
Kybernetika

Miroslav Tůma
A quadratic programming algorithm for large and sparse problems

Kybernetika, Vol. 27 (1991), No. 2, 155--167

Persistent URL: http://dml.cz/dmlcz/124517

Terms of use:
© Institute of Information Theory and Automation AS CR, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124517
http://project.dml.cz

K Y B E R N E T I K A - VOLUME 27 (1991), N U M B E R 2

A QUADRATIC PROGRAMMING ALGORITHM
FOR LARGE AND SPARSE PROBLEMS

MIROSLAV TUMA

We describe a primal feasible, convergent algorithm for the quadratic programming problem.
It is especially designed to cope with the large and sparse instances of this type with their structural
and numerical algorithmic specialties. It makes use of the new improvements that have not been
used for the general quadratic programming or that have not been used so far.

1. INTRODUCTION

We consider the quadratic programming problem (QP), i.e. the problem of mini­
mizing a quadratic function subject to a set of linear constraints. We assume the con­
straints to be in the canonical form:

(i)

We are concerned with developing algorithms to find a local minimum of (l)
when these matrices A, Q are large and sparse. This problem often arises when
nonlinear function is minimized using sequential quadratic programming methods
(SQP) (see [12], [13]). Without loss of generality we use the form of constraints
that can be obtained, for instance, with the aid of the transformation of the linear
programming solvers using the primal simplex algorithm (see [19]).

To cope with this problem we use reduced gradient methods (see [2]) in the active
set framework (see [14]). In contrast with the MINOS system (cf. [22]) we have
specialized for the large and sparse systems where most of the variables is included
in the quadratic terms of the objective function. General algorithmic scheme makes
use of some principles that have not been used for the general large and sparse QP

min/(x) = qтx + 0-5xтQx, . • • (la)
Ax = b, • • (iь)
l ś x ś u , • • (le)
x, q,l,uє R", bєRm, • • (w)
A є «••', Q є R"'" • • (le)

155

so far — specialization on multiple pricing with the protection against many de­
generate steps, new procedures for the sparse matrix algebra, rules to keep partition.
Data structures used are suitable to this strategy.

Inner loop of the direction search makes use of the truncated Newton method
for the reduced Hessian matrix (cf. [9]).

2. ALGORITHMIC OVERVIEW

To solve this problem, we will form a sequence of iterates {xj.g.i. Let us call
the set of active constraints for the iterate xt e U" the set of the constraints that hold
at x{ as equates. Components of individual iterates are called variables: we will
write xt = (xj, ..., x"). When we are dealing with the general z'th iteration we often
omit subscripts of the iterates and of the matrices and vectors relating to them.

Set of constraints is composed of the two parts. Linear constraints (lb) form
a manifold. Without loss of generality we assume matrix A to have full row rank.
In practical computation the problem of the row rank of A is usually solved in some
preprocessing phase, e.g. in simplex linear programming (LP) solver. Bounds (lc)
correspond to individual variables. At each phase of the iteration process we can
divide bounds into two groups: lower or upper active and the rest that we will call
passive ones. Variables that correspond to active bounds will be called (lower or
upper) active. The rest of the variables are called passive. At each iteration there is
a working set of indices of bounds Iw c [1, ..., n) that are to be kept fixed, that
means that the variables determined by that bounds are not allowed to change their
values throughout the iteration. We also speak about fixed variables. Thus we are
to solve a sequence of problems:

xi+1 = min {f(x) | (lb) — (le) are satisfied,

xJ are fixed for j e Iw].

The problems are solved only approximately even when the objective is quadratic.
Let us have some feasible iterate x. First feasible iterate xt was obtained,

for instance, using the first phase of the simplex method of linear programming
(LP). Computing a feasible direction amounts to finding a nonzero vector deU",
such that for some nonzero scalar a it holds:

g(x)T d < 0 ,

Ad = 0 ,

I — x + ad ^ u ,

xJ is fixed for j elw .

A convenient and a practical way to compute such a direction is to eliminate some
variables (basic) and express them in terms of the rest (nonbasic) ones using the
constraints (lb). Set of basic variables we call simply the basis.

