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K Y B E R N E T I K A - VOLUME 26 (1990), NUMBER 2 

ESTIMATION OF A CENTRALITY PARAMETER 
AND RANDOM SAMPLING TIME SCHEMES 

Part II. Applications 

CLAUDE DENIAU, GEORGES OPPENHEIM, MARIE CLAUDE VIANO 

An A.R.M.A. stationary process is sampled according to a renewal process. While estimating 
a centrality parameter and using the criterion as in Part I, we investigate the optimal sampling 
law's support. We prove that in most of the situations this support is finite, and we give numerical 
results. 

0. INTRODUCTION 

We present here some particular results for the estimation of centrality parameters 
of a real discrete time weakly stationary random process by random sampling time 
schemes. 

In [2] we introduced and studied a criterion which is an equivalent to the asymptotic 
variance of the chosen estimator, i.e. the random mean. We gave several expressions 
of the criterion value. We proved a necessary condition for a sampling distribution 
to be optimal. 

In the present work we show that in several particular cases: 

i) the correlation function of X is strictly convex; 

ii) the correlation function of X is positive; 

iii) the process X is an autoregressive or a moving average process. 

It is possible to give sufficient conditions to get an optimal sampling distribution 
with finite support. We use a simple result; the class of the A.R.M.A. processes is 
stable by random sampling. This result can be found in [3] and [6]. 

Finally several numerical results make it possible to calculate the obtained gains 
in the studied cases by random sampling: we compare the asymptotic variance of the 
estimator computed in a random sampling scheme, with the same estimator computed 
on the original data, without sampling. 
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1. DEFINITIONS AND NOTATIONS 

In what follows X = (X„)ne% will be a real discrete weakly stationary stochastic 
random process with mean 9, covariance function Cx and correlation function QX. 

Let us denote by T = (tn)neJf a renewal process on Jf* = Jf — {0}, stochastically 
independent of X, with a distribution L. (For more details you can see [2].) The 
potential measure associated with T is QL, and the sampled process, which is also 
weakly stationary, is denoted X = (X„)„>0, with Xn = Xtn, n e / . 

For the estimation of 6 we use N observations the instants of which are random 
sampled and measured during the development of the process. 

N _ 

We choose 0(N) = N~* ]T X,, as an estimator and consider the asymptotic quadratic 
criterion " = 1 

a(L) = lim (N var 0(N)), (1) 
JV-»oo 

where L belongs to SPm, the set of probability distributions on Jf with mean smaller 
than m, m ^ 1. An optimal sampling distribution L0 is such that 

L0 = arg Inf a(L), (2) 

2. MAIN RESULTS 

2.1 We will begin by the study of two particular and simple cases, which are 
direct applications of [2]; let us state the hypothesis again. 

Hj . There exists a e l * , a < a, a e ]0, 1[ such that Qx(k) = 0(a^). 

Proposition 2.1. (QX is strictly convex.) Under H l 5 if the correlation function QX 

is strictly convex, there exists unique optimal sampling distribution L0, given by 

L0 = M > , ] + (- - P) ^[m] + l 

m = film] + (1 - P)([m] + 1) (3) 

where [m] is the integer part of m e M, m _ 1. 
Proof. We recall (cf. [2]) that gL(j) = d(Qx, QLy]dLj, where <,> is the scalar 

product of the duality (ll, /°°). Employing the strict convexity of QX on Jf we get 

Qx(n) - 2Qx(n + 1) + Qx(n + 2) > 0 for all neJf. (4) 

Using Hx and (4), we see that QX is strictly decreasing and positive on Jf. Moreover, 
i) using Corollary 3.1, of [2], it is easy to prove that gLo has the same properties; 

ii) the strictly decreasing of gLo is in contradiction with Corollary 3.2, b of [2], 
00 

consequently ]T / L0(j) = m. 
j = i 

If we prove that supp L0 = [s±, s2} with s2 = st + 1, the proposition will be proved 

since L0 defined in (3) is unique among the distributions satisfying the constraint. 
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If m eJf*, then supp L0 = { s j . 

