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Abstract. In the paper we discuss the uniqueness problem for meromorphic functions
that share two sets and prove five theorems which improve and supplement some results
earlier given by Yi and Yang [13], Lahiri and Banerjee [5].
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1. Introduction, Definitions and Results

Let f and g be two nonconstant meromorphic functions defined in the open com-

plex plane C . If for some a ∈ C ∪ {∞}, f and g have the same set of a-points with

the same multiplicities then we say that f and g share the value a CM (counting

multiplicities). If we do not take the multiplicities into account, f and g are said to

share the value a IM (ignoring multiplicities).

Let S be a set of distinct elements of C ∪{∞} and Ef (S) =
⋃

a∈S

{z : f(z)−a = 0},

where each zero is counted according to its multiplicity. If we do not count the

multiplicity the set
⋃

a∈S

{z : f(z) − a = 0} is denoted by Ef (S).

If Ef (S) = Eg(S) we say that f and g share the set S CM. On the other hand, if

Ef (S) = Eg(S), we say that f and g share the set S IM.

Let m be a positive integer or infinity and a ∈ C ∪ {∞}. We denote by Em)(a; f)

the set of all a-points of f with multiplicities not exceeding m, where an a-point is

counted according to its multiplicity. For a set S of distinct elements of C we define
Em)(S, f) =

⋃

a∈S

Em)(a, f). If for some a ∈ C ∪ {∞}, E∞)(a; f) = E∞)(a; g) we say

that f , g share the value a CM.

In the paper we denote by S1 and S2 the sets S1 = {1, ω, ω2, . . . , ωn−1} and

S2 = {∞}, where ω = cos 2π/n + i sin 2π/n and n is a positive integer.
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Yi [9], [11], and Song and Li [7] and other authors have investigated the problem

of uniqueness of two meromorphic functions f , g for which Ef (Si) = Eg(Si) or

Ef (Si) = Eg(Si), where i = 1, 2.

In 1997 H.X. Yi and L. Z. Yang proved the following two results.

Theorem A ([13]). Let f and g be two nonconstant meromorphic functions such

that Ef (S1) = Eg(S1) and Ef (S2) = Eg(S2). If n > 6 then one of the following

conditions holds:

(1) f ≡ tg,

where tn = 1,

(2) f.g ≡ s,

where sn = 1 and 0, ∞ are lacunary values of f and g.

Theorem B ([13]). Let f and g be two nonconstant meromorphic functions such

that Ef (S1) = Eg(S1) and Ef (S2) = Eg(S2). If n > 10 then f and g satisfy (1)

or (2).

Recently Lahiri and Banerjee [5] have improved Theorem A and Theorem B by

relaxing the nature of sharing the sets with the idea of weighted sharing of values

and sets introduced in [2], [3]. In the next definition we explain the notion.

Definition 1 ([2], [3]). Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}

we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m

is counted m times if m 6 k and (k + 1) times if m > k. If Ek(a; f) = Ek(a; g), we

say that f , g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.

Clearly, if f , g share (a, k) then f , g share (a, p) for any integer p, 0 6 p < k. Also

we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)

respectively.

Definition 2 ([3]). Let S be a set of distinct elements of C ∪ {∞} and k a

nonnegative integer or ∞. We denote by Ef (S, k) the set
⋃

a∈S

Ek(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0)

With the notion of weighted sharing of sets the following two results improving

Theorem A and Theorem B are proved in [5].
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Theorem C ([5]). If Ef (S1, 2) = Eg(S1, 2), Ef (S2, 0) = Eg(S2, 0) and n > 6

then f , g satisfy one of (1) and (2).

Theorem D ([5]). If Ef (S1, 0) = Eg(S1, 0), Ef (S2, 3) = Eg(S2, 3) and n > 10

then f , g satisfy one of (1) and (2).

Now one may ask the following questions which are the motivation of the paper:

(i) What happens in Theorem C if we relax the sharing of the set S1 to weight

one?

(ii) Can the nature of sharing the set S2 in Theorem D be further relaxed?

(iii) Can in any way the assumption n > 10 in Theorem D be replaced by a weaker

one?

In this paper we shall investigate the possible solutions of the above problems. We

now state the following five theorems which are the main results of the paper.

Theorem 1. If Ef (S1, 1) = Eg(S1, 1), Ef (S2, 0) = Eg(S2, 0) and n > 7 then f ,

g satisfy one of (1) and (2).

