
Kybernetika

Ivan M. Havel
Finite branching automata

Kybernetika, Vol. 10 (1974), No. 4, (281)--302

Persistent URL: http://dml.cz/dmlcz/125691

Terms of use:
© Institute of Information Theory and Automation AS CR, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125691
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 10 (1974). N U M B E R 4

Finite Branching Automata

IVAN M. HAVEL

A new abstract device, the finite branching automaton, is introduced and explored. The main
source of motivation for this notion can be found in the area of state-space problem solving.
The finite branching automaton differs from the ordinary finite automaton in its accepting be­
havior: instead of strings it accepts languages and thus it recognizes a family of languages rather
than a single language. The structure of recognizable families is investigated and a necessary and
sufficient condition for a family of languages to be recognizable is obtained. Some operations
on families of languages are also examined in order to determine whether they preserve re-
cognizability or not.

1. INTRODUCTION AND PRELIMINARIES

Finite automata were originally developed as abstract models of discrete finite-
state devices that change their internal states in response to inputs. There is also
another motivation, which comes from the theory of state-space problem solving
in artificial and human intelligence. The latter motivation explains the idea behind
the new model introduced in the present paper.

The state-space search methods are well-known techniques in problem solving
(cf. [4], Chapter 3). In principal, a finite sequence of elementary operators is construct­
ed, leading from a given initial state to one of the goal states of a particular problem
domain (think about configurations on a chessboard or about situations in a robot's
environment; the operators are chessplayers's moves and actions of the robot, re­
spectively). Let us call any such sequence a plan (because it serves as a prescription
how to achieve the goal). We shall restrict ourselves to the case when the set of all
states is finite: it is the most usual case for applications. Now, the notion of a finite
automaton is a natural and obvious mathematical abstraction of such a state space.
One just interprets the input alphabet of the automaton as the set (of names) of
elementary operators (the operators are usually partial functions, but this makes no

principal difference). Thus the set of all plans in a particular problem domain is
nothing else than the regular language recognized by the corresponding finite auto­
maton — and this seems to be all in which one field can contribute to the other.

However, there exists a radical generalization of the concept of a plan which is
important in problem solving and quite appealing from the automata-theoretic
point of view. It is the case of so called "branching" or "conditional" plans. The
above concept of a plan as a sequence does not formally distinguish the plan itself
from the execution sequence, i.e., the sequence of real actions (or moves) physically
performed when the goal is approached. Assume now that a lack of prior information
about some particular future state makes it necessary to consider two or more out­
going operators in parallel (hence the term "branching"). This occurs, in particular,
when the result of some operator is not uniquely predictable (cf. [l]) . In such a case
we have to consider plans that are actually sets of finite sequences rather than a single
sequence. Furthermore, there are no goal states but only "goal opportunities": it may
not be clear whether a given state is a goal or not. Consequently, prefixes of sequences
of the plan may also belong to the plan. It is obvious that now one has to distinguish
strictly the plan (as a set) and the execution sequence (one of the elements of the set).

This generalized case occurs, for instance, in the image-space approach to problem
solving [6] related to the idea of STRIPS [2]. Roughly speaking, instead of states
we have images, which comprise only a partial knowledge about the real state of
affairs. Formally, an image can be represented by a theory in first-order predicate
calculus; the knowledge about the world consists of the assertions that can be proved
as theorems in the image. Instead of goal states we have a goal formula: the task
is to change the world to make this formula true. Thus when planning one searches
for a proper sequence of operators leading to an image in which the goal formula is
a theorem. The applicability of the operators is specified by their conditions, furmulas
which may or may not be provable. Sometimes, of course, only a disjunction of such
conditions is provable in a particular image, and consequently no single operator can
be found applicable. This disjunction indicates a set of operators to be considered in
parallel at the time of planning. (During the execution, of course, only one of the
operators will be used according to real circumstances.) The situation is even more
intricated when one can prove the goal formula only in disjunction with one or more
operator conditions. This reflects the mentioned "goal opportunity". Thus, at the
time of planning, the success has to be considered in parallel with some continuing
operators. (We suggest the reader to return to this discussion after reading first two
definitions in the next section.)

Mathematically we can treat plans as formal languages, that is, sets of finite
sequences. The set of all plans for a given problem is a family of languages;
families of this type will be our main concern. (Perhaps a more intuitive mathemati­
cal model for a branching plan would be a tree in the graph-theoretical sense, but
there is a formal reason for the language approach. In any case, a tree can be associ­
ated in a natural way with any given language, or at least with its prefix closure.)

The generalized state space (e.g., the image space) will find its formal conterpart
in the so called finite branching automaton. The difference from conventional finite
automata lays mainly in the form of acceptance: instead of strings the new device
accepts languages and instead of languages it recognizes families of languages. From
a different viewpoint these peculiar automata are a generalization of AND-OR
graphs, another well-known concept from heuristic problem solving.

This paper consists of five sections. After this introduction, in Sec. 2 we begin with
an exposition of finite branching automata and recognizable families of languages.
Some interesting structural properties of recognizable families are then investigated
in Sec. 3. Their characterization, which is our main result, is established in Sec. 4.
In Sec. 5 we conclude studying some closure properties of the class of all recognizable
families (with mostly negative results).

Apart from the motivation, the paper should be considered more as a treatise in
"unusual automata theory" than as a contribution to problem-solving techniques.
The paper is self-contained; however, a reader with a prior knowledge of automata
theory will find the reading easier.

