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K Y B E R N E T I K A - V O L U M E 18 (1982), N U M B E R 5 

THREE SEMANTICAL INTERPRETATIONS 
OF A STATISTICAL THEOREMHOOD 
TESTING PROCEDURE 

IVAN KRAMOSIL 

On an informal level, three possibilities are investigated, how the results offered by a statistical 
deducibility testing procedure may be semantically interpreted. The interpretations differ with 
respect to the fact whether the logic or meta-logic in question is of classical, many-valued, pro­
babilistic or other nature. 

]n this paper we concern our attention to the classical propositional calculus 
formalized by the means of one of its usual formalizations. All the usual proposi­
tional connectives are supposed to be at out disposal; the propositional indetermin-
ates are denoted by p. , p2, . . . , # " denotes the set of all well-formed formulas of this 
calculus. !FH c :W denotes the set of formulas in which only the indeterminates 
p,, p2, .... p„ may occur. Jf„ denotes the set of all formulas of the form 

2" n 

(0 A V au, alje{p1, 1px,p2, 1p2, ...,p„, 1pn} , 
i = i j=i 

(for the sake of simplicity we write often only {aij}i
2^1J"1), ~\p-t is the negation 

of ph indeterminates together with their negations are called literals. Denote by ^ " c ^ 
the set of all theorems (tautologies), set 3~n = 2f n J^„, STXn = S~ n Jfn, clearly, 

(2) Jf = u •#"„, •TX = sr n X = U 3~^w tfn <= &n, -T:/rn <= srn, 
„ = 1 n = 1 

n = 1,2, . . . 

There is a well-known fact that for each formula A c <Fn there exists B e JT„ such 
that the equivalence A <-> B belongs to 2Tn (Bis a conjunctive normal form for A). It is 
why we shall limit ourselves, in what follows, to X as the basic set of formulas. 

A pair {a,-, a,-} of literals is called complementary, if at is ~\Oj or a} is "la.. A finite 
sequence {al5 a2, .... a,,} of literals is called closed, if it contains at least one comple­
mentary pair, in the opposite case it is called open. 

As can be easily seen, a formula {aij}i'=
n

lij"1 e ./f is a theorem (i.e. a propositional 
tautology) iff all rows <a;_, au, ..., ain} are closed. Hence, there is a simple determi-
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nistic verification procedure for formulas from X: to check row after row and to 
check, in each row, all pairs of literals (until an open row is found, in the case of 
classical logic). The maximal number of pairs which must be. eventually, tested for 
complementarity is \n(n —1)2" for formulas from , / „ , as can be easily seen. 

Because of the exponential complexity of this deterministic verification procedure 
we may try to apply the basic idea of the so called probabilistic algorithms — i.e., 
to reduce the computational complexity of the verification procedure by admitting 
the possibility of error under the condition that the complexity savings are "signifi­
cant" and the probability of error is "acceptable" or "small", in a sense. For this sake, 
let us consider a simple statistical verification procedure Sp(k) = <B(A),/(A)}, 
k = 1.2,.... Here B(k) = [b\, bk

2, ...} is a sequence of mutually independent 
and equally distributed random variables defined on a probability space <£2, / / , P>, 
taking their values in the set of positive integers and such that 

(3) P({« : o)E.O, b\(o> )=./'}) = 2-* , y = 1,2 2k , i = l , 2 , . . . , 

A = 1,2,... 

/ is a mapping of the set A' = {1. 2, ...} into itself. Let A e Xk(A = {uu}i i\ j i,) 
be a tested formula, then £f(k) runs as follows. 

Sample at random natural numbers bk(<o). i= 1,2, ...,/(/c), set i„ = bk(<o), 
n = 1.2.. .. /'(A). Denote by S, = S,(co) the number of rows among {<a,-ni, ain2, ... 
•-•*«.-„.*}}*=! w h ich are closed and set S0 = S0(A, £f, to) = (f(k))~l S,(w)." I.e., 
S0 is the relative frequency of closed rows among the random sample made from 
the total collection of 2k rows. In the classical prepositional calculus the only fact 
about S0, which is of interest, is whether S0< 1 (in this case we have discovered at 
least one open, row, hence. A certainly cannot be a theorem), or whether S0 = 1 (in 
this case we may proclaim A for.theorem with a risk of error). Clearly, in such a case 
the procedure £f(k) may be modified in such a way that the rows are sampled step 
by step until/(A)-th one and the occurrence of the first open row enables to finish 
the test sooner. However, the main purpose of this contribution will be to discuss 
various possible interpretations of the value S0 in connection with possible inter­
pretations of the propositional languages & and X. 

