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K Y B E R N E T I K A — V O L U M E 14 (1978), N U M B E R 2 

Hilbert-Space Methods 
in Experimental Design*) 

ANDREJ PÁZMAN 

This is a partly review paper on the design of a regression experiment especially for the case 
of an infinite-dimensional set of responce levels. The estimability of a linear functional and the 
optimability of a design are expressed in terms of various forms of continuity of the functional. 
A new proof of the Elfving's theorem then follows. Results on designs for a nonlinear estimation 
are stated and a connection between a recent paper of Kiefer and Studden [10] and a previous 
result of the author on interpolation on <( — 1, 1) are established. 

1. INTRODUCTION 

For about 25 years the regression experiment with uncorrelated observations has 
been in the centre of attention of the theory and practice of experimental design. 
During this period various approaches have made it possible to gain a deeper insight 
into the structure of an optimal regression experiment. We mention the game-
theoretic approach (cf. e.g. [9, 11]) the information-theoretic approach (cf. e.g. 
[6, 19, 20]), the methods of approximation of functions (cf. e.g. [9, 10]), the 
methods of convex geometry (cf. e.g. [18]), the gradient and other methods of 
iterative computation of optimum designs (cf. e.g. [2, 5, 7, 19]), etc. Much has 
been done in the model choice of an experiment (cf. e.g. [1, 3]) and in the consid
eration of the proper place of experimental design in the technical and scientific 
sphere of activity (cf. e.g. [12]). 

The list, of course, cannot be considered as complete and it reflects the personal 
choice of the author. However, what is intentionally omitted in it is the approach 
based on the Hilbert-space structure of a regression experiment. This structure is in 
the background of some papers (cf. e.g. [7, 9]) and certainly many authors were 
aware of it, however they did not put special emphasis on it. But, as we shall show 
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in the following sections, the use of the Hilbert-space methods allows to gain a better 
insight into the design of a standard regression experiment (Proposition l) and it 
allows to consider new problems, such as the design of experiments for the nonlinear 
estimation (Section 3) or the design of infinite-dimensional experiments. 

Mathematically the following analysis is based on the geometry of Hilbert-spaces 
[8], on the methods of gaussian processes [13] and the chaos of Wiener [13] and 
on the integral and inner product representations of functionals [8,14]. 

2. THE MODIFICATION OF THE REGRESSION EXPERIMENT 

We recall briefly the structure of a standard regression experiment [5 ,9] : On 
a compact metric space 9C, m linearly independent continuous functions fu . ..,fm 

are given. They span the set of all "response functions" 0 = {9 : 9 = £ ajt; at e R], 
m ; = i 

the parameters a., ...,am of the actual response function J^aJ) are supposed 
;=i 

unknown. The points of 3C are referred to as "controlled variables". For each xsdC 
some elementary experiment can be performed whose outcome is a random variable 
y(x) with the mean E3(>'(x)) = 9(x) and the variance D$(y(x)) = 1. The parameters 
a*., . . . , a„„ or some linear functions of these parameters have to be estimated on the 
basis of JV uncorrelated observations y(xt), ...,y(xN). A design is a probability 
measure £ assigning the probability £(x(0) at the points x(1), ...,x(r) where JV. 
£(x(,)) = Hi is the number of those independent observations among y(xt), ..., y(xN) 
which are taken at the same point xil). 

The following modifications of the standard regression experiment are unavoidable 
in order to obtain a description of an infinite-dimensional regression experiment. 

Instead of the outcomes y(x1), ...,y(xN) we shall (equivalently) consider the 
random variables Y^(B); (B e Si) (SS being the Borel c-algebra on SC) which are 
defined by 

W = !>•(* ; ) ; (Be®). 
Xi<=B 

Evidently E9[?<(*)] = \1B9 ttf, E8[(F.(5.) - B,(f^Bt))) (%(B2) - E s (? 4 . 
k k 

. (B2)))] = N c(Bj[ n B2) for every B, Bu B2e@,9e0, and Y{(U Bt) = ^ ?.(B,) 
I ; = i 

for mutually disjoint sets Bu ..., Bk e (%. Since the factor JV in the covariance is of 
no importance for comparing experiments, we may say that a regression experiment 
in which observations are made according to a design £ is equivalent to an experiment 
whose outcome are random variables Y^(B); (B e $) such that 