An alphabet is a finite nonempty set of objects called letters (usually denoted a, b,
c, ...). For formal reasons we assume that all alphabets are subsets of a fixed infinite
set of letters. In the following, X will always denote an arbitrary, but in a local context
fixed alphabet. We denote X* the free monoid generated by X under concatenation.
The identity element in X* is the empty string A el*. Elements of X* are finite
sequences of letters. They are called strings and usually denoted u,v,w,... For
u e X*, Ig (u) denotes the length of u (the number of occurrences of letters in u).
In particular, lg (A) = 0.

A language (over X) is any subset L £ X*. We use the customary notation for
concatenation {L\L2 : = {MI; j u e L l 5 v e L2}), power (L° : = {A}, L" : = LL"~l),

ant the star closure (L := \J L") of languages, including the usual simplifying con-
n = 0

ventions, e.g., for a, b e I, A u a*b is the same as {A} u {a}* {b}.

We denote

<?(£) : = 21' - {0}

the set of all nonempty languages over X. A family of languages over X (in short,
a. family) is any subset X £ •&(£)• Note that we admit empty families but not families
with empty elements (this restriction yields some formal simplifications and conforms
with our motivation: an empty plan is the same as no plan at all).

Let M, v e X*; u is a prefix (proper prefix) of v, denoted u :g v (u < v) iff v = uw
for some w e X* (w e X* — {A}). For L £ X* we define the prefix closure of L as

Pref (L) : = {u e X* | (3D G L) M ^ v} ,

284 ant the set of first letters of L as

Fst (L):={aeZ\ (3v e L) av e L} = Pref (L) n Z .

For L £ Z* and w e £* we define the derivative ofLwith res p. to u [5] as the language

duL : = [w e Z* | uw e L} .

Note that u e Pref (L) iff duL 4 0, and u e L iff A e <9„L.

A finite automaton is a quintuple

^:=<S,2 ; ,M 0 ,T> ,

where Q is a finite nonempty set (of states), Z is an alphabet, <5 : Q x Z -> Q is the
transition function, q0 e Q is the initial state, and T £ g is the set of final states.
We extend <5 in the usual way to <5 : g x Z* -> g so that 5(q, A) = q and <5(q, ua) =
= 5(5(q,v), a). Sometimes we omit F to obtain a. finite automaton without final
states, ,c/° := <g, I , <5, q0>.

A string w e Z* is accepted by a finite automaton ,s/ iff <5(q0, u) e.E. We denote
T(^) the language of all strings accepted by si and say that si recognizes L iff
L = T(si). We call L £ £* rea«/ar iff L = T(j>/) for some jtf.

The reader will find further details about finite automata and regular languages
in literature, e.g. [5] (a survey on regular languages is in [3]).

2. FINITE BRANCHING AUTOMATA: THE DEFINITION AND BASIC
PROPERTIES

Definition 2.L A finite branching automaton is a quintuple

(1) ®:=(Q,Z,o,q0,By, t

where <g, Z, 8, q0> is an ordinary finite automaton without final states and B : =
: = <B0, Bt} is a pair of subsets of Q x 21 (the transient and the terminal branching
relations).

While finite automata accept strings and recognize languages, finite branching
automata accept languages and recognize families of languages (we make a formal
distinction between acceptance and recognizability).

Definition 2.2. A language L e -S?(£) is accepted by a finite branching automaton
of the form (1) iff for each w e Pref (L) - L

(2) (%0, w), Fst (dwL)) e B0

and for each w e L -*5

(3) (3(. i0 .w) ,Fst(3 l fL))6B1 .

We denote T(3S) the family of all languages accepted by 3S. Since we exclude the
empty language, T(3S) £ i? (l) .

Definition 2.3. A family X £ J£(Z) is recognizable iff X = T(^) for some finite
branching automaton 38.

In order to facilitate pictorial presentation of finite branching automata we adopt
the following conventions. Given 39 = (Q, I, 5, q0, B) = < J ^ ° , B} we first draw
the usual state graph for stfa (circles for states and edges for transitions). Then for
each state q we indicate the corresponding transient and terminal branching relations
by chaining the appropriate edges from q with white and black dots, respectively (if
(q, 0) E Bh a dot is placed inside the circle for q).

Fig. 1.

Example 1. Fig. 1 illustrates a finite branching automaton 38 with

B0 = {(q0, {a}), (q0, {a, b}), (q0, {c}), (qu {a, b, c}) ,

(q2,{a,b}),(q2,{c})},

B, = {fox. % (qu {a, c}), (qi,{c}), (q2, {b}), (q2, {c})} .

As an exercise the reader may verify that the following regular sets belong to T(3S

Lx = {a, acb"ca} n {acb! \ 0 ̂ i ̂ n} , (n ̂ 0),

L2 = b*a ,

L3 = ca n cac(a n fob*) .

(Note that « e £ , because (<%0. a)> {c}) e jBt and «or because (<5(g0, a), 0) e 5 r)

286 There are two natural ways of regarding ordinary finite automata as a special case
of finite branching automata. Let us associate with a given finite automaton stf =
= <g, Z, 5, q0, F} two finite branching automata S^ and J,^2) in the following way.

J*1* : - <G, Z,S,q0, £ (1) >,

where B ^ : = {(a, {a}) | a e g, a e Z} and B (1) : = {(q, <D)\qe F}.

Define Aq : = {a e Z \ (3» e 2:*) <%, aw) € F}. Then

^ (2) : = <g, I,«5, a0, B (2)>,

where B0
2) : = {(q, Aq)\qeQ-F} and B(2) : = {(a, A9) | q e F}.