Theorem 2. If E2)(S1, f) = E2)(S1, g), Ef (S2, 0) = Eg(S2, 0) and n > 8 then f ,

g satisfy one of (1) and (2).

Theorem 3. If E3)(S1, f) = E3)(S1, g), Ef (S2, 0) = Eg(S2, 0) and n > 6 then f ,

g satisfy one of (1) and (2).

Theorem 4. If E1)(S1, f) = E1)(S1, g), Ef (S2, 0) = Eg(S2, 0) and n > 10 then

f , g satisfy one of (1) and (2).

Theorem 5. If E1)(S1, f) = E1)(S1, g), Ef (S2, 1) = Eg(S2, 1) and n > 9 then f ,

g satisfy one of (1) and (2).

Remark 1. Theorem 1, Theorem 4 and Theorem 5 provide the answer to Ques-

tion (i), (ii) and (iii) respectively.

Though the standard definitions and notation of the value distribution theory are

available in [1], we explain some definitions and notations which are used in the

paper.

Definition 3 ([4]). For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting

function of simple a-points of f . For a positive integer m we denote by N(r, a; f |

6 m)(N(r, a; f |> m)) the counting function of those a-points of f whose multiplic-

ities are not greater (less) than m where each a-point is counted according to its

multiplicity.
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N(r, a; f |6 m)(N (r, a; f |> m)) are defined similarly, except that in counting the

a-points of f we ignore the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are

defined analogously.

Definition 4 ([2]). We denote by N2(r, a; f) the sum N(r, a; f)+N(r, a; f |> 2).

Definition 5 ([13], [14], [16]). Let f and g be two nonconstant meromorphic

functions such that f and g share the value 1 IM. Let z0 be a 1-point of f with

multiplicity p, a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the

counting function of those 1-points of f and g where p > q, by N
1)
E (r, 1; f) the

counting function of those 1-points of f and g where p = q = 1 and by N
(2
E (r, 1; f)

the counting function of those 1-points of f and g where p = q > 2, each point in

these counting functions being counted only once. In the same way we can define

NL(r, 1; g), N
1)
E (r, 1; g), N

(2
E (r, 1; g).

Definition 6 ([2], [3]). Let f , g share a value a IM. We denote by N∗(r, a; f, g)

the reduced counting function of those a-points of f whose multiplicities differ from

the multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g).

Definition 7 ([5]). Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g = b) the

counting function of those a-points of f , counted according to multiplicity, which are

b-points of g.

Definition 8 ([5]). Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by N(r, a; f |

g 6= b1, b2, . . . , bq) the counting function of those a-points of f , counted according to

multiplicity, which are not bi-points of g for i = 1, 2, . . . , q.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F

and G be two nonconstant meromorphic functions defined in C . Henceforth we shall
denote by H and V the following two functions:

H =
(F ′′

F ′
−

2F ′

F − 1

)

−
(G′′

G′
−

2G′

G − 1

)

and

V =
( F ′

F − 1
−

F ′

F

)

−
( G′

G − 1
−

G′

G

)

=
F ′

F (F − 1)
−

G′

G(G − 1)
.
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Lemma 1 ([13], [14]). If F , G share (1, 0) and H 6≡ 0 then

N
1)
E (r, 1; F ) 6 N(r,∞; H) + S(r, F ) + S(r, G).

Lemma 2 ([15]). If F , G are two nonconstant meromorphic functions such that

E1)(1; F ) = E1)(1; G) and H 6≡ 0 then

N(r, 1; F |= 1) 6 N(r, 0; H) 6 N(r,∞; H) + S(r, F ) + S(r, G).

Lemma 3 ([6]). If N(r, 0; f (k)| f 6= 0) denotes the counting function of those

zeros of f (k) which are not zeros of f , where a zero of f (k) is counted according to

its multiplicity, then

N(r, 0; f (k)| f 6= 0) 6 kN(r,∞; f) + N(r, 0; f |< k) + kN(r, 0; f |> k) + S(r, f).

Lemma 4 ([5]). Let F , G share (1, 0), (∞, 0) and H 6≡ 0. Then

N(r, H) 6 N(r, 0; F |> 2) + N(r, 0; G|> 2) + N∗(r,∞; F, G)

+ N∗(r, 1; F, G) + N0(r, 0; F ′) + N0(r, 0; G′),

as where N0(r, 0; F ′) is the reduced counting function of those zeros of F ′ which are

not zeros of F (F − 1) and N0(r, 0; G′) is similarly defined.