1. CLASSICAL TWO-VALUED PROPOSITIONAL CALCULUS 

In this case the interpretation of formulas from & is defined as a special mapping 
which takes 3P into a two-element set T = {0 (false), 1 (true)} of truth values. This 
mapping will be denoted by Jc and is defined in the usual way, i.e., for A e J*', 
JC(A) = 1 iff A is a classical propositional tautology. As follows from the considera­
tions above, if A e X, then JC(A) = 1 iff all rows in A are closed. Denoting by r(A) 
the number of closed rows in AeX and setting, for Ae X '„, R(A) = 2~" r(A), we may write 
Jc(A) = ln{(R(A)). It is a well-known fact of mathematical logic that in the case ofclas-
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sical two-valued prepositional calculus the notions of tautology and theorem coinci­
de, hence, the theoremhood testing problem can be reduced to the decision problem, 
whether R(A) = 1 or R(A) < I for A e Jf. As the number S0(A, a>) defined above 
gives the relative frequency of closed rows in a random sample of rows from .1, we 
may take S0(A, co) when deciding about R(A). Namely, we define a decision function 
d taking Jf x .(2 into Tin this way: d(A, co) = Int (S0(A, to)), hence 

(4) d(A,w)=\ iff S0(A,u))=\, i.e. d(A,w) = Q, iff S0(A,to)<\. 

The quality of this decision function may be expressed as follows: 

Theorem 1. Let Aer/T„, then ?({to : io e Q, d(A, m) = \\) = I for Ae.TX„, 
?({co : to e Q, d(A, to) = 1}) = (R(A))f{") Tor A e JTn - :T.Wn. 

Proof. If/, e :JT':% '„, then all rows in A are closed, hence, also all the rows sampled 
by if must be closed, so S0(A, to) = d(A, to) = 1, i.e. each theorem is estimated as 
theorem. If A e :X'„ — .TJf'„, then not all rows are closed, but it is possible that the 
random sample contains only the closed rows which leads to S0(A, to) = 1 and to the 
wrong decision that d(A, to) = 1. Because of the conditions imposed to the random 
variables b" the probability of sampling a closed row by b" equals just R(A), the sup­
posed statistical independence of all the used f(n) samples gives the result, i.e. the 
probability of error for A e Jf„ - ,T,'/T„ equals (R(.A))f("\ Q 

Let us remark that the decision function d is the best one among all decision func­
tions taking Jf„ into Tand defined only by the means of the value S0(A, to). More 
precisely, if the tested formula A is supposed to be sampled at random from :X'n 

and if the probability of sampling a theorem, i.e. a formula from :T.'/Tn exceeds 
(R(A))n"\ then, with respect to all formulas from Jf"„ with the same R(A), the deci­
sion function d has the minimal probability of error. If the probability of sampling 
a theorem from Jf„ does not exceed (R(A))Ji"\ then the optimal decision function for 
the same class of formulas consists in a priori setting d(A) = 0 without any further 
investigation. The argumentation of this paragraph can be precised and formalized 
using the well-known Neyman-Pearson theorem as done, for other statistical deduci­
bility testing method, by Spacek in [ l ] , cf also the surveyal work [2]. 

2. MANY-VALUED PROPOSITIONAL CALCULUS 

Here we shall limit ourselves to a particular interpretation J'm taking 3F into a coun­
table set T = {m . 2 " : m = 0,1. ..., 2", n = I, 2, ...} of truth values, here 0 and 1 
belong to T and have the same interpretation as above, i.e. false and true. Namely, 
we define, for A e -T, -Tm(A) = R(A'), where A' is a conjunctive normal form of A, 
so A' e MT. Each open row in A' (if any) can be set in a one-to-one correspondence 
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with a falsifying combination of truth values for A (considered in the classical sense), 
so R(A') and Jm do not depend on the particular conjunctive normal form of A. 
So the truth value of a formula from .¥ equals, by Jm, to the relative frequency 
of verifying truth-values combinations among all 2" possible (for formulas A with 
A' e •>'„): such an interpretation seems to be quite reasonable. 