Theorem 2.1. Let ^ be a finite automaton and let &£ and 3S(^ be two finite
branching automata associated with s& in the above way. Then

T(^)) = {{u}\ueT(^)}.

Let T(j/) * 0. Then

T(®%>) = {T(^)} .

Proof. I. For the first part of the theorem let us first note that each L e T(3$(£)
is a singleton. Indeed, combining the definition of B(1) with Definition 2.2 we deduce
that Fst (dwL) is a singleton if w e Pref (L) — L, and empty otherwise.

Now we shall show that u e T(jtf) iff {u} e T(3S(^). We have

H s T(^) iff % 0 , u) e F iff (% 0 , w), 0) e B (1) .

But this holds iff {«} e T(^') since for each w < u

(S(q0,w),Fst(dw{u}))eB(
0
l).

II. For the second part of the theorem we first show that T(stf) e T(3S(^). Let
w e I * and denote <jw : =- <5(<j0, w). Then

Fst (5WT(^)) = {a e Z | (3u e I*) wau e T(.j^)} =

= {a e Z | (3u e £*) % w , au) e F} =

= ^ -
Therefore

(t5(«2o, w), Fst (3 J (4) = (aw, A J ,

and by definition of B (2) , this pair belongs to B0
2) if aw e Q - F, i.e., if w £ T(j/),

hence (2); it belongs to B(2) if qw e F, i.e., if w e T(s/), hence (3).
It remains to show that T(38(£>) cannot contain more than one language. To see

this let LuL2s T(BS^), Li + L2. Assume, without loss of generality, that Lt - L2 #=

4= 0 and choose w e Ll - L2. Let u be the maximal prefix of w such that u e Pref (L2) 287
(this prefix exists: it is at least A since L2 4= 0 implies A e Pref (L2)). Denote qu : =
: = 5(q0, u). Since u e Pref (L^ n Pref (L2) we have, by Definition 2.2,

(«-„, Fst (3.X,)) eBouB, (i = 1,2).

Hence Fst(3BL.) = A8ii = Fst (duL2).
Now if u 4= w, we could take a longer prefix of w with the above properties,

contrary to the claim of maximality of u. Thus u = w. But now, by (3),

(qu,Fst(duLl))eB1

since u e L., while
(a„, Fst (3 X 2)) ^

since u £L 2 . Hence Fst(3„Li) 4= Fst (3„L2), a contradiction. Q. E. D.

Example 2. Using the above construction we obtain for the regular set a* two finite branching
automata ^ (1) and 3Si2) as illustrated in Fig. 2. We have T(&(1)) = {{a"} [« ;> 0} and r (^ (2)) =
= {a*} in agreement with Theorem 2.1.

Fig. 2.

From the second part of Theorem 2.1 it follows that every nonempty regular
language can be accepted by a finite branching automaton. A closer inspection
immediately shows that there are also nonregular languages acceptable by these
devices. For instance the automaton 8$ from Fig. 1 accepts, among others, the
language

LK : = a(cca)* n {a(ccafc | k e K}

for an arbitrary set K of natural numbers. What languages, in general, can be accepted
by the finite branching automata?

The following theorem gives a surprisingly simple answer to this question.

Theorem 2.2. -S?(27) is recognizable for any 27.

Proof. Define 2§ : = <{#0}, 27, 5, q0, B}, where 8(q0, a) = q0 for each a e 27
and B0 = B t = {(q, A) \ A c 27} (for the case of 27 = {a, b} cf. Fig. 3). A direct
check of Definition 2.2 shows that any L e £{£) belongs to T(3S). Q. E. D.

Fig. 3.

According to this theorem any family X £ -§?(£) is a subset of some recognizable
family (namely of -2?(£)). Let us call X strong iff •£?(£) is the only recognizable family
containing X as a subfamily.

Open problem. Are there any finite strong families?

We conclude this section with the complete census of all families over one-letter
alphabet I = [a] recognizable by a one-state finite branching automaton:

{{«"} I« = 0}

{«*}

{{a; |.0 й i й «} | n ^ 0}

{ L | L S «*, Linfinite}

{ L | L s a * } .

3. THE REPLACEMENT PROPERTY

From the fact that finite branching automata can accept very "complex" (e.g.,

nonrecursive) languages one should not wrongly conclude that there are also very

"complex" recognizable families (after reading the proof of Theorem 2.2 one should

not call £?{£) complex). Some of the results in this and the next sections give a hint
in this respect: they show that recognizable families, in general, contain lots of
"uninteresting" languages (exactly as in conventional automata theory: the regular
language a*ba* contains besides palindromes also many less impressive strings).

Let us introduce a natural operation on languages consisting in replacing a certain
part of one language by another language.

Definition 3.1. For every u e I* we define a binary replacement operator Ru as
follows. For each LUL2 £ I*,

(A) RU(LU L2) : = (Lj - ul*) u uL2 .

Note that R„(0, 0) = 0, RX(LU L2) = L2, and RU(LU L2) = RU(LU 0) u R„(0, L2).
Furthermore, for any u, v e I* and L „ L2, L3 e Se(l),

R„(R„ I ,(L1 ,L2))L3)=R„(L1 ,L3),

Rm(Ru(Lx, L2), L3) = R„(L1, RV(L2, L3)) .

We shall be particularly interested in a special application of the replacement
operator, namely that of the form RU(LU duL2). In problem solving it may be inter­
preted as "jumping" from one plan to another. The result of such a composition
of plans should yield again a genuine plan.