Lemma 5. Let Em)(1; F ) = Em)(1; G) and let F , G share (∞; k) where m > 1

and 0 6 k 6 ∞. Also let H 6≡ 0. Then

N(r,∞; H) 6 N(r, 0; F |> 2) + N(r, 0; G|> 2) + N∗(r,∞; F, G)

+ N(r, 1; F |> m + 1) + N(r, 1; G|> m + 1)

+ N0(r, 0; F ′) + N0(r, 0; G′).

P r o o f. We can easily verify that possible poles of H occur at (i) multiple

zeros of F and G, (ii) those poles of F and G whose multiplicities are different from

the multiplicities of the corresponding poles of G and F respectively, (iii) the zeros

of F − 1 and G − 1 with multiplicities > m + 1, (iv) zeros of F ′ which are not the

zeros of F (F − 1), (v) zeros of G′ which are not the zeros of G(G − 1).

Since all poles of H are simple, the lemma follows from the above. �
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Lemma 6 ([8]). Let f be a nonconstant meromorphic function and P (f) =

a0 +a1f +a2f
2 + . . .+anfn, where a0, a1, a2 . . . , an are constants and an 6= 0. Then

T (r, P (f)) = nT (r, f) + O(1).

Lemma 7 ([10]). If H ≡ 0 then T (r, G) = T (r, F ) + O(1). Also if H ≡ 0 and

lim sup
r−→∞

r∈I

N(r, 0; F ) + N(r,∞; F ) + N(r, 0; G) + N(r,∞; G)

T (r, F )
< 1

where I ⊂ (0, 1) is a set of infinite linear measure, then F ≡ G or F · G ≡ 1.

Remark 2. Let F = fn and G = gn, where n (> 5) is an integer. If H ≡ 0 then

Lemma 7 implies that f and g satisfy one of (1) and (2).

Lemma 8 ([12], [13]). If F , G share (∞, 0) and V ≡ 0 then F ≡ G.

Lemma 9. Let F = fn, G = gn and V 6≡ 0. If f , g share (∞, k), where

0 6 k < ∞, and Em)(1; F ) = Em)(1; G), then

(nk + n − 1)N(r,∞; f |> k + 1) = (nk + n − 1)N(r,∞; F |> nk + n)

6
m + 1

m
[N(r, 0; f) + N(r, 0; g)] +

2

m
N(r,∞; f) + S(r, f) + S(r, g).

P r o o f. Since f , g share (∞; k), it follows that F , G share (∞; nk) and so a pole

of F with multiplicity p (> nk+1) is a pole ofG with multiplicity r (> nk+1) and vice

versa. We note that F and G have no pole of multiplicity q where nk < q < nk + n.

So using Lemma 3 and Lemma 6 we get from the definition of V

(nk + n − 1)N(r,∞; f |> k + 1) 6 N(r, 0; V ) 6 N(r,∞; V ) + S(r, f) + S(r, g)

6 N(r, 0; F ) + N(r, 0; G) + N(r, 1; F |> m + 1)

+ N(r, 1; G|> m + 1) + S(r, f) + S(r, g)

6 N(r, 0; f) + N(r, 0; g) +
1

m
N(r, 0; F ′|F = 1)

+
1

m
N(r, 0; G′|G = 1) + S(r, f) + S(r, g)

6 N(r, 0; f) + N(r, 0; g) +
1

m
[N(r, 0; F ′|F 6= 0)

− N0(r, 0; F ′) + N(r, 0; G′|G 6= 0) − N0(r, 0; G′)] + S(r, f) + S(r, g)

6
m + 1

m
[N(r, 0; f) + N(r, 0; g)] +

2

m
N(r,∞; f) + S(r, f) + S(r, g).

This proves the lemma. �
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Lemma 10. Let F , G share (1, 1). Then

NF>2(r, 1; G) 6
1

2
N(r, 0; F ) +

1

2
N(r,∞; F ) −

1

2
N0(r, 0; F ′) + S(r, F ).

P r o o f. Using Lemma 3 we get

NF>2(r, 1; G) 6 N(r, 1; F |> 3)

6
1

2
N(r, 0; F ′|F = 1)

6
1

2
N(r, 0; F ′|F 6= 0) −

1

2
N0(r, 0; F ′)

6
1

2
N(r, 0; F ) +

1

2
N(r,∞; F ) −

1

2
N0(r, 0; F ′) + S(r, F ).

�

Lemma 11 ([2]). If F , G share (1, 2) then

N0(r, 0; G′) + N(r, 1; G|> 2) + N∗(r, 1; F, G)

6 N(r, 0; G) + N(r,∞; G) + S(r, G).

Lemma 12 ([14]). If H ≡ 0 and F , G share (∞, 0) then F , G share (1,∞),

(∞,∞).

