a pair 
of coprime bilateral polynomials <f>(z, z _ 1 ) and y(z, z _ 1 ) such that 

p(z) = </>(z,z-1)ly(z,z-1) (3.14) 

On the other hand p(z) = p(z~x) and R\z, z~x\ is an UFD. Hence 

y(z,z~1) =czly(z~x,z) 

<f)(z,z-1)= czl 4>(z-\z) (3.15) 

and, evaluating (3.15) at z = ± 1, it follows that c = X and i = 0 (mod 2). Conse­
quently, there is no restriction in assuming that </> and y are reciprocal polynomials 
and in writing <j) and y in factored form, namely 

g{-)d(z x) 

with/(z)/(z~";1) and g(z) q(z-1) coprime. 
Note that the fact that jp(e,t0) is a nonnegative real-valued function for every w 

in [0, 2K\ reflects into the fact that / and g have real coefficients. Next, substitute 
(3.16) into (3.4), to get 

k(z) a(z, z"1) = -b(z~1) a(z)f(z)f(z-1) (3.17) 
where 

a(z,z~1) := rg(z)g(z-1) + b(z)b(z~1)f(z)f(z~1) (3.18) 

is a reciprocal polynomial. To complete the proof, we show that both hypothesis 
deg(o-) > 0 and deg(o-) _: 0 lead to a contradiction. 

Lemma 3.2. Assume that 1, 2 and 3 do not hold and let deg (a) > 0. Then k(z) $ 
$R\z,z~x\. 

Proof. Since / ( z ) / ( z _ 1 ) and g(z)g(z~1) are coprime, we have that f(z)f(z~1) 
is a divisor or k(z). Then a(z, z_1) divides b(z~x) a(z) and since deg \b(z~x) a(z)\ _:2, 
as a reciprocal polynomial a has degree 2. 
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This easily implies that, modulo nonzero real constants, o(z, z x), b(z) b(z ') and 
a(z) a(z~x) coincide, so that 

b(z) = Xa(z) (3.19) 

for some nonzero Xe R. Now equation (3.13) reduces to 

k2(z) a(z) a(z~1) rX = -a(z) a(z~x) Xq + k(z) [r - a(z) a(z~x) (r - X2q)] 
(3.20) 

If k(z) $ R, some elementary considerations on the support of the polynomials show 
that the left and right hand sides of (3.20) cannot be equal. On the other hand, if 
k(z) := ke R, (3.20) can be rewritten as 

a(z) a(z'1) [qX + k(r - X2q) + k2rX] = rk (3.21) 

This implies k = 0 and q = 0, which contradicts the conclusions of Lemma 3.1. • 

Lemma 3.3. Assume that 1, 2 and 3 do not hold and let deg o(z, z~x) < 0. Then 
k(z)£R[z, z'1]. 

Proof. Since o(z, z _ 1 ) is a reciprocal polynomial, and deg (o) < 0, o is a real 
constant. 

First, using (3.16) and (3.18), we have 

ol[g(z) g(z~1)] = r + b(z) b(z~1) p(z) (3.22) 
so that 

K - ) - (3.23) 
b(z)b(z~1)lg(z)g(z-1) 

Since p(z) must be nonnegative, it is clear that o is different from zero. Substituting 
(3.23) into (3.3) gives 

o = g(z)g(z-1)[r + ra(z)a(Z-1) + qb(z)b(z-x) -

- ro'1 g(z)g(z-1)a(z)a(z-1)] (3.24) 

which implies deg (o) > 0, unless g(z) is unit. Now there is no loss of generality 
in assuming g(z) = 1, so that (3.23) and (3.16) imply 

p(z) = -^~-f(z)f(z-1) (3.25) 
b(z)b(z x) 

Thus b(z) and/(z) are both units, p(z) is a real constant and, by (3.4), 

k(z) = nb(z~1)a(z) (3.26) 

where ^ is a real constant, different from zero by Lemma 3.1. 
Next, since k(z) must satisfy equation (3.13), we obtain the following equation 

Hr a(z) a(z~1) [1 + /i b(z) b(z~1)] = q[l + ft b(z) b(z~1)] + [ir (3.27) 

where a(z) cannot be a unit of R[z, z - 1 ] . The right hand side of (3.27) is a real 
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constant. So on the left hand side we must have 1 + /i b(z) b(z~x) = 0, which in 
turn implies fir = 0. 

This contradicts the fact that ft is different from zero. Q 

The classification of Proposition 3.1 shows that the optimal control law of a one 
dimensional 2D system involves a finite number of local states only in very particular 
cases. Indeed they reduce to: 
1. autonomous 2D systems (bx = b2 = 0), for which the control problem does 

not make sense. 
2. "dead beat" 2D systems (ax = a2 = 0), for which the zero input is obviously 

the optimal control. 
3. asymptotically stable 2D systems (|a.| + \a2\ < l) with state weighting matrix 

q = 0, for which the cost of the free evolution is zero. 
4. 2D systems "isomorphic" to ID systems (ax = bx = 0 or a2 = b2 = 0), that 

exhibit only an horizontal or a vertical dynamics. In this case the control law is 
a static one 

u(h, k) = k0 x(h, k) 

5. 2D systems that reduce to the previous case by a one-step time-shift of the input 
function (ax = b2 = 0 or a2 = bx = 0). In these cases the control laws become 

u(h, k) = fej x(h + 1, k - 1) 
or 

u(h, k) = k_x x(h - 1, k + \) 

The extension of the previous result to higher dimensional cases constitutes a topic 
of current investigation. 

As a final remark, we only mention the fact that in cases when K(z) given in 
(2.14) has an infinite support, it is possible to use weakly causal feedback laws that 
approximate the optimal control law. These can be obtained by a suitable truncation 
of the Laurent power series expansion (2.14), namely 

KN(z) = i K;z
£ (3.28) 

i=-N 

Truncations (3.28) constitute the "right" approximation to the optimal control 
law. Actually 

i) provided that N is large enough, (3.28) is a stabilizing state feedback matrix 
ii) even more important, when N diverges the corresponding cost function 

CO 

J^o) = Z (2*)-1 Jo2* [A-*i» Q A ^ » + 
t = 0 

+ A ^f (« ) K*(ei<0) R KN(eim) A^f(co)] dco (3.29) 

asymptotically converges to the minimum value (2.10). 
The discussion of these topics, however, is beyond the scope of our paper. It can 

be found in [2]. (Received November 26, 1990.) 
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