Definition 3.2. A family X £ ^(^) has the replacement property iff for each
LuL2eX and each u e Pref (L,) n Pref (L2),

RU(LU 8UL2) e X .

Remark. Because RU(LU 8UL2) = (Ll n (£* — uS*)) U L2 n (ti£*), any family of languages
closed under union and intersection with regular sets has the replacement property. Furthermore,
since RU(L, duL) = L, any family-singleton has trivially the replacement property.

Lemma 3.1. Let J1 be a finite branching automaton of the form (l). Let
LuL2e T(&) and let u e Pref (L,) and v e Pref (L2) be such that

S(q0, u) = 8(q0, v).
Then

Ru(LudvL2)eT(£g).

Proof. Consider

L: = RU(LU dvL2) = (L, - ul*) n u 8VL2 .

Here L #= 0 since dvL2 =f= 0. Let w e Pref (L). Two cases arise.

Case 1: u £ w. Then w e Pref (L,), Fst (8WL) = Fst (8WLX) and w e L iff w e Lx

(we have tacitly used the assumption that u e Pref (Lj)). That is,

(% 0 , w), Fst (dwL)) = (5(q0, w), Fst (8WL,))

and since Lx e T(SS), this pair belongs to B0 if w ̂ Lu i.e., if w 4 L, hence (2); it
belongs to Bx if w'e Lu i.e., if w e L, hence (3).

Case 2: u ^ w, that is, w = uw' for some w' e I*. Then

5WL = 3„,u 8VL2 = dw, e„L2 = 8VW.L2 .

This implies that vw' e Pref (L2) and w 6 Liff vw' e L2. Thus

(d(q0, w), Fst (2WL)) = (5(q0, uw'), Fst (5„W,L2)) =

= (5(q0, vw'), Fst (8VW,L2)),

where we used the assumption about u and v. Since L2 e T(^) the above pair belongs
to B0 if vw' £ L2, i.e. if w $ L, hence (2); it belongs to 5X if vw' e L2, i.e. if w e L,
hence (l).

Thus Lsatisfies Definition 2.2 and L e T(@). Q. E. D.

By setting u = w in Lemma 3.1 we obtain immediately

290 Theorem 3.1. Every recognizable family has the replacement property.

Furthermore, using the finiteness of Q we obtain the following two results.

Theorem 3.2. For every recognizable family X there exists a constant n >. 1 such
that for any LeX and any K £ Pref (L), if \K\ > n then there exist two distinct
strings u,veK such that

(5) RU(L, dvL) e X

and

(6) Rv(L,duL)eX.

(Note that the requirement of « + v makes the theorem nontrivial: as we already
noted, RU(L, duL) =LeX.)

Proof. X = T(@) for some 2$ of the form (l). Set n : = \Q\. Let LeX and K <=
£ Pref (L) such that |x[> n (there is nothing to prove if such Land K do not exist).
Since \K\ > \Q\ there are two distinct strings u,veK such that

5(q0, u) = 5(q0, v) .

Setting Lx = L2 = Lin Lemma 3.1 we obtain immediately (5) and (6). Q. E. D.

The last theorem of this section is an analogy to the "pumping lemma" known from
conventional automata theory.

Theorem 3.3. For every recognizable family X there exists a constant n >. 1
such that for any LeX if Lcontains a string w of length \w\ > n, then there are
three languages LUL2, L3 and two strings u, v0 such that

(7) uv0 = w ,

(8) L = L t u uL2 u uv0L3 ,

and for each m >. 0
m - l

(9) Ll u U uv°L2 u uv%L3 e X .
i = 0

Proof. Similarly as in the proof of Theorem 3.2, consider X = T(SS) and set
n : -= \Q\. Since \w\ > \Q\ there are two strings u, v e I* such that

V = UV0 — w

for some v0 4= A, and

(10) 5(q0, u) = S(q0, v) .

TA c 291

Define

We have

= L - ul* = L - " ð « L -

= ð и L - ťo^* = ð « L - "oðивoL,

= Ô....Љ.

Ll u ML 2 U UV0L3 = (L - M a„L) u (u duL - uv0 dUVoL) u uv0 8ut!aL = L.

Thus we can satisfy (7) and (8). It remains to prove (9). For m = 0 define

m = l

(11) L(m) • = L, u U uvoL2 u uvmL3 .
V ' i = 0

We have

L (0) = L t u ML 3 = (L - ul*) u u 5TO0L = RU(L, 8VL)

and thus using (10) and Lemma 3.1, L (0) e X . For m = 1 we prove (9) by induction

on m.

Basis: m = 1. We have

L (1) = Li u ML 2 U My0L3 = L e X .

Inductive step: Let m = 1 and assume L(m) e X . First we show that

(12) L (m + 1) = i ? , (L (m > , ^ (m >) ,

Indeed, by substituting (l l) into (4) we compute

R„(L(m), 5„L(m)) - (L(m) - uy 0 I*) u MU0 8uL
(m) =

m - l

= (Lj u ML 2) U U UV0

+1L2 U MDm+1L3 =
i = 0

= Lj u U uv'0L2 u uvm + iL3 =
i = 0 = 0

= L (m + D

Note that L 3 % 0, hence M, D e Pref (L(m + 1)) . Now using (10), the inductive assumption
(L(m) e X), and Lemma 3.1, together with (12), we conclude that L (m + 1) e X. Q. E. D.