156

Thus we can assume partition A -= [B, N], where B is a square nonsingular basic
matrix. Working set then induces partition of nonbasic part of the matrix: N =
= [E, W~\. We do not use notation of [4], [20] to discern our slightly different
concepts. This matrix partitions induce partitions for vectors the x, d, u, I and for
the other vectors introduced in he sequel (x = (xB, xN), xN = (xE, xw), ...) and for
the index sets {1, ..., n] = TB u IN,IN = IE u / r Let nB = \lB\, nN = \lN\, nw =
= \lw\, nE = \lE\. Our problem (l) can thus be rewritten as:

mmfR(xN) ,

lB £ B-^b - NxN) £ uB ,

'N = XN = UN •>

where fR(xN) =f(B~~l(b — NxN),xN) is called the reduced function. Its gradient
and Hessian at x will be denoted by gR(xN) and HR(xN), respectively.

2.1 Computing of the basis part of the direction vector and general computing
scheme

0

Feasible directions d are formed in the following manner. First, there is a computed
part dN (see the next section). Then we get dB = —B~~lNdN. When the basis is
generated (some of its variables are active), arbitrarily small move along the direction
dN can induce infeasibilities in basis variables. Such a pathological direction vector
we call degenerate. (Note, that the zero direction vector we call also degenerate.)

To evade this situation, concept of maximal basis was in [7] introduced. In more
detail, basis is constructed and updated, so that it contains as many columns as
possible corresponding to the passive variables. For the set of the columns of A
together with all linearly independent subsets form the matroid, we know, that all
maximal independent subsets of this matroid obtained by sequential exchanges of
the columns of the matrix A are of the same cardinality. Every maximal basis can be
thus decomposed into some maximal independent set of the above mentioned
matroid and the set of columns corresponding to the active variables to complete it.

Construction of the basis part of vector dt can be rewritten as the sum of transfor­
med contributions of individual nonbasics:

dB = -B~1NdN = - Yl'B~1N(el)j ,
JSIN

where (df e UnN, (d)j = ((df\ ..., (dfj"N), (d)j = dJ
N, (df = 0 for keIB, k+ j .

When the basis is maximal, then any passive nonbasics will only induce changes
in passive basics (see [4], [5], [7]).

Definition 2.1. Let us denote by J(B)+ and by J(B) — index sets, subsets of IB,
containing indices of (degenerate) variables upper and lower active, respectively.

Theorem 2.2. Let d e Un be a feasible direction vector. It is not degenerate iff it
holds for the indices jeJ(B)+ u J(B)- : dj^0 for jeJ(B) + , dj ~> 0 forje J (B) - .

157

The proof of this theorem is trivial. Thus, when some of the transformed contribu­
tions corresponding to some active variable that we are summing up to get dB do not
conform to the condition in Theorem 2.2, we can omit them.

To get the direction vector we thus use the following scheme. Let the basis be
maximal.

Algorithm 2.3.

Step 1. Compute dN. Methods for this task will be described later.

Step 2. Set dB = —B~1dN. If dB is not degenerate, then d is found, end.

Step 3. Compute contributions B_1N (d)j for some restricted number of vectors
{(d)j | j eIN, j = j \ , ..-jtj,}- Direction vector dB is then a sum of those
contributions of these ones that satisfy condition of the Theorem 2.2.

The value of 4> we have found experimentally so that the complexity of calculating
of these contributions is relatively small (For our problems we have used </> = 3 — 4
— chosen so th^t the computing time of Step 3 is approximately twice the time
used in Step 2. Indices of IN used are chosen so that corresponding columns of N
have small number of nonzeros.

If none of the contributions in Step 3 of Algorithm 2.3 conforms to the condition
of Theorem 2.2, direction vectors is zero and we use Bland rule to remove (theoretic-
cal) cycling (cf. [1]). This rule is extremely simple and consists of two steps. (In fact,
[l] contains two different rules. The second of them is more complicated and we
have not used it.):

a) among all candidates to enter be basis select variable with the smallest super­
script,

b) if more variables complete for leaving the basis select variable with the smallest
superscript.

