
Kybernetika

Miroslav Tůma
A quadratic programming algorithm for large and sparse problems

Kybernetika, Vol. 27 (1991), No. 2, 155--167

Persistent URL: http://dml.cz/dmlcz/124517

Terms of use:
© Institute of Information Theory and Automation AS CR, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124517
http://project.dml.cz


K Y B E R N E T I K A - VOLUME 27 (1991), N U M B E R 2 

A QUADRATIC PROGRAMMING ALGORITHM 
FOR LARGE AND SPARSE PROBLEMS 

MIROSLAV TUMA 

We describe a primal feasible, convergent algorithm for the quadratic programming problem. 
It is especially designed to cope with the large and sparse instances of this type with their structural 
and numerical algorithmic specialties. It makes use of the new improvements that have not been 
used for the general quadratic programming or that have not been used so far. 

1. INTRODUCTION 

We consider the quadratic programming problem (QP), i.e. the problem of mini­
mizing a quadratic function subject to a set of linear constraints. We assume the con­
straints to be in the canonical form: 

(i) 

We are concerned with developing algorithms to find a local minimum of (l) 
when these matrices A, Q are large and sparse. This problem often arises when 
nonlinear function is minimized using sequential quadratic programming methods 
(SQP) (see [12], [13]). Without loss of generality we use the form of constraints 
that can be obtained, for instance, with the aid of the transformation of the linear 
programming solvers using the primal simplex algorithm (see [19]). 

To cope with this problem we use reduced gradient methods (see [2]) in the active 
set framework (see [14]). In contrast with the MINOS system (cf. [22]) we have 
specialized for the large and sparse systems where most of the variables is included 
in the quadratic terms of the objective function. General algorithmic scheme makes 
use of some principles that have not been used for the general large and sparse QP 

min/(x) = qтx + 0-5xтQx, . • • (la) 
Ax = b, • • (iь) 
l ś x ś u , • • (le) 
x, q,l,uє R", bєRm, • • (w) 
A є «••', Q є R"'" • • (le) 
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so far — specialization on multiple pricing with the protection against many de­
generate steps, new procedures for the sparse matrix algebra, rules to keep partition. 
Data structures used are suitable to this strategy. 

Inner loop of the direction search makes use of the truncated Newton method 
for the reduced Hessian matrix (cf. [9]). 

2. ALGORITHMIC OVERVIEW 

To solve this problem, we will form a sequence of iterates {xj.g.i. Let us call 
the set of active constraints for the iterate xt e U" the set of the constraints that hold 
at x{ as equates. Components of individual iterates are called variables: we will 
write xt = (xj, ..., x"). When we are dealing with the general z'th iteration we often 
omit subscripts of the iterates and of the matrices and vectors relating to them. 

Set of constraints is composed of the two parts. Linear constraints (lb) form 
a manifold. Without loss of generality we assume matrix A to have full row rank. 
In practical computation the problem of the row rank of A is usually solved in some 
preprocessing phase, e.g. in simplex linear programming (LP) solver. Bounds (lc) 
correspond to individual variables. At each phase of the iteration process we can 
divide bounds into two groups: lower or upper active and the rest that we will call 
passive ones. Variables that correspond to active bounds will be called (lower or 
upper) active. The rest of the variables are called passive. At each iteration there is 
a working set of indices of bounds Iw c [1, ..., n) that are to be kept fixed, that 
means that the variables determined by that bounds are not allowed to change their 
values throughout the iteration. We also speak about fixed variables. Thus we are 
to solve a sequence of problems: 

xi+1 = min {f(x) | (lb) — (le) are satisfied, 

xJ are fixed for j e Iw]. 

The problems are solved only approximately even when the objective is quadratic. 
Let us have some feasible iterate x. First feasible iterate xt was obtained, 

for instance, using the first phase of the simplex method of linear programming 
(LP). Computing a feasible direction amounts to finding a nonzero vector deU", 
such that for some nonzero scalar a it holds: 

g(x)T d < 0 , 

Ad = 0 , 

I — x + ad ^ u , 

xJ is fixed for j elw . 