4. CHARACTERIZATION OF RECOGNIZABLE FAMILIES

In this section we shall give the necessary and sufficient conditions for a family of
languages to be recognizable.

We start with a well-known result from conventional automata theory.

292 Fact. A language L £ I* is regular iff the set {dwL | w e I*} of all its derivatives
is finite.

Our first objective is to show that a similar condition is necessary (but not sufficient)
for recognizability by finite branching automata.

Definition 4.1. Let X £ JS?(27) and w e I*. We define

(13) BwX:={dwL\LeX} - {0} ,

(14) 3(2f) : = {<9WX | w e I*} .

We shall call the family dwX the derivative of X with resp. to w.

Theorem 4.1. If A is a recognizable family then 3>(X) is finite.

Proof. Let X = T(88) for a = (Q, I, 5, q0, B}. For each u e I* define qu : =
: = % 0 , u) and ®„ : = <Q, I , ,5, <j„, B>.

Assertion 1. For each u e I*, <5„X £ T(#„).

This is trivial if <5„A = 0. Let LeduX. By (13) 0 4=1 = <3„L for some LeX. Let

w e Pref (L). Then uw e Pref (L) and

(% 0 , w), Fst (6WLJ) = (% 0 , uw), Fst (duwL)).

By (2) from Definition 2.2 used for uw, this pair belongs to B0 if uw $ L, that is,
if w <£ L, hence (2) holds for w. By (3) it belongs to B1 if uw e L, i.e., if w e L, hence
(3) for w. Thus Le T ^) which proves the assertion.

Assertion 2. For each u e I*, if duX * 0 then duX = T(i^„).

Assume 3„X =4= 0. In view of Assertion 1 it is enough to show that T(38u) £ SU(X).

This is trivial if T(3S„) = 0. Let L2 e T(^„). According to (13) all we need is to find

LeX such that L2 = duL.

As cl„A =4= 0 we can choose LleX such that u e Pref (L.). Define

(15) L:=RU(LUL2).

Clearly <3„L = L2 and L 4= 0 since L2 4= 0.

It remains to show that LeX. For this let w e Pref (L). Two cases arise.

Case l : u | w . Then w e Pref (L,) and the proof that (2) and (3) of Definition 2.2
hold is identical to Case 1 in the proof of Lemma 3.1.

Case 2: u g w, that is, w = uv for some v e Pref (L2).
By (15) dwL = a„L2 and w e Liff » e L2. Thus

(% 0 , w), Fst (8WL)) = (5(q0, uv), Fst (dvL2)) =

= (%„, v), Fst (a„L2)) .

Now, since L2 e T(3tu), this pair belongs to B0 if v £ L2, i.e., if w <£ L and it belongs
to B{ if v e L2, i.e., if w e L. Therefore L e X which ends the proof of Assertion 2.

Now, since Q is finite there is a finite number of distinct &u and hence a finite
number of distinct families T(SSU). Therefore, by Assertion 2, {du(X) \ u e 27*} =
£<(X) is finite. Q. E. D.

Remark. The assumption of 8UX ?= 0 in Assertion 2 is indeed necessary. For i% in Fig. 4 we
have T(@) = {{&}}, T(%a) = {{a}} and 0 a T(^) = 0.

Fig. 4.

As a corollary to Theorem 4.1 we obtain the regularity of the union of all languages
in a recognizable family X. We use the notation

u l : = U L.
LeX

Theorem 4.2. If X is recognizable then u l is regular.

Proof. By Theorem 4.1, 2(X) is finite. Thus y : = {udwX | w e 27*} is also finite.
Since

udwX = U SKL =
LsX

= U {" | wu e L} =
LeX

= [u I ww e u l) =

= dw (u l) ,

we have {<?w (uX) | w e I*} = Yfinite. Hence uX is regular. Q. E. D.

Corollary. A singleton X -= {L} is recognizable iff L is a nonempty regular
language.

In general, the converse to Theorem 4.2 does not hold: let X := {L, Z* — L}
where Lis not regular. Then u l = 27* is regular while @(X) is infinite.

Given a finite automaton si it is not hard to construct a finite branching automaton
31 such that yjT{8fl) = T(s/). In fact, Theorem 2.1 provides two such constructions.

294 We leave as an exercise to find a direct construction of a finite automaton J / from
a given finite branching automaton 86, with T(^) = u T(86).

Let us return to the characterization problem. Because the finiteness of 2d(X)
does not yield the replacement property (cf., e.g., X = {{aa, b}, {ab}}) it is not
a sufficient condition for recognizability. In our search for such a condition we explore
a certain generalization of the replacement property.

Definition 4.2. Let X £ £C(Z) and L e Se(l). We say that L is compatible with X
iff for each w e Z* there is a language LweX such that

(16) weL iff weLw

and

(17) Fst (dwL) = Fst (dwLw).

We denote C(X) the family of all languages compatible with X.

Example 3. Let * : = {{aa, ba}, {ab, bb}}. Then {aa, bb} e C(X) but {aa, ab} $ C(X).

It can be easily observed, that X £ C(X) and C(X) = CC(Z); however, it is not
true, in general, that X = C(X).

Definition 4.3. A family X £ &(Z) is self-compatible iff X = C(X).

Theorem 4.3. Every recognizable family is self-compatible.

Proof. Let X = T(8#) for 8$ = (Q,Z,S, q0, B} and let L e C(X). For w e Z*
let Lw e X be the language satisfying (16) and (17). Thus L = {w | w e Lw}. To show
that L e X l e t w e Pref (L). By (17)

(%0, w), Fst (8WL)) = (d(q0, w), Fst (dwLw)) .