Suppose supp L0 = \sx, s2}, with s2 > s^ + 1. Then 

9L0(
SI) + stq + k = 0 

9L0(S2) + s2q + k = 0 

9L0(
n) + nq + k = 0 for all n e Jf* 

and, consequently, 

9Lo(n) - g^si) ^ qLo(s2) - gjjsj) 

n — st ~ s2 - Sj 

Now, under the strict convexity of gLo, this inequality cannot be fulfilled for any n 
such that sx < n < s2; from which the contradiction follows. • 

Remarks 2.1. i) The necessary condition characterizing the optimal distribution 
L0 in Theorem 3.1 of [2] is here also sufficient. 

ii) The set 0>m is a convex subset of 0>\ if QX is strictly convex, then L0 is an extermal 
point oiSPm. 

iii) Finally we notice that supp L0 is a finite set; at any case an optimal distribution 
with a non-finite support would not be useful for applications. 

Proposition 2.2. (The correlation function is positive.) Under H l 9 if (gx(k) > 0, V&), 
every optimal sampling distribution L0: 

co 

i) satisfies the constraint ]T j Lo(j') = m ; 
ii) has a finite support. J = 1

 w 

Proof, i) By Corollary 3.1 of [2], gLo > 0. If £ / L0(j) < m and for every n GJV* 
J = I 

and s e supp L0: gL0(n) >= 9L0(
S)- NOW this is consistent with lim gLo(n) = 0, only 

if gLo(s) _ 0, and the contradiction follows. n _ > 0 ° • 

2.2 Autoregressive and moving average processes 

The problem is to estimate the mean 0 of a process, belonging to the class of 
A.R.M.A. (p, q) processes ([1]). We know that the class of A.R.M. A. (p, q) processes 
is stable by random sampling ([3], [6]). 

Now we begin with the characterization of the supports of the optimal sampling 
distributions, in the cases A.R,(p) and M.A.(q). 

2.2.1 AR (p) processes 

Let X be a real autoregressive process of order pzJf*, the representation of which 
written, with the innovation white noise process (sn)ne^, with variance aE —• 1, is 

Xn + a1Xn,1 + ... + apXn_p = s„ . (5) 

To simplify the proofs we assume that: 
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H2 . The roots (tf/)i<j<p of the polynomial A(z) = zp + alz
p i + ... + ap-xz + 

+ ap are distinct, different from zero and located inside the unit disk of C. 

Finally, let Rx > R2 ... > Rm, 1 ^ m ^ p, be the distinct modulus of the roots 
of A and (GJ)1<J<m

 t f t e s e t o t roots of A with Rj as modulus. Remember [5] that 
in this A.R.(p) case 

^ W = (cx(0))-1(Z^i) (6) 
i = i 

where 
a? 

2, = ! . 
IK1 ~ aiay)n(ai - «y) 

7 = 1 J*i 

Moreover, denoting by $L and Cx the z-transforms of L and C# respectively, it is 
shown in [3] and [4], that 

c,(i) = S^i^k) = F(L). (7) 
i = i 1 - <2>L(af) 

By [3] (Lemma 2.1) we have 

so that the minimization of (QX, QL} can be replaced by the minimization of E(L) 
defined in (7), for which all the results of ([2] (3.1)) remain true. 

Derivating with respect to L(n) and writing gL(n) for the nth coordinate of the 
gradient of Cx (1) we have 

i=i [ i - ^ i ) ] 

We can observe that the (/lf)i<i<p are all different from zero. 
We could not prove that every optimal sampling distribution has a finite support. 

But, by Theorem 2.3 below, we can show that this result is valid in the different 
cases we study. 

Theorem 2.3. Let H2 hold. If one of the following conditions is satified, every opti­
mal sampling distribution has a finite support: 

i) Rx i Gx ; 
ii) Gx = {RJ ; 

iii) V/ e {1, 2, ..., m}: R,- e G, => Gj c 0t. 
Proof (see the Appendix). 
We can assert that there exists an optimal sampling distribution with finite 

support if: 
— there is a positive real root strictly greater than the other, 
— in the set of roots of the largest modulus anyone is a real positive one, 
— if there is a real positive root in Gj, 1 = j — m, then there is no complex one. 
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2.2.2 M.A. (q) processes 