In this case the value S0(A, to) can be used in two ways: Either as a statistics 
on the ground of which we decide between an a priori hypothesis that Jm(A) = pt 

against an a priori alternative that J„,(A) = p2 + p,, or wc may use S0(A, co) 
in order to construct a point estimate J,„(A) of J,„(A). 

Theorem 2. Let A e X„, let Jf be the hypothesis that J,„(A) = p u let .a?" be the 
alternative that Jm(A) = p2 < p, . Set N = f(n) and define, for M < N, a decision 
function d} = d,(M, N, A, S^(n)) in this way: 

(5) dt(M,N, A,Sf(n)) = 1, if A . S0(A, co) ^ M , i.e. if S,(A, co) ^ M , 

rf,(M, A', A, y(n)) = 0 otherwise. 

Here <7, = 1 is interpreted as the acception of ff, c/, = 0 as the acception of sit. 
Let a > 0 be given, let ux be thea-quantileof the normal (Gauss) distribution /V(0, 1), 
let A* be a random variable defined on <_2, J7.. P> and taking its values in :/{'„. Denote 

(6) M, = Int( /V(U l_ l V ' (N- ' p,(l - p2)) + p2)) + I . 

Then 

(7) 

P({co : co e O. c/,(M,, A', A*(eo), y(n)) = 1} | {co : /(*(«) 6 / „ - ^^„}) ^ a , 

(8) P({co : co e Q, d,(M,, A, A*(«), Sf(n)) = 0} | {co : A*(co) e . f / , } ) = 
\ 

= min {P({co : co e i., c/,(M, /V, A*(co), &>(n)) = 0} I 
M = M i 

j {co : Aif(u))e/T.X~n\). 

Proof. Consider the classical statistical hypothesis testing problem with Jf : 
p = p, against stf : p = p2. We want to choose M e A such that the probability 
that S,(A, co) 5: M were majorized by a supposing that p = p2 and we look for the 
maximal M with this property in order to minimize the other type probability of 

M / A \ 
error. Hence, we look for the minimal M such that Y [ . \p2(\ — p2)

N ' ^ 1 — a. 

The well-known Central Limit Theorem of probability theory sounds that the 
random variable S0(A, co) = A7-1 S,(co) has, for p = p2, approximately normal 
distribution with /( = p2 and cr2 = A~ ' p2(l — p2), i.e. S0 has, approximately, the 
distribution function <P((x — p2)/N/(A_1 p2(l — p2)), where <P is the distribution 
function of the normal distribution A'(0, 1). The demand from the end of the last 

443 



paragraph can be transformed into the form 

ФЃ—ШІZL- )> 
\J(N--p2(\ ~Pг))/~ 

hence. ((MjN) - p2)(yJ(N~l p2(l - p 2 ) ) ) _ l 1% «i- a , and an easy calculation gives 

the value M, as stated above. The values of a-quantiles of iV(0, 1) are tabeled and 

can be found in statistical tabels. The problem can be solved also in a non-asympto­

tical way using the incomplete /^-distribution. Q 

Intuitively said, the decision function </,, saying that Jm(A) = p, > p2 iff 

S,(A, LO) >, M (and saying that J,„(A) = p2 otherwise) has the minimal probability 

of wrong proclaiming that Jm(A) = p2 among all decision functions defined by S, 

and assLiring that the probability of the other type of error, i.e. the probability 

of wrong proclaiming that J„,(A) = p,, is majorized by a. This asymmetric role 

of the both the types of error is usual in mathematical statistics and is motivated 

by the aim to majorize, first of all, the probability of the more dangerous (in a sense) 

type of error. In the case of the classical, two-valued interpretation Jc it would 

mean to majorize, by a, the probability that a non-theorem will be, wrongly, pro­

claimed to be a theorem. This type of error may be considered as the more dangerous 

as it may cause the set of formulas proclaimed to be theorems to be inconsistent and, 

hence, useless for a further use at least from the classical point of view. On the other 

hand, a wrongly refused theorem may be later rejoin;d with the set of theorems as 

their logical consequence. This way of argumentation may be applied even in the 

case of multivalued interpretation J,„ supposing that the formulas with Jm(A) >. t 

(a given threshold value) are treated as "quasi-theorems". The assumption that the 

tested formula is sampled at random by A* is necessary in order to optimize the 

decision function dl in the global sense, not only with respect to a particular formula. 