By (16) and since LweX this pair belongs to B0 if w $ Lw, i.e., if w £ L; it belongs to
5 i if w e L w i.e., if w eL . We conclude that LeX. Q. E. D.

The following lemma makes sometimes easier to prove compatibility by restricting
Definition 4.2 only to w e Pref (L).

Lemma 4.1. Let X £ ££(Z) and L € S£(Z). Assume that for each w e Pref (L)
there exists LweX satisfying (16) and (17). Then L e C(X).

Proof. Under the assumptions of the lemma let w £ Pref (L). Then there exist
ueZ* and aeZ such that ua ^ w, we Pref (L) but wa^Pref(L) (this existence
follows from the fact that A e Pref (L) since L 4= 0). By the assumption, there is
Lu e X satisfying (16) and (17) (for u). Set Lw : = Lu. Note that w $ Pref (Lw); other-

wise we would have Mae Pref (L„) and hence a e Fst (duLu) = Fst (3„L) and thus 295
Mae Pref (L), a contradiction. Consequently, w £ L and w £ Lw which proves (16).

Furthermore, Fst (8WL) = 0 since w £ Pref (L) and Fst (3WLW) = 0 since
w £ Pref (Lw). Therefore Fst (<3WL) = Fst (8WLW) which proves (17). Q. E. D.

Now we can prove our main theorem.

Theorem 4.4. (Characterization Theorem). A family X £ ^(Z) is recognizable
iff X is self-compatible and 3>(X) is finite.

Proof. The => direction was already established by theorems 4.1 and 4.3. For
the <= direction assume that X = C(X) and 3{X) is finite. Define the following
finite branching automaton:

(18) @x : = <@(X), I, S, X, B) ,

where S(Y, a) := caY for each Ye3{X), and a el (and hence S(Y, u) = 8UY for
each M e I*);

(19) 5 0 : = {(Y, Fst (L)) | Ye ^(JT), A £ L e Y} ;

(20) B, : = {(Y Fst (L)) j Ye i2>(X), A e L e 7} .

We shall prove that X = T(@x).

I. X S T(£SX). This is immediate for X = 0. Let L e i ; we shall show that
L e T(^). Let u e Pref (L). Then duL * 0 and d„L e duX. Now,

(<%0, M), Fst (duL)) = (5„X, Fst (dJL))

which belongs to 5 0 if A <£ cuL, i.e., if M ^ L; it belongs to Bt if A e 3„L, if M e L.
Therefore L e T(^).

II. T(^) £ X. This is immediate for T(M) = 0. Let L e T^). To show that
LeX we first prove that Lis compatible with X and then use the self-compatibility
ofX.

To apply Lemma 4.1, let w e Pref (L). Then (dwX, Fst (dwL)) belongs to B0 if
w$L, and to JB. if w e L. Using (19) and (20),

(dwX, Fst (dwL)) = (awX, Fst (L))

for some L e dwX such that A e L iff w e L. Find Lw e X such that L = dwLw.
Consequently,

Fst (dwL) = Fst (L) = Fst (<9WLW)

which proves (17).

Furthermore, w e Liff A e L iff A e dwLw iff w e Lw. This proves (16).
Thus by Lemma 4.1, LeC(X) = X. We conclude that T(3SX) £ X and hence

T(^) = X. Therefore, X is recognizable. Q. E. D.

Remark. The two conditions from Theorem 4.4 which are together necessary and sufficient for
recognizability, are mutually independent. Example 3 shows a family X which is not self-com­
patible but with finite 9>(X). An example of a self-compatible family with infinite @(X) is any
singleton X= {Z,} where L is not regular. (It can be easily shown that any singleton is self-
compatible.)

Theorem 4.5. Any self-compatible family has the replacement property.

Proof. Let X = C(X) s &(Z). Let L{,L2eX and for u e Pref (L.) n Pref (L2)
consider L : = RU(LU 8UL2). For any w e Pref (L) we can easily satisfy (16) and (17) by

_ \LX if u rg w ,

\L2 if u g w .

Therefore by Lemma 4.1, L e C(Z) = X. Q. E. D.

Open problem. Is the converse also true? More specifically, can the condition of
self-compatibility in the characterization theorem be replaced by the replacement
property?

The following result is rather easy.

Theorem 4.6. Any finite family is self-compatible iff it has the replacement pro­
perty.

Proof. For => cf. Theorem 4.5. For <= let X £ &(Z) be a finite family with the
replacement property. Let L E C(X) and suppose for contradiction that L <£ X. Then
there exists w such that either w e Land w $ (J L;, or w £ Land w e fl L;. But this

LteX LteX

contradicts to the existence of LweX satisfying (16). Hence LeX. We conclude
C(X) = X. Q. E. D.

Corollary. A finite family X £ ^(Z) is recognizable iff it has the replacement
property and 3>(X) is finite.

5. OPERATIONS ON FAMILIES

In the preceding sections we have been concerned with the internal structure of
recognizable families. We now consider some operations on families of languages
which do or do not preserve recognizability. We start with one of few positive cases.

Theorem 5.1. If Xx and X2 are recognizable families then X1 nX2 is also re­
cognizable.

Proof. Assume X ; = T(^;) where

. ^ ; : = < e f , I ; , c 5 ; , V 'B} (i = 1 , 2) .