(1) EjJlB)) = f 9 di; ; (9 e 0, B e @) , 



(2) E,[(y.(B.) - E,(7j(B.))) ( y ^ B j - Ea(y.(B2)))] = {(B, n B2) ; 

(9 e 0 , BuB2e8f), 
k k 

(3) y.( U B,) = £ y.(B,) ; B1,...,Bke@, disjoint. 
i = l i = l 

In this way the redefined outcomes of the experiment allow us to investigate also 
infinite-dimensional regression experiments, i.e. those with an infinite-dimensional 
set of response functions 0 , which remain supposed continuous ( 0 c C(2C)). Then, 
instead of considering the estimates of the parameters a1; . . . , am or of linear func
tions of these parameters, we shall consider estimates of linear (and in Section 4 
also of nonlinear) functionals defined on 0 . 

3. ESTIMATES OF FUNCTIONALS AND ELFVING'S THEOREM 

The estimates of linear functionals which are defined on 0 are either finite linear 
combinations of the random variables Y4(B); Be 28 or the L2-limits of such linear 
combinations. For further purposes we denote by H the linear space of such poten
tial estimates (under the hypothesis 9 = 0). H is a Hilbert space with the inner 
product 

<Y1,Y2)H = E0(Y1Y2). 

The conditions needed for the estimability of a linear functional on 0 as well as an 
expression for the variance of the best linear estimate may be well expressed in terms 
of the Hilbert space L2(9C, ®, £) as follows (cf. [15]). 

Proposition 1. A linear functional g : 0 -* R is (linearly) estimable without bias 
under the design £ iff 

(4) g(9) = I 19 dç , (9є ) 

for some leL2(3C, 3%, f). The orthogonal projection J. of / onto 0 ? ( = the closure 

of 0 in L2(i£f) is independent from the choice of I, and 

(5) v a r , a = f / 2 d £ 

is the variance of the best (linear) estimate for g. 
The functional g is estimable at least under one design iff g is continuous with 

respect to the C(^)-norm on 0 . A design £* minimizing var{ g does always exist 
and var{. g is equal to the square of this norm. 

Then there is at least one bounded signed Borel measure v such that J". dv is an 
extention of g(.) onto C(3C) preserving the C(^")-norm. Denote v = v+ — v~ the 
Jordan decomposition of v. 



The design 

e v+ + v~ 
Cv ~ v+(5T) + y-(3C) 

minimizes var^ g. 

Proof. Under the hypothesis 9 = 0 there in an isomorphism of the Hilbert space H 
onto the Hilbert space L2(3C, 38, £), YeH -*fYe L2(.f, a, £), defined by the rela
tions 

E0(yy c(B))= f jrd£; (Be 38). 

However, for an arbitrary 9 e 0 , the mapping Y -» j r is only a linear bijection 
of H onto L2(^, 38, £) such that 

E9[(y. - E9(Y)) (y2 - E3(y2))] = f/n/r. d£ , Y, y2 e w . 

Moreover, for every 9 e 0 , y e if we have 

Es(y)= fjr3d^ 

since, according to (l), this is true for Y = Y^(B). Thus an estimate Ye H is an un
biassed estimate of g iff 

f jy9d£ = a(9) ; (9 є 0 ) 

and its variance is )'/2 d£. 

Since f(jy - /) 9 d£ = 0; (9 e 0 ) implies ( / r - /) X 0 ? , the projection of j r onto 
0 ? coincides with that of any I satisfying (4). Evidently the estimate Z e H such that 
fz = 1^, is the best unbiassed estimate. 

If g is C($")-continuous on 0 then, according to the Hahn-Banach theorem, 
it may be extended on C(SC) without a change of the C(^)-norm, and using the Riesz 
representation theorem [14], we may express this extention as the integral with 
respect to a conveniently chosen signed measure v. From (4) it follows that g is 
estimable under £v. If g is estimable under some other design % then 

\g(&)\2 ^ \a($)\2 

var? g = sup ' - / [ ^ sup 

= sup 

8ФO f 9 2 dč, ÖФO sup|9(> 
9e J »є x є X ' 

/*o sup |/(x) 
feC(X) x e X 

*$-m'* 



and 

'dv dč v > var. 
d £ v ' ~ îv 

~'d"v = g('); (Эє ) . П 
d£v 

Corollary (Elfving's theorem [4, 9]). 