Although the importance of this rule for linear programming problems, it has
been originally designed for, is primarily theoretical, it can be effectively used in this
case together with the whole above mentioned technology of direction vectors
finding.

2.2 General scheme of the algorithm

The whole computation can be described as follows. Its steps will be cleared further.
The sets Wt are kept so that they always contain indices of all active nonbasics.

Algorithm 2.4.

Step 1. Start with some feasible iterate xx e W. Form B so that it is maximal.
Set Ft". = N,i = I.

158

Step 2. Test on the optimality TO 1. If TO 1 satisfied then go to Step 5.
Step 3. Update working set and induced partitions.
Step 4. Compute nonbasic part of the direction vector using DV2.
Step 5. Test on optimality T02. If satisfied then end.
Step 6. Update working set and induced partitions.
Step 7. Compute nonbasic part of direction vector using DV1.
Step 8. Compute basic part of the direction vector. If direction vector degenerate

then go to Step 10.
Step 9. Compute step length and form a new iterate xi+1.
Step 10. Set i = i + \, form new working set and partitions, go to Step 2.

2.3 Nonbasic part of the direction vector

Now we will describe procedures DV1 and DV2. First, we will mention procedure
DV2 for direction vector finding that makes use of second order information in the
objective function. We will obtain it solving inexactly the Newton equation (see [6])
in the space of nonbasics:

HR(xE) dE = -gR(xE), . . . (2a) \ (.
dw = 0 . . . (2b) J l ;

Considering the data structures for large sparse problems, the one alternative is to
use the conjugate gradient methods (CG), where (possibly dense) reduced Hessian
matrix can be stored implicitly. We use the Reid form of implementation (see [25])
in the truncated Newton environment (see [9]): We are looking for the solution
of the system HR(xE) dE = -gR(xE) + r, where ||rj/||0*(x£)| S V, n =
= max (a0-5, min((l/NIT 1 + 1), gR(xE)) is specified in concordance with [9];
s is a machine accuracy for EC 1045; NIT 1 denotes number of Steps 7 of Algorithm
2.4 made so far. On the output we get solution of this system or some other descent
direction, when indefiniteness of the reduced Hessian is faced. Third natural way
to leave the algorithm is used, when accuracy of the solution is lost and we overpass
maximum number of iteration having been set up.

As an alternative DV 1 we will use a direction of a negative reduced gradient,
obtained as follows:

— gR(xN)J for xJ passive ,
max (0, — gR(xN)J) for xJ lower active ,
min (0, — gR(xN)J) for xJ upper active ,
0 for j elw .

This possibility is used relatively infrequently for radical changes in the space
of nonbasics when the reduced gradient has been made small having used repeated
steps with DV 2. Using direction vector obtained by DV 1, more active variables
are to leave their bounds as detected by the Lagrange multipliers calculation in the
procedure TO 2 of the algorithm.

159

2.4 Determination of the steplength

When the nondegenerate direction vector is found, we have to find a new iterate.
We set, as usual, xi+1 = xt + &•$•„ scalar a is set to min (a', amax), where

, h ~ xi • UJ ~ xi
= mm mm --—-—- , mm J

Kdt1<0 d\ - d(J>0 d{

For small quadratic problems it is usual to set a' = 1. Here we solve the system (2)
inexactly. In the large instances of the problem, rounding errors make the situation
even more complicated. We usually need one or even more steps of simple quadratic
interpolation/extrapolation procedure. So that we generally choose a' such that the
Armijo conditions hold (cf. [13]):

d]g(xt + a'di) = n±dt g(xt)

f(xt + rfdt) - f(xi) = n0a'di g(xt)

We have chosen /i0 = OT, ixx = 0-9.

2.5 Test on optimality TO 1

In Step 2 we have at first the test described in Algorithm 2.4. The idea behind
the first rule of this routine is to test the absolute size of the reduced gradient against
some weak limit and to tighten this limit from iteration to iteration. Thus using the
parameters ^G and ^M we simulate a sequence {j/.},-^! -> ^opt.