Let I : = I u T2. Define a new finite branching automaton 297

-*i x ^ 2 : = <Q! x Q 2 , 1 , c5, (^o , 2«J0), B> ,

where for any <?.• e 0 , (i = 1, 2), a e £, and A S I

(21) <5((<7i> q2), a) : = (5i(«7i, -) , 52(q2, a))

and for j = 0, 1,

(22) ((q{,q2),A)eBj iff (^ / f j e 1 ^ and (q2,A)e2Bj.

By (21), for any L e ^ (l) and u e I*,

(23) (5((^ 0 , 2q0), u), Fst (3UL)) =

^((51(
1q0,u),32(

2q0,u)),FSt(duL))

and, by (22), this belongs to Bj (j = 0, l) iff

(24) (d{tq0,u),Fst(dHL))etBJ (. = 1,2).

In particular, set) = 0 if u <£ L a n d ; = 1 if u e L. Then (23) holds for all u e Pref (L)
iff (24) holds for all u e Pref (L). Therefore,

L e T{3S1 x J"2) iff L e T(^{) n T(^2). Q. E. D.

In problem solving the intersection of families has a natural interpretation: Let Xi

be the set of plans for a goal G{ and X2 the set of plans for G2. Then Xt n X2 is
precisely the set of plans realizing both GY and G2 jointly.

For union and complement we have negative results.

Example 4. Let X{ = {L{} and X2 = {L2} where L{ = {a} and L2 = {A, aa}. Both X{ and
X2 are obviously recognizable. However, X{ U X2 = {{a}, {/(, «a}} fails to satisfy the re­
placement property since

Ra(L{, daL2) = a daL2 = {aa}$X1 u X2 .

Hence X{ U Jt"2 is not recognizable.

Thus, while the class of all recognizable families over I is closed under intersection,
it is not closed under union. Hence it cannot be closed under complement &(T) — X.
We have

Theorem 5.2. The class of all recognizable families is not closed under union and
complement.

Next we consider the concatenation. It can be defined in two different ways, each
a natural generalization of language concatenation.

298 Definition 5.1. Let X1 e-§?(!,) and X2 e^(l2) be two families. A strong con­

catenation of Xx and X2 is

(25) X1.X2:={L1L2\L1eXl,L2eX2} .

A weak concatenation of Xs and X2 is

(26) X1°X2:= {\J vF(v) \L1eX1 and F is a function L, -> X,} .

Theorem 5.3. The class of all recognizable families is not closed under strong
concatenation.

This follows from the following example:

Example 5. Let Xx = {{a, b}} and X2 = {{b}, {c}}. Then X1 . X2 = {{a6, 66}, {ac, be}}
is not recognizable since the replacement property would require also {ab, be} and {ac, bb} to
belong to Xt . X2.

The weak concatenation is somewhat more appealing from the intuitive point of
view. In problem solving it corresponds to the chaining of plans in the following
manner: Let Xx and X2 be the sets of plans for goals Gt and G2, resp. Then, to obtain
a plan realizing first Gj and then G2, one can just take any L, eX1 and concatenate
each t e l , with some L2eX2. Doing that in all possible ways yields precisely

. xiax2.

Open problem. For two recognizable families X, and X2, is Xx 0X2 also re­
cognizable?

There are certain particular cases where the union and weak concatenation preserve
recognizability. Let us define

F s t (X) : = U Fst(L).
LeX

Theorem 5.4. LetX,- c J?'(X'I), i = 1, 2, be two recognizable families. If Fst (Zj) n
n Fst (X2) = 0 then X: u X2 is recognizable and if Xx n Fst (X2) = 0 then Xx o X2

is recognizable.

Proof. For each case we give only a construction of the corresponding finite
branching automaton and we omit the tedious but straightforward verification of
its correctness.

For i = 1, 2 let Xt = T(^,), where

a,:** {Qi^i^i/qo/B} .

Assume, without loss of generality, that Qt n Q2 = 0.

I (union). Define 299

1 U ^ 2 : = <Q, u Q2 u {q0}, II u I2, 8, q0, B) ,

where ? 0 ^ Q i u Q2,

5() • = P"'(^<" fl) i f fl = ' l 0 a n d a 6 F s t (-^f)'
(<5;(a, a) if q e Qx and a e Z(

(in all other cases <5 may be arbitrary), and for j = 0, 1,

Bj : = lBj u 2 5 ; u C,-,

where

Cj : = {(q0, A) | ('"a0, A) £ '£, , A S Fst (*,), i 6 {1, 2}} .

Then

T(^j u <^2) = I , u I 2 .

II (weak concatenation). Define

-*i ° ^ 2 : = <6i u (22,1] u r 2 , <5, ̂ o , B> ,
where

%a):=í >;(«, a) if qeQi and a e Z ; ,

(<52(
2g0, a) if q e <2i and a e Fst (X2)

(in other cases <5 may be arbitrary),

B0:= % u 2 B 0 u D 0 ,

B, := 2Bl u Dj ,
where

D0 : = {(a, A, u A2) | (a, A,) e % , (2<?0, A2) e 2B0 , A2 4= 0} ,

D, : = {(q, A, u A2) | (a, A,) e lBu (2q0, A2) e 2B,} .

Then

T(3SX o M2) = X. o X2 . Q . E . D .

As we have seen in Examples 4 and 5, the main obstacle for general closure pro­
perties was the failure of the resulting family to be self-compatible. Next we modify
the operations on families to guarantee the self-compatibility. First we shall prove
some auxiliary results.