A convenient and a practical way to compute such a direction is to eliminate some 
variables (basic) and express them in terms of the rest (nonbasic) ones using the 
constraints (lb). Set of basic variables we call simply the basis. 
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Thus we can assume partition A -= [B, N], where B is a square nonsingular basic 
matrix. Working set then induces partition of nonbasic part of the matrix: N = 
= [E, W~\. We do not use notation of [4], [20] to discern our slightly different 
concepts. This matrix partitions induce partitions for vectors the x, d, u, I and for 
the other vectors introduced in he sequel (x = (xB, xN), xN = (xE, xw), ...) and for 
the index sets {1, ..., n] = TB u IN,IN = IE u / r Let nB = \lB\, nN = \lN\, nw = 
= \lw\, nE = \lE\. Our problem (l) can thus be rewritten as: 

mmfR(xN) , 

lB £ B-^b - NxN) £ uB , 

'N = XN = UN •> 

where fR(xN) =f(B~~l(b — NxN),xN) is called the reduced function. Its gradient 
and Hessian at x will be denoted by gR(xN) and HR(xN), respectively. 

2.1 Computing of the basis part of the direction vector and general computing 
scheme 

0 

Feasible directions d are formed in the following manner. First, there is a computed 
part dN (see the next section). Then we get dB = —B~~lNdN. When the basis is 
generated (some of its variables are active), arbitrarily small move along the direction 
dN can induce infeasibilities in basis variables. Such a pathological direction vector 
we call degenerate. (Note, that the zero direction vector we call also degenerate.) 

To evade this situation, concept of maximal basis was in [7] introduced. In more 
detail, basis is constructed and updated, so that it contains as many columns as 
possible corresponding to the passive variables. For the set of the columns of A 
together with all linearly independent subsets form the matroid, we know, that all 
maximal independent subsets of this matroid obtained by sequential exchanges of 
the columns of the matrix A are of the same cardinality. Every maximal basis can be 
thus decomposed into some maximal independent set of the above mentioned 
matroid and the set of columns corresponding to the active variables to complete it. 

Construction of the basis part of vector dt can be rewritten as the sum of transfor­
med contributions of individual nonbasics: 

dB = -B~1NdN = - Yl'B~1N(el)j , 
JSIN 

where (df e UnN, (d)j = ((df\ ..., (dfj"N), (d)j = dJ
N, (df = 0 for keIB, k+ j . 

When the basis is maximal, then any passive nonbasics will only induce changes 
in passive basics (see [4], [5], [7]). 

Definition 2.1. Let us denote by J(B)+ and by J(B) — index sets, subsets of IB, 
containing indices of (degenerate) variables upper and lower active, respectively. 

Theorem 2.2. Let d e Un be a feasible direction vector. It is not degenerate iff it 
holds for the indices jeJ(B)+ u J(B)- : dj^0 for jeJ(B) + , dj ~> 0 forje J ( B ) - . 
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The proof of this theorem is trivial. Thus, when some of the transformed contribu­
tions corresponding to some active variable that we are summing up to get dB do not 
conform to the condition in Theorem 2.2, we can omit them. 

To get the direction vector we thus use the following scheme. Let the basis be 
maximal. 

Algorithm 2.3. 

Step 1. Compute dN. Methods for this task will be described later. 

Step 2. Set dB = —B~1dN. If dB is not degenerate, then d is found, end. 

Step 3. Compute contributions B_1N (d)j for some restricted number of vectors 
{(d)j | j eIN, j = j \ , ..-jtj,}- Direction vector dB is then a sum of those 
contributions of these ones that satisfy condition of the Theorem 2.2. 

The value of 4> we have found experimentally so that the complexity of calculating 
of these contributions is relatively small (For our problems we have used </> = 3 — 4 
— chosen so th^t the computing time of Step 3 is approximately twice the time 
used in Step 2. Indices of IN used are chosen so that corresponding columns of N 
have small number of nonzeros. 