Algorithm 2.5. Parameters: sx = 0-1, sf = 0-01, sg = 0-0001 (see [13]). This
parameters help to specify when to declare that TO 1 is satisfied due to "small"
changes in variables, functional value or reduced gradient size. RGNORO is the
reduced gradient norm computer after the latest move along the direction vector
obtained using DV 1 — initialized by 0; ^G = 0-2; qM = 0-7 — it is set to ^M . ^M

every time when DV 1 is used; RGFL = (max (r\G . ^M . RGNORO, 10"3); RGSL =
= max (0-01 . RGFL, ^opt), where ^Opt(l0~3 — 10"8) is the demanded output
accuracy of the reduced gradient; s = 10 - 8 — it is a machine accuracy for EC 1045;
n is the first order estimate to Lagrange multipliers to (lb); A(xl)N\Vfr or Aft are vector
of changes in the appropriate variables or change in the function value, respectively —
they are initialized by zero vector resp. by zeros.

If ZSFL = 1 then TO 1 is satisfied

if (I<AW)I = RGFL) then
if([|^i^(£;c + £

0 - 5) . (l + [|x0||)A

Af\=(sf + s).(i + \f(x)\)v

\\9R(XE)\\ = % • (RSFL . max (1, \n\) then TO 1 is satisfied

end if

end if.

160

When solution cannot be improved in some sequence of iterations, parameter
ZSFL has been set to one. Here, when ZSFL = 1, TO 1 is thus also satisfied.

2.6 Test on optimality TO 2

In this procedure we compute first order estimate of the Lagrange multipliers
corresponding to the constraints captured by the set W(see Section 3).

Kuhn-Tucker conditions for the system (1) can be written as follows:

g(x) + AT/i + 1 + 1 = 0

1^0

1^0

lJ(xJ - Uj) = 0

lJ(xJ - lj) = 0

je{l,...,n} ; n,l,leUn

Both elements V, V cannot be nonzero at the same moment for any j e (1, ..., n}.
Our multiplier estimate thus always includes one of these elements according to the
type of activity of individual variables. For j elw is XJ set to V when xJ is upper
active. Otherwise, XJ is set to 1J. Vector X we will call in the sequel the vector of
multipliers. The above conditions thus imply the following strategy.

When there are upper or lower active nonbasics xkl, ...,xkp, such that for the
corresponding estimate of multipliers Xkl,..., Xkp it holds Xkj > nx or Xkj < — nx

(nx « 10~6 is a tolerance on positiveness respectively, then the bounds corresponding
to these constaints are excluded from the working set.

Algorithm fits into the Dembo-Sahi framework (see [8]) and it is thus globally
convergent for there hold following conditions:

a) Directions chosen according to DV 1 are gradient related as shown in [9].
That is, for a convergent subsequence {xk} -> x' with x' not optimal it holds
lim g(xk)

T dk < 0.
fc-»oo

b) First order multiplier estimates are consistent. (When {xk} -> x* then {Xk} -> X*,
where x* and X* are a Kuhn-Tucker point and corresponding vector of multipliers.)

c) Test on optimality TO 2 is implemented with the mentioned tolerance nx

on the elements of the vector of multipliers. This implies dropping only those bounds
within some fixed fraction of the most negative and positive multiplier for the lower
and upper bounded variables, respectively.

Stronger convergence results would be possible with the nondegeneracy assumption
(but this is unreasonable for the large problems) or with another form of the algo­
rithm (see [2]).

161

2.7 Update of working sets and of the matrix partitions

Let us first note, that the exchange of columns is being done only by the changes
in some index permutation vector that keepts track of the status of variables (basic,
nonbasic, fixed, active,...).

