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K Y B E R N E T I K A — V O L U M E 13 (1977), N U M B E R 4 

An Algorithm for the Computation 
of Polynomial Splines of Odd Degree 

VÍTĚZSLAV VESELÝ 

On computers with small memory size it may be a serious problem to compute interpolation 
polynomial splines as far as the degree is required to be greater than three. Here an algorithm 
for splines of odd degree is described that considerably reduces the number of linear equations 
to be solved. Also a simple FORTRAN subroutine is given which enables a direct application 
of this method. 

INTRODUCTION 

The polynomial splines are continuous piecewise polynomial functions with many 
applications to problems in numerical analysis. Especially they prove to be an effec­
tive tool in the elementary processes of interpolation. Because of their easy computa­
tion the cubic splines (polynomial components are of degree 3) are mostly used 
for this purpose (see chapter II. in [ l]). In this case a special procedure is used 
leading to the solution of a system of linear equations with a tridiagonal matrix. 
The number of equations and unknowns is equal to that of the points of interpola­
tion. For higher-degree splines this approach becomes considerably more complex 
and practically useful only for uniformly spaced mesh points. 

To solve the problem in general it is possible to write down in a straightforward 
manner a system of (m + 1) N equations in (m + 1) JV unknowns where N is the 
number of mesh intervals and m the degree of spline. For large m and At one encoun­
ters the problem how to solve such a large system on a computer with small memory 
size. 

The aim of this contribution is to describe a special procedure for splines of odd 
degree that enables to reduce the number of linear equations to be solved to the 
number of prescribed initial conditions. As we usually prescribe the values of the 
function and some of its derivatives at mesh points, this number is not much greater 
than N. The simple Fortran subroutine presented at the end of the article enables 



not only to generate this reduced system but also to compute the coefficients of the 
polynomials by means of which the searched spline is pieced together. 

The restriction on the odd degree is necessary because there is an essential differen­
ce between splines of even and odd degree (see [l]). One finds, for example, that 
polynomial splines of even degree interpolating to a prescribed function need not 
exist. But for practical use this restriction does not seem to be substantial. 

NOTATION 

In further considerations SA(x) denotes a spline function of degree In - 1 (n _i 1) 
defined on a mesh A : a = x0 < x. < . . . < xN = b. Let /.,- = x ; — x f_. for 
i = 1, 2 N. By definition SA(x) coincides on each mesh interval [XJ__, X,] 
with some polynomial P ; of degree 2n — 1. So 

SA (x) | [„ i_„. , ] = P , . ( x - X i _ 1 ) = 

X - X ; _ , (X — X ;_ , ) 2 (X — X ; , , ) 2 " " 1 

_ .„ + Cll _____ + _„ _______ + ... + .,,, - ^ L - • 
If we denote 

( 0 / = t^. for / = 0 , 1 , 2 , . . . , 
y w \ = 0 for j < 0 , 

we can write 

(!) S-00lrx.-_.-_i = P;(x - xf__) = c„ + ci2 «i(x - „ , . , ) + . . . 

• • • + c / , 2 „ w 2 n - i ( x - X i _ , ) . 

For derivatives of order p = 0, 1, 2, . . . , it holds 

".P,(0 = »;-,(>) 
and therefore 

(2) P(ip)(x - Xi_0 = c;,p+1 + c,.iP + 2 Ml(x - Xi_,) I- . . . 

• • • + Ci ,2„«2»-p- l (^ - X ; _ ! ) . 

Definition. We call SA(x) a polynomial spline with deficiency k (1 __j fe _S n) if 
it has continuous derivatives of orders 0 ,1 , . . . , 2n — k — 1 at interior mesh points. 

Further k is always used in this sense. 
The following matrices will be useful in later considerations: 

/ l -_(.) M2(t) . . . t .2„_„_1(^ 

(3) u(.)= ° . "'?) ••• "2"-r2^ 

\o 0 0 . . . 1 



284 of type 2n - kj2n - k, 

(«2»-.(0 "2»-i+l(0 ••• "2„-l(t)\ 
"2»-«-l(0 "2»-k(0 ••• "2„-2(0 

«l(0 "2(0 ••• «*(t) / 
of type 2R - kjk, 

(5) * , = ( ? : : : : ° ) 
\oo ... 1/ 

unit matrix of type q\q. 

(6) c = ( c n , . . . , clj2„, c21, . . . , c2j2„, . . ., Cjvi, • •., CN,2„) 

(7) C* = (CU> • • •> c l ,2n-t> C21> • • •> c2,2n-ki • • •> CJV-1,1> • • •> CiV-l,2li-*J 

(8) d = ( d n , . . . , d1([, d21, . . . , d2k, . . . , djv-i.i, . • . , rfjv-i,*, djvu • • •> rfN,2n) 

where 

•̂7 — ci,2n-k+j f ° r i = 1, 2, . . . , JV ~ 1 and j = 1, . . . , k 

^NJ — CJVJ tor j = 1, . . . , 2n . 