If none of the contributions in Step 3 of Algorithm 2.3 conforms to the condition 
of Theorem 2.2, direction vectors is zero and we use Bland rule to remove (theoretic-
cal) cycling (cf. [1]). This rule is extremely simple and consists of two steps. (In fact, 
[ l ] contains two different rules. The second of them is more complicated and we 
have not used it.): 

a) among all candidates to enter be basis select variable with the smallest super­
script, 

b) if more variables complete for leaving the basis select variable with the smallest 
superscript. 

Although the importance of this rule for linear programming problems, it has 
been originally designed for, is primarily theoretical, it can be effectively used in this 
case together with the whole above mentioned technology of direction vectors 
finding. 

2.2 General scheme of the algorithm 

The whole computation can be described as follows. Its steps will be cleared further. 
The sets Wt are kept so that they always contain indices of all active nonbasics. 

Algorithm 2.4. 

Step 1. Start with some feasible iterate xx e W. Form B so that it is maximal. 
Set Ft". = N,i = I. 
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Step 2. Test on the optimality TO 1. If TO 1 satisfied then go to Step 5. 
Step 3. Update working set and induced partitions. 
Step 4. Compute nonbasic part of the direction vector using DV2. 
Step 5. Test on optimality T02. If satisfied then end. 
Step 6. Update working set and induced partitions. 
Step 7. Compute nonbasic part of direction vector using DV1. 
Step 8. Compute basic part of the direction vector. If direction vector degenerate 

then go to Step 10. 
Step 9. Compute step length and form a new iterate xi+1. 
Step 10. Set i = i + \, form new working set and partitions, go to Step 2. 

2.3 Nonbasic part of the direction vector 

Now we will describe procedures DV1 and DV2. First, we will mention procedure 
DV2 for direction vector finding that makes use of second order information in the 
objective function. We will obtain it solving inexactly the Newton equation (see [6]) 
in the space of nonbasics: 

HR(xE) dE = -gR(xE), . . . (2a) \ ( . 
dw = 0 . . . (2b) J l ; 

Considering the data structures for large sparse problems, the one alternative is to 
use the conjugate gradient methods (CG), where (possibly dense) reduced Hessian 
matrix can be stored implicitly. We use the Reid form of implementation (see [25]) 
in the truncated Newton environment (see [9]): We are looking for the solution 
of the system HR(xE) dE = -gR(xE) + r, where ||rj/||0*(x£)| S V, n = 
= max (a0-5, min((l/NIT 1 + 1), gR(xE)) is specified in concordance with [9]; 
s is a machine accuracy for EC 1045; NIT 1 denotes number of Steps 7 of Algorithm 
2.4 made so far. On the output we get solution of this system or some other descent 
direction, when indefiniteness of the reduced Hessian is faced. Third natural way 
to leave the algorithm is used, when accuracy of the solution is lost and we overpass 
maximum number of iteration having been set up. 

As an alternative DV 1 we will use a direction of a negative reduced gradient, 
obtained as follows: 

— gR(xN)J for xJ passive , 
max (0, — gR(xN)J) for xJ lower active , 
min (0, — gR(xN)J) for xJ upper active , 
0 for j elw . 

This possibility is used relatively infrequently for radical changes in the space 
of nonbasics when the reduced gradient has been made small having used repeated 
steps with DV 2. Using direction vector obtained by DV 1, more active variables 
are to leave their bounds as detected by the Lagrange multipliers calculation in the 
procedure TO 2 of the algorithm. 
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2.4 Determination of the steplength 

When the nondegenerate direction vector is found, we have to find a new iterate. 
We set, as usual, xi+1 = xt + &•$•„ scalar a is set to min (a', amax), where 

, h ~ xi • UJ ~ xi 
= mm mm --—-—- , mm J 

Kdt1<0 d\ - d(J>0 d{ 

For small quadratic problems it is usual to set a' = 1. Here we solve the system (2) 
inexactly. In the large instances of the problem, rounding errors make the situation 
even more complicated. We usually need one or even more steps of simple quadratic 
interpolation/extrapolation procedure. So that we generally choose a' such that the 
Armijo conditions hold (cf. [13]): 

d]g(xt + a'di) = n±dt g(xt) 

f(xt + rfdt) - f(xi) = n0a'di g(xt) 

We have chosen /i0 = OT, ixx = 0-9. 