Working set is constructed at the beginning of Algorithm 2.4. We have always
obtained A^ by using LP, so we can set Wx = N. When some partial or complete
solution was given at the beginning then to construct the maximal basis we have
also used the first phase of the primal simplex algorithm to compute xv

Correction of Wean be used in Step 3. We want sometimes to keep the dimension
of the reduced space for the procedure DV 2 under some predefined limit. It can
happen for number of reasons (to suppress influence of the rounding errors, to
exclude variables corresponding to dense columns of N for some iterations, when
one exchanges the CG routine for some variable metric solver (see [20]), to solve
Newton system one could use such a restriction to cope with the lack of memory,
to make use of some specific (block) structure of the reduced Hessian). Further, all
active nonbasics are to be captured by W.

In Step 6 we usually free all of the active nonbasics from the set W.
More comprehensive update in Step 10 covers two cases. When degenerate direc­

tion vector is detected in Step 8, we are only to exchange one degenerate basis
variable for the fixed one. Otherwise, update of W and the parallel update of B
proceeds in three phases:

Step 10a All active nonbasics are moved to W.

Step 10p All active basics, that were passive before the latest step will be tried
to be exchanged for the free nonbasics. This step will be described
in our data structures later.

Step 10y All active nonbasics are moved to W.

3. IMPLEMENTATION

This implementation is intended for general large sparse problems and data
structures are especially designed for these types of problems (see also [10], [11],
[23], [24], [31]).

The initial matrix A, obtained using MPS-file or subroutine with specified con­
ventions, is transformed into a classical columnwise sparse data structure. In case
of the sequence of the QP problems there is input simply in this form. It makes use
of two "long" vectors A, SA (their length is equal to the number of matrix nonzeros)
where numerical values of nonzero matrix elements and their row indices are stored,
respectively, at corresponding positions. Then the one pointer vector PTC of the
length n + 1 is used. Nonzeros of the matrix form a compact block, beginning
of the column i that is stored at the positions with indices PTC(i). That means that

162

the numerical value of the first nonzero element of the column i is stored in A(PTC(i)),
its row index in SA(PTC(i)), its last nonzero element at PTC(i + 1) — 1.

Symmetric Hessian matrix of the quadratic function has rowwise stored diagonal
and upper triangular part using two "long" parallel arrays and one pointer vector
again.

Columnwise storing of A is advantageous for the prevailing operations with it:
rewritte of the nonzero of some column into the working structure, test on the lengths
of columns (numbers of their nonzeros).

Reduced gradient and Hessian are computed using a matrix Z spanning the
nullspace of A (see [20]). Define Z by: ZT = (—ETB~T, I, 0). Then we set gR(xE) =
= ZT g(x), HR(xE) = ZT H(x) Z. Reduced gradient is recomputed when iterate
or projection matrix changes, reduced Hessian is used implicitly, for in the CG
procedure used to solve Newton equations, only matrix-vector products are needed.

Neither matrix Z, possibly dense, is stored. Instead we keep the LU-factorized
basis matrix B. Its factors are updated when there are exchanged columns in the
course of the computation. For the update we have used original algorithms that
make possible to use the Reid interchanges to minimize increase in the condition
number of factorization and the necessary space (see [29]) without using its space-
consuming data structure (see [25], [26]). The basis matrix is regularly refactorized
by the Markowitz-like procedure (see [18], [29]). Thus to multiply some vector
by B_1 we need only two backward steps.

Having introduced basic data structures, we can describe how to compute the
Lagrange multipliers estimates (see [15]). By n e Um and X e U" we will denote the
vector of estimates of the Lagrange multipliers for the constraints (lb) and for the
fixed bounds, respectively. We will first set n = B~T g(xB), where B~T is the inverse
of BT. This number is recomputed very often, for that it is used for the reduced
gradient computation. Then we set X = g(xw) — WTn. Estimates X are then recom­
puted only when needed for the use in TO 2.