CONTINUITY CONDITIONS AT INTERIOR MESH POINTS (N ^ 2) 

Requiring derivatives of orders 0 ,1 , . . . , 2n — k — 1 to be continuous at each 
interior mesh point we get (N — 1) (2n — k) conditions 

(9) P<p)(h;) = P(,+\(0) for i = 1, 2 . . . , JV - 1 and 

p = 0, 1, . . . , 2 n - k - 1 . 

In view of (2) we can write them in the form 

(10) c ; ,p + 1 + cUp+2 ufa) + . . . + C|^,«a-- ,- i(*i) = q+i.p+i-

Using matrix notation (3) — (6) these continuity conditions acquire the form 

lU(«.) U(«,) -£,„_, 0 0 . . . 0\ 
0 0 U(h2)U(h2) -E2n_k ... ? eT = 0. 

0 0 0 0 . . . % . . ) % • ! ) -E 2 n - f co/ 

2n 2n - k k 



Notation (7), (8) enables to rewrite this equation into another equivalent form: 

(12) AcT

k = BdT 

where 

(U(ht) -E2n_k 0 . . . 0 0 \ 

0 U(h2) -E2n_k : 

B = 

A = 
0 

V o 
' -ЦhO _o 

0 -U(h2) 

0 

V o 

U(hN_2) -E2n_k 

0 U(hN_,)J 

0 0\ 

- Ц Й J Í - 2 ) o o o 

o -ц^-o E2„-4 o; 

2и - fc 2n - fc fc 

In view of (3) we have j-AJ = 1 which means that A is invertible. 

Thus we have proved the following 

Theorem. SA(x) is a spline with deficiency fc (1 ^ k _l n) if and only if it satisfies 

(13) e[ = A ^ B d T . 

INITIAL CONDITIONS 

With respect to (N — 1) (2n — fc) continuity conditions for a spline of deficiency 

fc there are still leaving 2nAt - (N - 1) (2n -* fc) = k(N - 1) + 2n degrees of 

freedom. Therefore to determine Sjx) completely it is necessary to add some 

fc(JV — l) + 2n initial conditions. One usually prescribes fc conditions at interior 

mesh points (the values of derivatives of order 0, 1, . . . , fc - 1) and n end conditions 

at x = x0 and x = xN. 

The standard form of initial conditions (see (1), (2), too): 

— at interior mesh points xt(i = 1, . ...At— 1) we prescribe the values of derivatives 

of order p = 0,1, . . . , k — 1 

(14) ' i + l , p + l — Уi > 

- end conditions at x0, xN assume one of the following three forms 

I. we prescribe the values of derivatives of order p = 0,1, . . . , n — 1 

(15) cN,P+i + cNtP+2 ut(hN) + ... + cN>2„u2n_p_1(hN) = J 4 P ) ; 



II. we prescribe the values of derivatives of order 

p = 0, n, n + 1, . . . , 2 n - 2 

(16) c l j P + 1 - yM 

CN,P+I + cNiP+2 UiQtn) + ... + cJV>2„ u2n_p„1(hN) = yff ; 

III, we prescribe periodicity of derivatives of order p = 0, 1, . . . , 2« — k — 1 

(17) c l j P + 1 = cN:P+1 + cN>p+2 u^hx) + . . . + cN!2nu2n_p_1(hN) 

and the values of derivatives of order p = 0, 1, . . . , k — 1 

c 1 > P + 1 = / o P ) ( = j 4 P ) ) -

Theorem. ([1], Theorem 5.8.2). There exists a unique polynomial spline Sjx) 
of degree 2n — 1 and with deficiency k (1 :g k ^ n) satisfying standard initial 
conditions of type I. (equations (14), (15)) or of type III. (equations (14), (17)) 
The same is true for initial conditions of type II. (equations (14), (16)) provided 
k(N - 1) _z n - 2 holds. 

In general the initial conditions may assume any other form leading to k(N — 1) + 
+ 2n equations linear in ci} supposing, of course, the corresponding spline exists. 

The principal idea of the computation of a polynomial spline with given initial 
conditions and of prescribed degree and deficiency is based on the equation (13). 
The searched spline must satisfy (13) and the initial conditions at the same time. 
Substituting from (8) and (13) for cu in the initial conditions we obtain a system 
of k(N — 1) + 2n linear equations in k(N — 1) + 2n unknowns di}. We solve this 
system and compute the remaining ci} using (13) once more. 

Now we shall deal with the matrix A_ 1B in detail. 