2.5 Test on optimality TO 1 

In Step 2 we have at first the test described in Algorithm 2.4. The idea behind 
the first rule of this routine is to test the absolute size of the reduced gradient against 
some weak limit and to tighten this limit from iteration to iteration. Thus using the 
parameters ^G and ^M we simulate a sequence {j/.},-^! -> ^opt. 

Algorithm 2.5. Parameters: sx = 0-1, sf = 0-01, sg = 0-0001 (see [13]). This 
parameters help to specify when to declare that TO 1 is satisfied due to "small" 
changes in variables, functional value or reduced gradient size. RGNORO is the 
reduced gradient norm computer after the latest move along the direction vector 
obtained using DV 1 — initialized by 0; ^G = 0-2; qM = 0-7 — it is set to ^M . ^M 

every time when DV 1 is used; RGFL = (max (r\G . ^M . RGNORO, 10"3); RGSL = 
= max (0-01 . RGFL, ^opt), where ^Opt(l0~3 — 10"8) is the demanded output 
accuracy of the reduced gradient; s = 10 - 8 — it is a machine accuracy for EC 1045; 
n is the first order estimate to Lagrange multipliers to (lb); A(xl)N\Vfr or Aft are vector 
of changes in the appropriate variables or change in the function value, respectively — 
they are initialized by zero vector resp. by zeros. 

If ZSFL = 1 then TO 1 is satisfied 

if (I<AW)I = RGFL) then 
if([|^i^(£;c + £

0 - 5 ) . ( l + [|x0||)A 

Af\=(sf + s).(i + \f(x)\)v 

\\9R(XE)\\ = % • (RSFL . max (1, \n\) then TO 1 is satisfied 

end if 

end if. 
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When solution cannot be improved in some sequence of iterations, parameter 
ZSFL has been set to one. Here, when ZSFL = 1, TO 1 is thus also satisfied. 

2.6 Test on optimality TO 2 

In this procedure we compute first order estimate of the Lagrange multipliers 
corresponding to the constraints captured by the set W(see Section 3). 

Kuhn-Tucker conditions for the system (1) can be written as follows: 

g(x) + AT/i + 1 + 1 = 0 

1^0 

1^0 

lJ(xJ - Uj) = 0 

lJ(xJ - lj) = 0 

je{l,...,n} ; n,l,leUn 

Both elements V, V cannot be nonzero at the same moment for any j e (1, ..., n}. 
Our multiplier estimate thus always includes one of these elements according to the 
type of activity of individual variables. For j elw is XJ set to V when xJ is upper 
active. Otherwise, XJ is set to 1J. Vector X we will call in the sequel the vector of 
multipliers. The above conditions thus imply the following strategy. 

When there are upper or lower active nonbasics xkl, ...,xkp, such that for the 
corresponding estimate of multipliers Xkl,..., Xkp it holds Xkj > nx or Xkj < — nx 

(nx « 10~6 is a tolerance on positiveness respectively, then the bounds corresponding 
to these constaints are excluded from the working set. 

Algorithm fits into the Dembo-Sahi framework (see [8]) and it is thus globally 
convergent for there hold following conditions: 

a) Directions chosen according to DV 1 are gradient related as shown in [9]. 
That is, for a convergent subsequence {xk} -> x' with x' not optimal it holds 
lim g(xk)

T dk < 0. 
fc-»oo 

b) First order multiplier estimates are consistent. (When {xk} -> x* then {Xk} -> X*, 
where x* and X* are a Kuhn-Tucker point and corresponding vector of multipliers.) 

c) Test on optimality TO 2 is implemented with the mentioned tolerance nx 

on the elements of the vector of multipliers. This implies dropping only those bounds 
within some fixed fraction of the most negative and positive multiplier for the lower 
and upper bounded variables, respectively. 