Now we will describe Step 10p of the update of matrix partition, as mentioned
in 2.6. Let the unit vector corresponding to the jth variable be denoted by (e)j.
Dimension of such a vector is clear from the context. All active basics that were
passive before the latest Step 9 of Algorithm 2.4 are processed in the next three phases:

Let us process such an active basic variable, say j . Then
a) Compute a vector v e M™ by solving the equation BTv = (e)j.
b) Compute a vector y e UE, y = ETv.
c) For all free nonbasic variables xk compute dk = min (\xk — lk\, \xk — uk\) and

set ym5 = 0-5 max |j/fc|.Then find index i eIE, such that zlj^Jcl = max (zkjyjck\ \yk\ =

^ j'm5/min (3, sjck), where ck is the number of nonzero elements in the column k
(that is PTC (k + 1) - PTC (k)).

Motivation for this process was the following. We can write y1 = yr(ej). If there
is during the update exchanged the basis variable Xj for the free nonbasic variable
Xj. Then for the updated matrix B+ that was obtained from B by column exchange

163

we can write:

B+ = B + (E(e)i - B(e)j) (e)J that is

B-1B+=/ + (B - E (e) i - (e) y) (c) J .

Thus, the demand to have the matrix B+ regular equivalent to the demand to have
y nonzero. The effort to have the condition number of B+ small can be positively
influenced by taking yl with the absolute value relatively large. We have chosen the
compromise such that the variable entering the basis is far from its bounds and the
output matrix is preferably sparse.

4. PROGRAM SYSTEM AND EXPERIMENTS WITH IT

The whole algorithmic schema was programmed in Fortran (ANSI 77) and it
contains about 10 000 commented source lines now (see [30]). The structure of the
program system is completely modular up to the basic vector and matrix-vector
operations. Thus it is possible to exchange some of the modules of the program
system (e.g. linesearch solver, routines for the LU-factorization) by another ones.
For the data input we can choose one of the three possibilities: simple interactive
input, MPS-file input and the one using a subroutine conforming to our conventions.

Individual program modules conform to the convention of the system UFO (see
[17]) and they will serve there as the large sparse QP solver.

We have debugged this program system using problems of [16]. To demonstrate
its properties we will describe the test problem adapted from the optimal control
of some simple dynamic system as described in [21], [28]. In this example we will
use subscripts to discern variables instead to discern iterations.

Problem 4.1.

min/(x)

f(x) - 0-5 £ c t x ? - 0-5 £ d^f
; = i i = i

p = {*\xt+1 = Xi + 0-2yt,

yi+i = yt - ooiy? - 0-004xt + o-2wt,

-0-2 = u t = 0-2,

yi= - I , x0 = 10, yk = 0,

i =0, ..., k — 1 ; ct = 1, di = 1 for i = 1, ..., k]

This problem was linearized at point with x̂ = 10 for i = I, ..., k; yt = —1 for
i = 1, ..., k — 1; yk = 0; ux = 0 1 for i = 1, ..., k. Instead of the looking for
a better feasible point of the nonlinear problem, we have modified the right-hand

164

side of the set of linearized constraints so that this point is feasible also for the QP

problem. Basic output data are displayed in Table 1 — instead of k we use parameter

n = 3(fc + 1).

Table 1. Solving of Problem 4.1.

n "maj ttcyc ПCG RGNORM t

180 2 60 0 o-з. 10~14 8-40
240 4 78 40 0-2. 10~'13 19-18

300 14 282 459 0-4. 10~ 1 3 118-72

396 6 124 699 0-8 . 10~'6 128-66

480 14 203 1572 0 1 . 10~4 306-65

600 11 162 2667 0-3 . 10~'4 552-04

690 12 156 3516 0-6 . 10~4 842-01

n is the parameter for the size of the problem 4.1, «maj is the number of computed direction
vectors according to thr procedure DV 1, ncyc is the whole number of the iterations, ncG is the
number of CG iterations, RGNORM is the output norm of the reduced gradient, / is the time
of the computation at EC 1045 in seconds.

Comparative tests of the specialized network solver NLPNET (cf. [9]) and of the

modification of the classical system MINOS (see [12], [22]) show clear advantages

of the radical changes in the working set and in the partition of the matrix A. We have

created a system with the advantages of both these systems — implicit data structures

of the projection matrix can be used for broader spectrum of problems than NLPNET

can handle. The philosophy of working with constraints is different from MINOS.