In order to formulate the next assertion let us introduce the notion of k-binariza-

lion B(a, k) for a real number a. B(a, k) is defined as such a rational number of the 

form m . 2~\ for which \a — m . 2~k\ is minimal among all numbers of tins form 

(A- is fixed). 

Theorem 3. Let A e X„, consider the point estimation Jm(A) of J,„(A) defined 

as Jm(A) = B(S0(A, CO), n). Then J„,(A) is the optimal ;;-binarizcd point estimation 

of J„,(A) in the si. use of the maximal likelihood principle. More precisely, if Pr (p, in) 

is the probability that S,(A, co) = m (i.e. that S0(.f. co) = m . N'"1) under the condi­

tion that R(A) (the relative frequency of closed rows in A) is p, and if c 0 maximizes 

Pr (p, m) taken as a function of p, then J,„(A) = B(c0, n). 

Proof. Let N = f(n), m = St(A,w). p = R(A), then the probability of sampling 

at random just m closed among A' samples equals f )/'"'(I — pfm because 

of the supposed statistical independence and equal distribution of the random 
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variables b1}. In order to find the maximizing value of p for this probability taken as 
a function of p we take the derivation (with respect to p) of the logarithm of this 
probability and set it to be zero. Hence, 

(10) rИCУ'-^)} = 

+ m log p + (N — m) log (1 — p) 
m N — m 

P 1 - P 
= — log { i V ) 

and solving this equation we obtain p = m . N~ ' = S,(A, to)(f(n)) ' — S0(A, to). 
So Jm(A) = B(S0(A, to), n) satisfies the assertion of Theorem 3. • 

3. TWO-VALUED PROPOSITIONAL CALCULUS 
WITH MANY-VALUED META-CALCULUS 

Lei us briefly mention another possibility how to interprete the value S0(CD), this 
time in a meta-level way. Consider the classical two-valued interpretation of formulas 
from !F as explained above in (1). Moreover, wc may associate with !?' a meta­
language .¥* in which some assertions concerning the formulas from 3F or :/f can 
be formalized. Namely, we suppose that assertions of the type "/I e .'¥", i.e. assertions 
proclaiming the deducibility of a formula A, belong to 3F*. Hence, wc may consider 
a many-valued truth evaluation of formulas from !W*. namely such evaluation which 
ascribes to the formula "A E ,f" of S"* the truth value S0(A,OJ). Because of the 
statistical character of the values S0(A, co) this truth evaluation has not necessarily 
the usual features of probabilistic logics, it may happen, e.g., that S0(A, to) > 
> S0(A v B, co) for some A. B e . f , to e Q. On the other hand, the statistical sta­
bility expressed in the so called "laws of large numbers" assures, that these 
discrepancies will tend to zero, in a sense, with /(n) increasing. More precisely, with 
probability one, for each A, B e .'/{', 

(II) P({OJ : to e Q, lim S0(A, to) ^ lim S0(/l v B, to)}) = I . 

This case of statistical meta-level truth value evaluation would deserve a more detailed 
investigation, which would exceed, however, the limited extent of this contribution. 

The results, notions and methods from the domains of mathematical logic, pro­
bability theory and mathematical statistics as used here are of very simple nature 
and can be found in almost all textbooks of undergraduate level of the corresponding 
branches of mathematics; it is why we do not introduce here special references. Some 
more investigations concerning the case (I) can be found in [3], namely from the 
point of view of computational complexity connected with the decision making for 
various kinds of the function ./(«)• [2] can serve as a survey of statistical methods 
in theorem proving and as a source of more detailed references. 

(Received November 9, 1981.) 
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