Lemma 5.1. For any u e E* and X E -^ (^ j ,

(27) SUC(X) = C(duX) .

300 Proof. I. (s) . Let L e duC(X). Then L * 0 and L = duL for some L compatible
with X. For each w e Pref (L) let L'^ be the language in X satisfying

(28) weL iff weLw

and

(29) Fst(a„L) = Fst (dwLw)

according to Definition 4.2.

Now let v e Pref (L) and define L„ : = 8„L'UV. Clearly L„ e d„X. By (28),

t' e L iff uv e L iff uu e LB(, iff » e L„ .
By (29),

Fst (dvL) = Fst (5„,L') = Fst (duuLuv) = Fst (<9L,L,).

Thus by Definition 4.2, L e C(duX).

II. (3) . Let Lbe compatible with d„X. Then, in particular, there exists LA e duX
such that A e L iff A e L^ and Fst (L) = Fst (L/t). Let L 0 e l b e such that LA = duL0

and consider the language L' : = RU(L0, L). We shall show that L is compatible with
X. Let w e Pref (L).

Case 1: u $ w. Then w e Pref (L0) and thus

w e L iff w e L0

and
Fst (dwL) = Fst (dwL0).

Case 2: u ^ w, that is, w = uv for some u e Pref (L). Since Lis compatible with
duX, for any such v there are L„ e duX and L'w 6 X such that

weL iff c e L iff v e Lv iff w e L'w .
Also,

Fst (awL) = Fst (d„L) = Fst (dvLv) = Fst (5WL'W) .

Thus L e C(Z) and since L = 3„L we can conclude that L e duC(X). Q. E. D.

We can use the above lemma to show that the derivative preserves recognizability.

Theorem 5.5. Let X £ ^(J) be recognizable. Then for any u e I*, 8UX is also
recognizable.

Proof. Suppose X recognizable, i.e., X = C(X) and @(X) is finite. Then by
Lemma 5.1

C(duX) = duC(X) = duX

and since B(puX) s 3i(X), 3(duX) is finite. Thus, by the characterization theorem,
duX is recognizable. Q. E. D.

Lemma 5.2. For any X £ JSP(Z), if 9(X) is finite then ®(C(X)) is also finite.

Proof.

(C(X)) = {c\C(X)\ueI*}

= {C(a„X) | u e I*} by Lemma 5.1 ,

= {C(Y)\YBS(X)}.

Thus \S(C(X))\ S P(X)\. Q. E. D.

Theorem 5.6. Let Xx and X2 be two recognizable families. Then C(XX u X2)
and C(XX . X2) are also recognizable.

Proof. Since, in general, CC(X) = X, both families are self-compatible. Using the
characterization theorem and Lemma 5.2 it is enough to show that if 2{XX) and
3(X2) are finite then also SJ(XX u X2) and 3(XX . X2) are finite.

I. &(Xl u X2) = {du(X1 u X2) | u e I*} =

= {duXt u auX2 | uel*}
and thus

| ^ (Zj u X 2) | S \®(XX)\ • \@(X2)\.

II. £c(Xx . X2) = {du(Xt . X2) | u e I*} =

and since

= {RíLjLa) | Lj e Xu L2 e X2} \ u e I*}

(<3„L,)L2 if A$Lx,

we have

a iL jL ,) = .
[(<3„L,)L2u5„L2 if AeL

\9(X, . X2)\ ^ \£>(Xt)\ . \2>(X2)\ . Q. E. D.

There is a well-known result in conventional automata theory which says that the
class of regular languages is the smallest class containing all finite languages and
closed under union, concatenation, and star closure. As a consequence, one can specify
any regular language by means of a finite formal term (called a regular expression) —
cf. [3]. It would be very important, indeed, to have a similar result for the class of
families recognizable by finite branching automata:

Open problem. Give an algebraic characterization of recognizable families.

Possible candidates for the basic operations might be C(X u Y), C(XY) (or
C(X o Y)), and C(X*) with a suitable definition of X*.

Acknowledgement. The idea of this work was greatly influenced by the creative and stimulating
atmosphere of the Computer Science Department of the Aarhus University, Denmark, where,
during his visit in fall 1973, the author realized the existence of the large, fertile, and inherently
inexhaustible field of "unusual automata theory".

(Received March 1, 1974.)

REFERENCES

[1] R. E. Fikes, P. E. Hart, N. J. Nilsson: Some new directions in robot problem solving. In:
Machine Intelligence 7 (B. Meltzer, D. Michie, eds.). University Press, Edinburgh 1972.

[2] R. E. Fikes, N. J. Nilsson: STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence 2 (1971), 189—208.

[3] I. M. Havel: The theory of regular events I, II. Kybernetika J (1969), 400-419; 520-544.
[4] N. J. Nilsson: Problem-solving methods in artificial intelligence. McGraw-Hill, New York

1971.
[5] A. Salomaa: Theory of automata. Pergamon Press, Oxford 1969.
[6] O. Stepankova, I. M. Havel: Image space and its relationship to situation calculus. Tech.

Rpt. No 9/1973, Institute of Computation Technique, Prague. (Cf. also Proc. Symp. MFCS,
HighTatras 1973.)

Ing. Ivan M. Havel, CSc. Ph.D.: Ustav teorie informace a automatizace CSAV(Institute of
Information Theory and Automation — Czechoslovak Academy of Sciences), Pod voddrenskou
vezi 4, 180 76 Praha 8. Czechoslovakia.

		webmaster@dml.cz
	2012-06-05T00:15:01+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