Let (s„)„e<z be a white noise and X a process defined by 

Xn --= sn + &!<?,_! + ... + bqstt.q, bq + 0, (9) 

then Qx(j) = 0 for all \j\ > q . (10) 

Theorem 2.4. If X is a M.A.(q) process, then: 
i) there exists an optimal sampling distribution L0 e ^m, the support of which is 

included into [1, q + 1] cr J/"; 
ii) the distribution L0 is an element of the boundary of the set Q)q cz £%q defined by 

@q = {(xl,...,xq)e<%q\xi^0, l ^ i ^ q , f > i ^ 1} • (11) 
i = l 

Proof, i) Let Le 0>m; define L e &n by: 

*LJ = LJ, Vj^q, 
00 

Lq+\ — L, Lj , 

* Lk = 0 , V/c> q + 1 . 
The values of QL(X), T e ./F, where QL is the potential measure of L, are a polynomial 

function of L1? L2, ..., LT, consequently 

QLO") = GrO) for all j = q 
and by (10) 

F(L) = tQx(j)QL(f), 
j = i 

consequently: E(L) = E(L), and if L is an optimal sampling distribution, and L 
the support of which is included into [1, q + 1] c= Jf is another one. 

ii) Let x be in the interior of Bq. Then 

X x,- < 1 , x ; > 0 , 1 = i = q . (12) 
i = I 

For such an element to be optimal it is necessary (cf. [2] (15)) that the gradient 
vector of F(gx(k))keJ,* equals zero. But, here that gradient can be written: 

( X Qx(h + 1) a(h), \ Qx(h + 2) a(h), ..., Qx(q - 1) + Qx(q) ax, Qx(q)) e & 
h=0 h=0 

with a(h) defined as in [2], Corollary 3.1. Consequently by (12), if the gradient of E 
equals zero then the same is true for all Qx(j)'s; there is a contradiction with (9) and 
(10) and the theorem is proved. Q 

3. COMPLEMENTARY STUDIES FOR PARTICULAR CASE 

We will now give some details about optimal sampling schemes for A.R.(p) and 
M. A.(q) processes with p and q equal to 1 or 2. In this context, we also give numerical 
results in order to evaluate the gains procured by the random sampling schemes. 
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3.1 A.R.(l) and A.R.(2) processes 

Proposition 3.1. Let X be a real A.R.(l) process Xn+1 = QXn + e,„ \Q\ <l,ne&. 
i) If Q > 0 , L0 = [1 - (m - [m])] <5[m] + (m - [m]) <5[m]+1 ; 

ii) If g < 0 , L0 = <5i with <5a the Dirac distribution o n a e f 
Proof, i) is a direct outcome of [2], Theorem 3.2; 
ii) means that we do not use random sampling scheme, and is easy to establish. • 

Remark 3.1. Observe that there is a difference of results according to the algebraical 
sign of Q. The part ii) gives the same results as [8], by random sampling of the 
observation instants, for continuous time similar processes, where obviously the only 
case Q < 0 was studied. 

Proposition 3.2. Let X be an A.R.(2) process, the roots of A(z) being distinct 
and satisfying H2. Then Card (supp L0) < 3 and if the roots are positive, card . 
. (supp Lo) = 2. 

Proof. See [4]. Q 

3.2 M.A.(l) and M.A.(2) processes 

Proposition 3.3. a) Let us assume that X is a M.A.(l) process: 
- if Qx(l) < 0 then L0 = <5X , 
- if QX(1) > 0 then L0 = <52 . 

b) Let us assume that X is a M.A.(2) process: 

- if Qx(k) = 0 k = 1,2, then L0 = <53 , 
- if Qx(l) < 0 , QX(2) = 0 

if 2ex(2) + Qx(l) < 0 , then L0 = St , 
if 2^(2) + Qx(l) > 0 , then L0(l) = a , L0(3) = 1 - a , 

a e ] 0 , l[,Lo(j) = 0 , . / £{ ! , 3 } , 
- if Qx(k) < 0 , k = 1,2, then L0 = 81 , 
- i f fe(l) = 0 ; ^ ( 2 ) ^ 0 , then L0 = <52 . 