Let 0 be finite-dimensional: 

0 = {9 : 9 = J aJr, («teR)} 
I 

and let c be the vector defined by 

g(9) = c'oc; (9 = £ a . L e < 9 ) . 
I 

Denote aco {f(x); xe3C} the convex hull of the set {f(x); x e f } u { ~f(x); XBSC} 
where f'(x) = (fi(x), . . .,f,„(xj) is the vector of regression functions. Then a design 
/i minimizes var^ o iff there is a J'-measurable function cp on #", with |<p| == 1 such 
that 

a) fie = '<p(x)f(x) n(dx) for some ji e R 

b) $q>(x)f(x) fi(dx) is a boundary point of aco {f(x); x e . f } . 

Then p~2 = varM g. 

Proof. Let us denote by Jf the set of bounded signed measures % on (9C, 3d) such 
that 

g(9) = f 9 dx ; (9 e 0). 

If £ is a design which allows the estimation of g, then x = Ifi e Jf, hence, accord
ing to Proposition 1, 

ЧdfJJУd{Ҷďi;)-<9 

Thusvar^g ^ var^g with the equality iff £ = ^x; in the latter case var? gf = (d*/d£)2. 
It follows that a design /i minimizes var{ g iff 



78 a) jx = £v for some v e J/~, 

b) 
dv 

= min 
dx 

d£v 
xeЖ àÇx 

then |dv/d^v|2 = minvar^a. This statement is in fact a generalization of the state-
i 

ment in the Corollary (valid also for 0 being infinite-dimensional) as we see if we 
take 

0 = {$ : 3 = £ <x;j;; («; e R)} , o(9) = c'a , 
I 

p(x) = sign j — (x) ) and // = £v . D 
\d£v / 

We note here that the set aco {f(x); x e f } is a convex, balanced and absorbing 
set in Rm, and so its Minkowski function 

e(c) = inf {X : ( lp ) c e aco {f(x); x e 2C}} 

is a seminorm in Rm, which is a norm in the span of {f(x); x e i ) . According to 
Proposition 1 and to the Corollary, Q(C) is the C(S£) norm of the functional g(9) = 
= c'a and both are equal to (min var^ g)1/2. 

4. DESIGNS FOR THE ESTIMATION OF HOMOGENEOUS 
POLYNOMIALS 

The Hilbert — space methods can be used advantageously also for the design 
of experiments in which homogeneous polynomials on 0 are to be estimated. An 
«-th degree homogeneous polynomial h is a function on 0 which may be expressed as 

h(9) = qn(9, . . . , 9 ) ; (3 e 0), 

where q„ is an n-linear functional on 0". For example if 0 is finite-dimensional and 
parametrized: 

0 = {5 : &(x) = £ aJix)} , 
i = l 

h may be expressed as 

m = I ft. i„ ai, • • • «i. ; (S(x) = Za;L(x)). 
ii,...,i«=l 1 

Let us denote by Q the linear space of all polynomials of the random variables 
{Y^(B); BE.$)} and of the L2-limits of such polynomials. Under the hypothesis 



3 = 0, Q is a Hilbert spaee with the inner product 

<Y1,Y2>Q = E0(Y1Y2); (YuY2eQ). 

Unbiassed estimates for h are elements of Q, however for a non-linear h, the variance 
of the best (minimal variance) unbiassed estimate depends on 3, which complicates 
the construction of a priori designs. Hilbert-space methods can be used to order 
designs in a way which does not depend on 3 but which respects the variance of the 
best estimate. Further, the Hilbert-space methods allow to reformulate the design 
for nonlinear estimation in terms of the problem of design of linear estimation 
(in another regression experiment). 

The main steps of the used construction and the results are presented here in 
Propositions 2 — 5. We omit the proofs, since Propositions 2, 3 and 5 are the results 
of the theory of the Wiener chaos (cf. [13], Chap. 5) and Proposition 4 and its 
corollary, Proposition 6, are proved in [17]. 

We note that the mapping Ye H -*fre l}(9£, Si, £) is that mentioned in the proof 
of Proposition 1. 

Proposition 2. Denote by [L2((^)]01 the i-th symmetric tensor power of the Hilbert 
space L2(£) = L2(iF, 3$, £). Under the hypothesis 3 = 0 there is an isomorphism 

V of £ [L2(£)]0 i onto Q defined by 
i = 0 

Ш - - r - E l P ; (YeQ). 

Thus D0(Y) = E 0(Y 2) = | |j r | |
2, I || being the norm in £ [L2(£)]0 i . 