THE COMPUTATION OF THE m-th ROW OF A JB 

Let us write m in the form m = (i — 1) (2n — k) + j where i e {1, . . . , N — 1} 
and J e {1, . . . , 2n — k}. In (13) this row is corresponding to ci}. 

First we compute the m-th row am of A"1. 
Let us denote 

am = (am
x, . ..,am

an_k, a21, . . . , am
<2n_k, ..., aN_1A, ..., am_U2„_k) 

and 
am = (a™, aT2, ..., am

2n_k) for i = 1, 2, . . .,N ~ 1 . 

As A"1 A = E(N-i)(2„-k)> we have -4T(.4~1)T = E.^N_1){2n_k). Thus we can compute 
am solving the system of linear equations 

AT(om)T = (0, . . . , 0 , 1 , 0 , . . . , 0 ) T 

t 
m-th position 



Considering the form of AT we get 

(18) a~ = a~ = ... = <_ . = 0 , 

a7\ = a"h — • • • — a7,j-1 = 0 , a '"j = 1 . 

For a7j with (i — 1) {in — k) + j > m we obtain the following recurrent formula 
supposing the In — k elements preceding a~ are already known 

. - l 

(19) ar^^-u-z^-p^.Xp-
P = i 

. - l 
In (19) the sum ^ Uj^^h,) a~p is to be left out whenever j = 1. For i = 1 we set 

<„- = o. 
Considering the form of B we can write for the m-th row of A~ 1B 

(20) bm = {b~u ..., V"k, b~u ..., Vlk, ..., b~_uu ..., b~_Uk,a%_ul, ... 

• • • , ^ - i . 2 „ - ^ 0 L : ^ . I 0 ) 
k 

where 

{b7u bf2, ...,bl)= -{a71, a%, ..., <2 ._k) T%.) 

for i = 1,2, ...,N - 1. 

The following Fortran subroutine computes the rows of A~ !B using (18), (19), (20). 

SUBROUTINE C(II,JJ,R) 
DIMENSION AM(2,21),R(561) 
COMMON N,MN,K,X(51),FAK(22) 
NM1 = N - l 
MNK = 2 * M N - K 
Jl = JJ 
IP1 = 1 
IP2 = 2 
D O l I = l,MNK 

AM(1,I) = 0. 
1 AM(2,I) = 0. 

AM(2,JJ) = 1. 
IBEG = (II-1)*K 
D O 6 I = II,NMl 

DO 5 J = J1,MNK 
MNKJ = M N K - J 
HSI = (X(14-1) - X(I))**MNKJ 
AM(IP1,J) = AM(IP2,J) 
IF(J.EQ.Jl)GOTO 3 



HI = 1. 
JM1 = J - 1 
D O 2 I T = l , J M l 

JIT = J - I T 
HI = HI*(X(I+1)-X(I)) 

2 AM(IP1,J) = AM(IP1,J)-AM(IP1,JIT)*HI/FAK(IT+1) 
3 D O 4 I S = l,K 

ICUR=IBEG+IS 
IFAK = MNKJ + IS + 1 
HSI = HSI*(X(I +1) - X(I)) 

4 R(ICUR) = R( ICUR)- AM(IP1,J)*HSI/FAK(IFAK) 

5 CONTINUE 
IBEG = IBEG + K 
Jl = l 
JIT = IP1 
IP1 = IP2 

6 1P2 = JIT 
D O 7 I S = l,MNK 

ICUR = IBEG + IS 
7 R(ICUR) = AM(IP2,IS) 

RETURN 
END 

Input parameters: l stored in II 
; stored in JJ 

Output parameter: R containing the m-th row of A~lB where m = (l — l) . 
. (2n — k) + j . Zeros must be stored in R before calling C 

Common variables: N (number of mesh intervals) 
MN (contains n where 2n — 1 is the degree) 
K (deficiency of spline) 
X (contains mesh points x0, xx, ..., xN) 
FAK (contains 0!, 1 ! , . . . , (2n - 1)!) 

Dimensions of X, AM, FAK, R are appointed with respect to the maximum 
values of degree 2nmax — 1 and the number of mesh intervals Nmax in this way: 

X(iVmax + 1) , AM(2,2nmax - 1) , FAK(2nmax), 

*{nmax(Nmax - 1) + 2nmax) . 

In the presented subroutine is nmax = 1 1 , Nmax = 50. 

The subroutine was tested on TESLA 200 computer. As far as the computation 
time is concerned, for example, interpolation with a spline of degree 5, deficiency 1 
with standard initial conditions of type I. on 30 mesh intervals takes approximately 
5 minutes time. 



This procedure was implemented also on HP 9820 A programmable desk calculator 

with 400 register memory size equipped with one cassette memory unit. 

(Received January 14, 1977.) 
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