Stronger convergence results would be possible with the nondegeneracy assumption 
(but this is unreasonable for the large problems) or with another form of the algo­
rithm (see [2]). 
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2.7 Update of working sets and of the matrix partitions 

Let us first note, that the exchange of columns is being done only by the changes 
in some index permutation vector that keepts track of the status of variables (basic, 
nonbasic, fixed, active,...). 

Working set is constructed at the beginning of Algorithm 2.4. We have always 
obtained A^ by using LP, so we can set Wx = N. When some partial or complete 
solution was given at the beginning then to construct the maximal basis we have 
also used the first phase of the primal simplex algorithm to compute xv 

Correction of Wean be used in Step 3. We want sometimes to keep the dimension 
of the reduced space for the procedure DV 2 under some predefined limit. It can 
happen for number of reasons (to suppress influence of the rounding errors, to 
exclude variables corresponding to dense columns of N for some iterations, when 
one exchanges the CG routine for some variable metric solver (see [20]), to solve 
Newton system one could use such a restriction to cope with the lack of memory, 
to make use of some specific (block) structure of the reduced Hessian). Further, all 
active nonbasics are to be captured by W. 

In Step 6 we usually free all of the active nonbasics from the set W. 
More comprehensive update in Step 10 covers two cases. When degenerate direc­

tion vector is detected in Step 8, we are only to exchange one degenerate basis 
variable for the fixed one. Otherwise, update of W and the parallel update of B 
proceeds in three phases: 

Step 10a All active nonbasics are moved to W. 

Step 10p All active basics, that were passive before the latest step will be tried 
to be exchanged for the free nonbasics. This step will be described 
in our data structures later. 

Step 10y All active nonbasics are moved to W. 

3. IMPLEMENTATION 

This implementation is intended for general large sparse problems and data 
structures are especially designed for these types of problems (see also [10], [11], 
[23], [24], [31]). 

The initial matrix A, obtained using MPS-file or subroutine with specified con­
ventions, is transformed into a classical columnwise sparse data structure. In case 
of the sequence of the QP problems there is input simply in this form. It makes use 
of two "long" vectors A, SA (their length is equal to the number of matrix nonzeros) 
where numerical values of nonzero matrix elements and their row indices are stored, 
respectively, at corresponding positions. Then the one pointer vector PTC of the 
length n + 1 is used. Nonzeros of the matrix form a compact block, beginning 
of the column i that is stored at the positions with indices PTC(i). That means that 
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the numerical value of the first nonzero element of the column i is stored in A(PTC(i)), 
its row index in SA(PTC(i)), its last nonzero element at PTC(i + 1) — 1. 

Symmetric Hessian matrix of the quadratic function has rowwise stored diagonal 
and upper triangular part using two "long" parallel arrays and one pointer vector 
again. 

Columnwise storing of A is advantageous for the prevailing operations with it: 
rewritte of the nonzero of some column into the working structure, test on the lengths 
of columns (numbers of their nonzeros). 

Reduced gradient and Hessian are computed using a matrix Z spanning the 
nullspace of A (see [20]). Define Z by: ZT = (—ETB~T, I, 0). Then we set gR(xE) = 
= ZT g(x), HR(xE) = ZT H(x) Z. Reduced gradient is recomputed when iterate 
or projection matrix changes, reduced Hessian is used implicitly, for in the CG 
procedure used to solve Newton equations, only matrix-vector products are needed. 