Thus we can use our system for a large general setting of QP with all variables in

nonlinear terms of the objective function and we have verified solvability of such

problems. We had not faced degenerate direction vectors in any of the test problems

(direction vector obtained using DV 2 cannot be degenerate for the basis is maximal).

Distribution of the CG iterations in the various phases of the computation is very

interesting. First, very little iterations are used for the determination of the direction

vector in DV 2. Their number radically increases towards the end. This procedure

is then left very often for the maximum number of CG iterations MITCG is over­

passed. This number is set to twice the size of the dimension of the reduced space.

In this case, such a situation is promoted by the fact that the reduced objective

function is relatively flat. To demonstrate it, we have experimented with various

limits on the output accuracy. Relative accuracy prec is related to the value of the

objective function obtained with a great effort and with adaptively changed inner

constants. Output residuum was in this case less than 1 . 0-10- 7. If we denote this

value by/*, then the parameter prec in Tables 2 and 3 is defined by | / # — /|/j/*J.

Our main task was to verify practical computability of the quadratic subprograms

of such dimensions, where most of the variables are included in the quadratic part

165

Table 2. Accuracy and number of iterations for the QP problem with n = 480.

RGNORM и m a j И c y c ПCG t prec

0-50 . Ю - ' 1 9 217 799 203-06 Ю - 6

0-42 . Ю - 2 10 225 917 216-68 Ю - 8

0-21 . Ю - 4 12 196 1307 270-99 1 0 - 1 2

0-11 . Ю - 4 14 203 1572 306-65 1 0 - 1 2

RGNORM is the output value of the reduced gradient, nmaj- is the number of computed direction
vectors using the procedure DV 1, «cyc is the whole number of iterations in Algorithm 4.2,
ncG is the number of CC iterations, t is the optimization time in seconds, prec is the above de­
scribed parameter of precision.

Table 3. Accuracy and number of iterations for the QP problem with n = 480.

RGNORM и m a j ПCyC ПCG t prec

0-56. Ю - 1 8 130 821 201-45 1 0 ' 7

0-37 . Ю - ' 3 8 139 1182 272-64 Ю " 9

0-26 . Ю " 4 11 162 2667 552-04 1 0 - 1 1

Notation is the same as in Table 3.

of the objective function. The obtained results have shown that by the sequences

of the QP problems it will be possible to solve even rather large problems of non­

linear programming.

(Received April 4, 1990.)

R E F E R E N C E S

[1] R. G. Bland: New finite pivoting rules for the simplex method. Math. Oper. Res. 2 (1977),
103-107.

[2] P. H. Calamai and J. J. More: Projected gradient methods for linearly constrained problems.
Math. Programming 39 (1987), 93—116.

[3] T. F. Coleman: Large Sparse Numerical Optimization. (Lecture Notes in Computer Science
165.) Springer-Verlag, Berlin—Heidelberg—New York—Tokyo 1984.

[4] R. S. Dembo: NLPNET — User's Guide and System Documentation, School of Organiza­
tion and Management Working Paper Series B # 70, Yale University, New Haven, CT 1983.

[5] R. S. Dembo: A primal truncated Newton algorithm with application to large-scale non­
linear network optimization. Math. Programming Study 31 (1987), 43—71.

[6] R. S. Dembo, S. C. Eisenstat and T. Steihaug: Inexact Newton methods. SIAM J. Numer.
Anal. 79(1982), 400-408.

[7] R. S. Dembo and J. G. Klincewicz: Dealing with degeneracy in reduced gradient algorithms.
Math. Programming 31 (1985), 357-363.

[8] R. S. Dembo and T. Sahi: A convergent active-set strategy for linearly-constrained optimiza­
tion. School of Organization and Management Working Paper Series B # 80, Yale University
1984.

[9] R. S. Dembo and T. Steihaug: Truncated-Newton algorithms for large-scale unconstrained
optimization. Math. Programming 26 (1983), 190—212.

166

[10] A. Drud: CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems.
Math. Programming 31 (1985), 153-191.