Proof. See [4]; different other proofs are presented for other particular cases. Q 

4. NUMERICAL RESULTS ANALYSIS 

The analysis of numerical results allows us to draw some conclusions in addition 
to the previous theoretical results. If we call S1 the Dirac distribution at the point 
n = 1 the sampling distribution L = 8X is such that X = X. 

We measure the gain of a random sampling scheme by reference to E(<5i), which 
is the equivalent to the variance of 0n without sampling. The gain for the optimal 
distribution L0 is computed for several A.R.M.A.fj?, q); it is called G(L0) and ex­
pressed in percentage by 

G(L0) = * ( ' - ) " f (Lo) x l 0 0 . (13) 
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4.1 A.R.(l) models 

Let (e^)„eJr be a white noise with variance a\ = 1 and X a process defined by 
X„+1 = aXn + e„+i, n e %, a e [0,1[. 

i) By the results of the paragraph 3.2 and (8), if we suppose that m = 5, 3 (i.e. 
a sampling rate higher than 18%) we have 

L0 = 0-7<55 + 0-3<36 (Prop. 3.1) 

G(L-o) - 100 x N + Ф 1 
x Ф 1 + a 

ф = ф L o ( a ) = 0-7a5 + 0-Зać 

л 0-00 0-15 0-25 0-40 0-60 0-70 0-80 0-90 0-95 0-99 

G(L0) 

% 
9-52 26-08 39-91 56-41 71-32 75-98 79-00 80-62 81-00 81-12 

m= 5-3 

ii) Now let a = 0-5 and look at results obtained for several values of m: 

m 1-3 2-3 з-з 5-3 7-3 9-3 

G(L0) 17-4 48-6 58-7 64-8 66-2 66-5 

a = 0-5 

L 0 = (1 - (m - [m])) <5[m] + (m - [m]) <5[M]+1 . 

A conclusion is: as soon as the algebraic sign is known we can take the decision 
to sample or not to sample; in addition it seems absurd not to take advantage 
of a sampling scheme if we suspect a to be higher than 0-5. 

4.2 M.A.(l) models 

Let the process X be defined by 

X„ = s„ + a&„^l , n e 3t . 

We recall that, if QX(\) < 0, then L0 = dt and if Q(1) > 0 then L0 = 52. 

m = 5-3 

a 0-01 0-05 0-1 0-2 0-3 0-5 

G(L0) 1-96 9-07 16-52 27-77 35-50 44-4 

The gains remain important, but they seem to be lower than in the A.R.(l) cases. 

4.3 More general models 

For higher order A.R.M.A. models, the optimal sampling distributions are often 
impossible to predict by the investigation of the roots or poles of the models. The 
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correlation may in some singular cases help us, for example when QX is positive. 
Here are the gains always impor tant , as it can be seen in Table 1, where opt imal 

sampling distributions and gains are given in terms of the poles of the models. 

Optimal sampling distribution and gains for A.R.{2) models 

xn + a1xn_l + a2xn-2
 = £„ 

m = 5-3 X, - "'P ~ "l) l2 = - «-&~A) • 
(al - a2) (1 - ata2) (at - a2) (1 - a1a2) 

at and a2 roots of A(z) = z2 + axz + a2. 

a., and «2 F(d.) L 0 100 — — 

Lo =f= si F(°D 

1-5 2 1-16 0-85<55 + 0-15<57 0-078 66% 

- 1 - 5 2 0-1 ^з -0-096 32% 

- 2 2 0-333 0-85<55 + 0-15<57 0-0008 39% 

2 10 0-856 0-7 <55 + 0-3 <56 0-0237 6 1 % 
- 2 10 -0-275 h 0% 
- 3 + 4І -0-211 *i 0% 

3 ± 4i 0-238 <*3 -0-005 33% 

T h e computer program gives a local o p t i m u m , sometimes function of initial 
condit ion of the algori thm. We have chosen, for each example, nine different initial 
condit ions. 