Neither matrix Z, possibly dense, is stored. Instead we keep the LU-factorized 
basis matrix B. Its factors are updated when there are exchanged columns in the 
course of the computation. For the update we have used original algorithms that 
make possible to use the Reid interchanges to minimize increase in the condition 
number of factorization and the necessary space (see [29]) without using its space-
consuming data structure (see [25], [26]). The basis matrix is regularly refactorized 
by the Markowitz-like procedure (see [18], [29]). Thus to multiply some vector 
by B_1 we need only two backward steps. 

Having introduced basic data structures, we can describe how to compute the 
Lagrange multipliers estimates (see [15]). By n e Um and X e U" we will denote the 
vector of estimates of the Lagrange multipliers for the constraints (lb) and for the 
fixed bounds, respectively. We will first set n = B~T g(xB), where B~T is the inverse 
of BT. This number is recomputed very often, for that it is used for the reduced 
gradient computation. Then we set X = g(xw) — WTn. Estimates X are then recom­
puted only when needed for the use in TO 2. 

Now we will describe Step 10p of the update of matrix partition, as mentioned 
in 2.6. Let the unit vector corresponding to the jth variable be denoted by (e)j. 
Dimension of such a vector is clear from the context. All active basics that were 
passive before the latest Step 9 of Algorithm 2.4 are processed in the next three phases: 

Let us process such an active basic variable, say j . Then 
a) Compute a vector v e M™ by solving the equation BTv = (e)j. 
b) Compute a vector y e UE, y = ETv. 
c) For all free nonbasic variables xk compute dk = min (\xk — lk\, \xk — uk\) and 

set ym5 = 0-5 max |j/fc|.Then find index i eIE, such that zlj^Jcl = max (zkjyjck\ \yk\ = 

^ j'm5/min (3, sjck), where ck is the number of nonzero elements in the column k 
(that is PTC (k + 1) - PTC (k)). 

Motivation for this process was the following. We can write y1 = yr(ej). If there 
is during the update exchanged the basis variable Xj for the free nonbasic variable 
Xj. Then for the updated matrix B+ that was obtained from B by column exchange 
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we can write: 

B+ = B + (E(e)i - B(e)j) (e)J that is 

B-1B+=/ + ( B - E ( e ) i - ( e ) y ) ( c ) J . 

Thus, the demand to have the matrix B+ regular equivalent to the demand to have 
y nonzero. The effort to have the condition number of B+ small can be positively 
influenced by taking yl with the absolute value relatively large. We have chosen the 
compromise such that the variable entering the basis is far from its bounds and the 
output matrix is preferably sparse. 

4. PROGRAM SYSTEM AND EXPERIMENTS WITH IT 

The whole algorithmic schema was programmed in Fortran (ANSI 77) and it 
contains about 10 000 commented source lines now (see [30]). The structure of the 
program system is completely modular up to the basic vector and matrix-vector 
operations. Thus it is possible to exchange some of the modules of the program 
system (e.g. linesearch solver, routines for the LU-factorization) by another ones. 
For the data input we can choose one of the three possibilities: simple interactive 
input, MPS-file input and the one using a subroutine conforming to our conventions. 

Individual program modules conform to the convention of the system UFO (see 
[17]) and they will serve there as the large sparse QP solver. 

We have debugged this program system using problems of [16]. To demonstrate 
its properties we will describe the test problem adapted from the optimal control 
of some simple dynamic system as described in [21], [28]. In this example we will 
use subscripts to discern variables instead to discern iterations. 

Problem 4.1. 

min/(x) 

f(x) - 0-5 £ c t x ? - 0-5 £ d^f 
; = i i = i 

p = {*\xt+1 = Xi + 0-2yt, 

yi+i = yt - ooiy? - 0-004xt + o-2wt, 

-0-2 = u t = 0-2, 

yi= - I , x0 = 10, yk = 0, 

i =0, ..., k — 1 ; ct = 1, di = 1 for i = 1, ..., k] 

This problem was linearized at point with x̂  = 10 for i = I, ..., k; yt = —1 for 
i = 1, ..., k — 1; yk = 0; ux = 0 1 for i = 1, ..., k. Instead of the looking for 
a better feasible point of the nonlinear problem, we have modified the right-hand 
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side of the set of linearized constraints so that this point is feasible also for the QP 

problem. Basic output data are displayed in Table 1 — instead of k we use parameter 

n = 3(fc + 1). 