[11] L. F. Escudero: An Algorithm for Large-scale Quadratic Programming and its Extensions
to the Linearly Constrained Case. IBM Scientic Centre Report SCR-01.81, Madrid 1981.

[12] Y. Fan, L. Lasdon and S. Sarkar: Experiments with successive quadratic programming
algorithms. J. Optim. Theory Appl. 56 (1988), 359—383.

[13] R. Fletcher: Practical Methods of Optimization, Vol. 2: Constrained Optimization. J.
Wiley, New York—Chichester—Brisbane—Toronto 1981.

[14] P. E. Gill and W. Murray: Newton-type methods for unconstrained and linearly constrained
optimization. Math. Programming 28 (1974), 311 — 350.

[15] P. E. Gill and W. Murray: The Computation of Lagrange Multiplier Estimates for Con­
strained Minimization, Rep. NAC 77, National Physical Laboratory, England 1976.

[16] W. Hock and K. Schittkowski: Test Examples for NLP Codes. Springer-Verlag, Berlin-
Heidelberg-New York 1981.

[17] L. Luksan: System UFO. User's Guide-version 1989(in Czech). Res. Rep. V-441, SVT CSAV,
Prague, 1989.

[18] H. M. Markowitz: The elimination form of the inverse and its applications to linear pro­
gramming. Management Sci. 3 (1957), 225—269.

[19] B. A. Murtagh: Advanced Linear Programming: Computation and Practice. McGraw Hill
New York 1981.

[20] B. A. Murtagh and M. A. Saunders: Large-scale linearly constrained optimization. Math.
Programming 14 (1978), 41 — 72.

[21] B. A. Murtagh and M. A. Saunders: A projected Lagrangian algorithm and its implementa­
tion for sparse nonlinear constraints. Math. Programming Study 16 (1982), 84—117.

[22] B. A. Murtagh and M. A. Saunders: MINOS 5.1 User's Guide, Tech. Rep. SOL 83-20 R,
Dept. Oper. Res., Stanford University, Stanford, CA, 1983, revised 1987.

[23] O. Osterby and Z. Zlatev: Direct methods for sparse matrices. (Lecture Notes in Computer
Science 157.) Springer-Verlag, Berlin —Heidelberg—New York—Tokyo 1983.

[24] S. Pissanetzky: Sparse Matrix Technology. Academic Press, London—Orlando—San Die­
go—New York—Austin—Toronto—Montreal—Sydney—Tokyo 1984.

[25] J. K. Reid: On the method of conjugate gradients for the solution of large sparse systems
of linear equations. In: Large Sparse Sets of Linear Equations (J. K. Reid, ed.), Academic
Press, London 1971, pp. 231 — 254.

[26] J. K. Reid: Fortran Subroutines for Handling Sparse Linear Programming Bases. Rep.
AERE Harwell, R. 8269. Harwell 1976.

[27] J. K. Reid: A sparsity-exploiting variant of the Bartels-Golub decomposition for linear
programming bases. Math. Programming 24 (1982), 55—69.

[28] P. S. Ritch: Discrete optimal control with multiple constraints I: Constraint separation and
transformation technique. Automatica 9 (1973), 415—429.

[29] M. Tuma: Large and Sparse Quadratic Programming (in Czech). Ph.D. Thesis, SVT CSAV,
Prague 1989.

[30] M. Tuma: SPOPT-Program System for the Solution of Large Sparse Problems of Linear
and Quadratic Programming (in Czech). Res. Rep. V-391, SVT CSAV, Praha 1989.

[31] Z. Zlatev: A survey of the advances in the exploitation of the sparsity in the solution of
large problems. Internat. Congress on Comp. and Appl. Math., University of Leuven,
Belgium 1986.

Ing. Miroslav Tuma, CSc, Stfedisko vypocetni techniky CSA V {General Computing Centre —
Czechoslovak Academy of Sciences), Pod voddrenskou vezi 2, 182 07 Praha 8. Czechoslovakia.

167

		webmaster@dml.cz
	2012-06-05T22:38:34+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