Proposition 3. For every I e £ [L2(£)] 0 ' and every 3 e 0 we have 
i = 0 

/ 00 Q ® i ' 

< , > being the inner product in £ [!?(£)] 0 I . 
i=0 

Proposition 4. For every / e [L2(£)] 0 " and for every 3 e 0 the following inequality 

is valid 

Docno] = o.[no] = D«0]"i (") u^}1. 

D9[5 /(/)] being the variance of the random variable *P(/) e Q under the hypothesis 

that the response function is 3. 



80 Proposition 5. Let h be a homogeneous polynomial of degree n, defined on 0. 

Let 0e" be the linear space of functions on X" which is spanned by the set 

{$®»:&®Xx1,...,xn) = l>(x1)...$(xn);(Se0)}. 

Then there is a unique linear functional g on <9°" such that 

tf(3®») - V(«0 h(9); ( 9 e 0 ) . 

Proposition 6. Let £ be a design of the experiment and let /;, g be as in Proposition 
5. Then: 

1) h is estimable (without bias) under the design § iff a is estimable under the 
design £" on 3Cn. 

2) With every unbiassed estimate Y of h we may associate an unbiassed estimate Z 
of g so that for every Se 0 

D ( Z ) S D , ( Z ) S D ( Z / Z 7 » ) M 
s=o \ s j s! 

it unbiassed estimate for g (under the des 

D(Z*) = min D9(Y) = D(Z*)"x M H ^ T , 
Y s = 0 \ s / s! 

3) If Z* is the best unbiassed estimate for g (under the design £"), then for every 
3e0 

where the minimum is taken over the set of all unbiassed estimates for h. 

The last proposition asserts that if estimating a homogeneous polynomial h, an 
adequate criterion of optimality of the design is the variance of the best estimate 
of the associated linear fuctional g. However, we have to look for an optimum 
design not among all designs on 3C" but only among those which are of the form 
£," for some £ on 9C. 

5. AMBIGUITY OF OPTIMUM DESIGNS FOR THE INTERPOLATION 
OF INFINITE-DIMENSIONAL POLYNOMIALS ON < - l , l > . 

Hilbert-space methods may be used to complement the theoretical study [10] 
published recently. 

Let us consider a regression experiment on the set 9C = < — 1,1 >, in which a response 
function may be any polynomial on < —1,1> (without restrictions on the degree of 
the polynomial). Can we propose designs for the interpolation of the response 
function is such a case? The answer is negative, as it is easily seen, but the approxim
ative approach to the problem has some interesting features. 



The set 0X of all polynomials is dense in l}(3C, SI, £) for every design £. Thus, 
according to Proposition 1, a linear functional g is estimable under the design c, 
iff there is a unique / e L2(() such that g(.) = \l. d{; hence var? g = J/2 d£. For 
example the evaluation functional (in the point x): 

gx:Be&x i-> 9(x) e R 

is estimable iff £(x) > 0; then var{ g = l/£(x). It follows that there is no design 
on < —1,1> which allows an unbiassed estimation of the whole response function 
S e 0 w . 

Thus we proceed by approximations of 9. Let us denote l(n, x) = < —1,1> n 
n (x — l/«, x + 1/n). Consider a design £ which is absolutely continuous with 
respect to the Lebesgue measure on < —1,1> and let us denote 

ľ ðd̂  
_ J J(n,x) gx($ | n, fl -. •> f(";'> ; ( S e 0 , i. = 1, 2, . . . , x e < - l , l » . 

f [/(«, x)] 

Let Z^(x) stand for the best unbiassed estimate for gx(. | n, £) under the design £. 
{Zf(x);xe^} is a second order random process with the mean E,(Z*(x)) = gx(9 \n, £) 
and with the covariance function E ^ ^ x . ) - E9(Zf(xi))) (Z„(x2) - E9(Z„(x2)))] = 
= i,\l(n, Xj) n l(n, x2)]/<j;[/(n, x t)] i^[/(n, x2)]. Both, the mean and the covariance 
function, are continuous (cf. [16], Lemma l) and the random process {Zf(x); xe%) 
is a biassed but efficient estimate for the response function 8, with the bias being 
evaluated by 

sup | E s Z « ( x ) - S ( x ) | _ sup |3(x/) - 3(x2)[. 
X 6 < - 1 , 1 > *1,JC26<-1,1> 

| * i - * 2 | < l / » 

Hence with « -> oo the bias tends to zero with a rate which is given by the modulus 
of continuity of the response function 3: 

(6) liш и . sup | E , Zf(x) - S(x)| _ sup l ď ( ^ ) ~ % - ) ! . 