Table 1. Solving of Problem 4.1. 

n "maj ttcyc ПCG RGNORM t 

180 2 60 0 o-з. 10~14 8-40 
240 4 78 40 0-2. 10~'13 19-18 

300 14 282 459 0-4. 10~ 1 3 118-72 

396 6 124 699 0-8 . 10~'6 128-66 

480 14 203 1572 0 1 . 10~4 306-65 

600 11 162 2667 0-3 . 10~'4 552-04 

690 12 156 3516 0-6 . 10~4 842-01 

n is the parameter for the size of the problem 4.1, «maj is the number of computed direction 
vectors according to thr procedure DV 1, ncyc is the whole number of the iterations, ncG is the 
number of CG iterations, RGNORM is the output norm of the reduced gradient, / is the time 
of the computation at EC 1045 in seconds. 

Comparative tests of the specialized network solver NLPNET (cf. [9]) and of the 

modification of the classical system MINOS (see [12], [22]) show clear advantages 

of the radical changes in the working set and in the partition of the matrix A. We have 

created a system with the advantages of both these systems — implicit data structures 

of the projection matrix can be used for broader spectrum of problems than NLPNET 

can handle. The philosophy of working with constraints is different from MINOS. 

Thus we can use our system for a large general setting of QP with all variables in 

nonlinear terms of the objective function and we have verified solvability of such 

problems. We had not faced degenerate direction vectors in any of the test problems 

(direction vector obtained using DV 2 cannot be degenerate for the basis is maximal). 

Distribution of the CG iterations in the various phases of the computation is very 

interesting. First, very little iterations are used for the determination of the direction 

vector in DV 2. Their number radically increases towards the end. This procedure 

is then left very often for the maximum number of CG iterations MITCG is over­

passed. This number is set to twice the size of the dimension of the reduced space. 

In this case, such a situation is promoted by the fact that the reduced objective 

function is relatively flat. To demonstrate it, we have experimented with various 

limits on the output accuracy. Relative accuracy prec is related to the value of the 

objective function obtained with a great effort and with adaptively changed inner 

constants. Output residuum was in this case less than 1 . 0-10- 7. If we denote this 

value by/*, then the parameter prec in Tables 2 and 3 is defined by | / # — /|/j/*J. 

Our main task was to verify practical computability of the quadratic subprograms 

of such dimensions, where most of the variables are included in the quadratic part 
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Table 2. Accuracy and number of iterations for the QP problem with n = 480. 

RGNORM и m a j И c y c ПCG t prec 

0-50 . Ю - ' 1 9 217 799 203-06 Ю - 6 

0-42 . Ю - 2 10 225 917 216-68 Ю - 8 

0-21 . Ю - 4 12 196 1307 270-99 1 0 - 1 2 

0-11 . Ю - 4 14 203 1572 306-65 1 0 - 1 2 

RGNORM is the output value of the reduced gradient, nmaj- is the number of computed direction 
vectors using the procedure DV 1, «cyc is the whole number of iterations in Algorithm 4.2, 
ncG is the number of CC iterations, t is the optimization time in seconds, prec is the above de­
scribed parameter of precision. 

Table 3. Accuracy and number of iterations for the QP problem with n = 480. 

RGNORM и m a j ПCyC ПCG t prec 

0-56. Ю - 1 8 130 821 201-45 1 0 ' 7 

0-37 . Ю - ' 3 8 139 1182 272-64 Ю " 9 

0-26 . Ю " 4 11 162 2667 552-04 1 0 - 1 1 

Notation is the same as in Table 3. 

of the objective function. The obtained results have shown that by the sequences 

of the QP problems it will be possible to solve even rather large problems of non­

linear programming. 

(Received April 4, 1990.) 
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