A P P E N D I X 

Proof of Theorem 2 .3 

m 

By (8): dL(n) = Yu^j yj(n)> where, if we denote by Arg ak the argument of ak e C, 

i - inArga k 

TM- I ^j^f < A 1 ) 
iMtueGj) (1 - $L(ak)Y 

Moreover, by [ 2 ] , Corollary 3.2, if L0 minimizes <<?, QLo} and if the support 
of L0, denoted by {nk; keJ/**}, is not finite: gLo(n) ^ 0 for all n ^ 1 a n d gLo(nk) = 0 
for all k ejV*. Consequently, if we set: 

y(n) = ^ p for all neJT* (A2) 
R" 

we have 
m i n \ n 

y(n) = y i ( n ) + Z ( — ) yAn) = ° f o r a11 n eJÍ* ' (A3) 
J=2 \Rj 
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and 

y(nk) = 0 for all I c e / * . (A4) 

The yj(n) being bounded, we deduce from A3 that: 

lim yi(nk) = 0 . (A5) 
k-*oo 

We easily prove that the entire series the general term of which is y(n) zn, converges 
inside the unit disk of C; moreover y(n) ^ 0 for all n, consequently z = 1 is a singular 

00 

pomtoff(z) = Yjy(n)zn([l]). 
j = o 

i) Suppose Rj ^ G1, then we can write: 

Л-)- I { 
{fe|a keG,} ( 

Я> 1 

+ 1 I 

1 - < t > L o ( a f e ) l - z e - i A r g ^ 

Xt 1 l/c 

i - 2 [{fc|a7eGj} 1 - <*>L(afc) 1 - z(RJJRi) & ^ 

and Arg afc + 0 for a t e Gu z = 1 is not a singular point of/, consequently there 

is a contradiction and L0 has a finite support. 

i) Suppose Gx = {RJ.then 

yAn) = -*-
1 - * I o ( * l ) 

and yx(n) is a non-zero constant, for all n _• 1 and there is a contradiction with (A5) 
consequently L0 has a finite support. 

iii) We have to prove that: if R e G, then if the support of L0 is finite, — Rj is the 
only other possible element of Gj. Let us study the case where Gt = (R l 9 — RJ, 
then 

yAn) = - 1 + !_____! . (A6) 
m ) (1 - <PLo(Rl)Y (l-<pLo(-Rl)y { > 

It is impossible for the support of L0 to contain a non-finite subset of natural 
numbers of the two evenness, because we would have Xt = X2 = 0. 

Let us suppose, for example, that the support of L0 contains only even natural 
numbers larger than some k0 eJf. By (A5) we deduce that: 

y (2p) = i + --? = 0 for all peJT*. 
P) [i - <PLO(RI)Y [ i - * L o ( - R 0 P 

By (A3), the conclusion is: 

EЛy(2p) 
j=2 L ^ I 

R; 2 p 

^ 0 for all pejr*. 

By the same argument as that used in i) applied to the series of general term y(n) z" 
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RГì2p 

if n = 2p 

with 
[0 if n = 2p + 1 

*n)~\n(*p) + i-tfrp)\v 
I I = 3 L^2_ 

and if R2 ^ G2, we conclude that L0 has a finite support, then, as in i) we prove that 
if G2 = {Rz}, Lo also has a finite support. By the previous argument on even natural 
numbers, we prove that the only case for which the support of L0 may be infinite 
is that in which 

Gj = {Rj, -Rj] for all j e [1, m] cr JT. (A7) 

So it is necessary to employ (A6) to verify that the support of L0 is finite. 
When (A7) is verified, we easily compute Xt; we know that Gx = {Rt, — RJ 

and deduce that Xt — X2 + 0, in contradiction with (A6). Consequently, the support 
of L0 does not contain infinitely many even natural numbers. 

Then, suppose that the support of L0 contains only odd natural numbers after 
k0 EJV. The convergence towards zero of yx(nk) implies that 

yAlp + 1) = Xl --2 . (A8) 
7AP ) ( 1 - ^ R , ) ) 2 ( l " ^ o ( - ^ ) ) 2 j 

By the same argument as in 1), we deduce that the only case where L0 may be optimal 
is the case in which (A7) is satisfied. Then for Xx = X2 + 0, (A8) is equivalent to 
^Lo(R\) = &Lo( — Ri) that is possible, if Rx + 0, only if all the odd natural numbers 
do not belong to the support of L0. The theorem is proved. • 

(Received April 6, 1988.) 
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