The sequence of estimates {Zf(x); x e < - l , l > } ; n = 1, 2, . . . is the best under 
the design £ in the sense given in the following proposition. 

Proposition 7. Let {S„(x) : x e < - l , l > : (n = 1,2, . . . )} be a set of elements 
of L2{Y?(B); B E J } (. i.e. a set of linear estimates under the design £) with the 
property 

(7) |E, S„(x) - &(x)\ - sup |S(x.) - S(x2)| ; (9 e ©„ , x e < - l , l > , 
x,,x2el(n,x) 

n = 1,2, . . . ) . 



Then 

(8) l iminf P ' l - S " ( X j - > 1 ; (x e < - l , l > , 9 e 0) 

W — D9[Zf(x)]-

Proof. 5„(x) e L2{Z^(5); Be 38} implies that the functional 

hx(. | n) : 3 e Ox w E9[5„(x)] e R 

is linear and is estimable under the design <jj. Thus there is a unique cpx(n) e L2(£,) 
such that 

hx(9\n) = | <px(n)Sd£; (9eOK). ») = I </>*(") 
Let us suppose that there are 5 e 2d and c > 0 such that B n /(«, x) = 0, £(B) > 0, 

and (px(n) > c on B. Then we have a compact set C c B with £(c) > 0 and a func-
tionj, continuous on < —1,1> such t h a t / = 0 on/(n, x) , j = 1 on C. Hence for every 
£ > 0 there is a polynomial Se e 0X such that —e = 9£ = £ on C and 1 - £ _ 9£ = 

= 1 + £ on I(n, x). Thus for £ sufficiently small 

E9£(S„(x)) - Be(x) - L , ( « ) 3£d£ - 3,(x) > f <px(«) 3£ d£ - 9£(x) > 

_ (1 - B) C tj(C) - £ > 2E = sup |9£(xL) - S,(x2)| . 
xt,x2el(.n,x) 

This violates the assumption (7) and consequently outside of l(n, x), q>x(n) = 0 a.e. 
[£]. Reasoning similarly for cpx(n) < -c; (c > 0) we obtain: £({<px(n) + 0} -
- I(n, x)) = 0 It follows that 

[Jl.-.w-.J-w.^w-JC*-^. 
On the other hand the function identically equal to 1 is an element of Qm. Thus, 

according to (7), lim j-y(px(n) d£ — 1. This together with (7) imply (8). • 

We see that it seems to be quite reasonable to consider the optimality of a design £ 
according to the properties of {Z\(x); x e < —1,1>} for a large n. So the G-efficiency 
of two designs f, n may be compared by the expression 

sup D9(Z|(x)) inf n\l(n,xj\ 
x e < - l , l > _ x e < - l , l >  

sup D9(Zl(x)) inf €[J(n,x)] 
x e < - l , l > x e < - l , l > 

for n tending to infinity. Yet intuitively we may expect that, unless perhaps in the 
neighbourhood of the points —1,1, the normed Lebesgue measure on < - l , l > , X, 



will be G-optimal. Indeed, it may be proved (cf. [16], Theorem 3) that for every 

{ <X 

lim lim inf inf U[/(n,_x)] : - 1 + l / / c ^ x ^ 1 - 1/fc} > { 

*-«, „-.« i n f { £ [ / ( n , x ) ] : - l + l | H x g l - 1/fe} 

However this choice of the optimal design depends on the needed rate of con

vergence of the bias to zero. Suppose then that T is a homeomorphism of < - l , l > 

into (—oo, co) and instead of (7) let us require 

|E9(S„(x)) - 9(x)\ g sup \9(Xl) - 9(x2)\ ; 
lt(*i)-t(x)|<l/n 

($e&m,xe(-l,l),n = 1,2, . . . ) . 

Then the design x, the image by T - * of the normed Lebesgue measure on T(< —1,1>), 

is the optimal design (cf. [16], Theorem 3). Especially if we require 

|E9 (S„(x)) - 9(x)| S sup \9(Xl) - 9(x2)| , 
I arccos x i - arccos x I < 1 /n 
I arccos x2 - arccos x | < 1 /n 

then dx/dA ~ (l — x 2 )" 1 / 2 , which is the optimum design considered in [5] and in 

[10]. 
(Received October 3, 1977.) 
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