Lemma 13. If F , G share (1, 2) and (∞, k), where 0 6 k 6 ∞, then one of the

following cases occurs:

T (r, F ) + T (r, G) 6 2{N2(r, 0; F ) + N2(r, 0; G) + N(r,∞; F )(i)

+ N(r,∞; G) + N∗(r,∞; F, G)} + S(r, F ) + S(r, G),

F ≡ G,(ii)

FG ≡ 1.(iii)

P r o o f. First we suppose that H 6≡ 0. By the second fundamental theorem we

obtain

(3) T (r, F ) 6 N(r, 0; F ) + N(r,∞; F ) + N(r, 1; F ) − N0(r, 0; F ′) + S(r, F ).

Since F , G share (1, 2) we note that

N(r, 1; F ) = N(r, 1; F |= 1) + N(r, 1; F |> 2)

= N(r, 1; F |= 1) + N(r, 1; G|> 2).
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Hence by Lemmas 1, 4 and 11 we get from (3)

T (r, F ) 6 N(r, 0; F ) + N(r,∞; F ) + N(r, 0; F |> 2) + N(r, 0; G|> 2)(4)

+ N∗(r,∞; F, G) + N(r, 1; G|> 2) + N∗(r, 1; F, G)

+ N0(r, 0; G′) + S(r, F ) + S(r, G)

6 N2(r, 0; F ) + N2(r, 0; G) + N(r,∞; F ) + N(r,∞; G)

+ N∗(r,∞; F, G) + S(r, F ) + S(r, G).

Similarly we obtain

T (r, G) 6 N2(r, 0; F ) + N2(r, 0; G) + N(r,∞; F ) + N(r,∞; G)(5)

+ N∗(r,∞; F, G) + S(r, F ) + S(r, G).

Adding (4) and (5) we get (i).

Next we suppose that H ≡ 0. Then by integration we get

(6) F ≡
AG + B

CG + D
,

where A, B, C, D are constants and AD − BC 6= 0. Also

(7) T (r, F ) = T (r, G) + O(1).

We now consider the following cases.

Case 1. Let AC 6= 0. Since F , G share (∞, k), it follows from Lemma 12 that

F , G share (∞,∞). So from (6) we obtain that F and G have no pole. Again since

F − A/C ≡ (BC − AD)/(C(CG + D)), it follows that F − A/C has no zero. So by

the second fundamental theorem we get

T (r, F ) 6 N(r, 0; F ) + N(r,∞; F ) + N
(

r,
A

C
; F

)

+ S(r, F )

= N(r, 0; F ) + S(r, F ),

which implies (i) in view of (7).

Case 2. Let AC = 0. Since F is nonconstant it follows that A and C are not

simultaneously zero.

Subcase 2.1. A 6= 0 and C = 0. Then F = αG+β, where α = A/D and β = B/D.

If F has no 1-point, by the second fundamental theorem we get

T (r, F ) 6 N(r, 0; F ) + N(r,∞; F ) + S(r, F ),

which implies (i) in view of (7).
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If F and G have some 1-points then α + β = 1 and so F ≡ αG + 1 − α.

If α 6= 1 then by the second fundamental theorem we get

T (r, F ) 6 N(r, 0; F ) + N(r, 1 − α; F ) + N(r,∞; F ) + S(r, F )

= N(r, 0; F ) + N(r, 0; G) + N(r,∞; F ) + S(r, F ),

which implies (i) in view of (7).

If α = 1 then F ≡ G, which is (ii).

Subcase 2.2. Let A = 0 and C 6= 0. Then F = 1/(γG + δ), where γ = C/B and

δ = D/B.

If F has no 1-point then as in Subcase 2.1 we obtain (i).

If F and G have some 1-points then γ + δ = 1 and so F ≡ 1/(γG + 1 − γ).

If γ 6= 1 then by the second fundamental theorem we get

T (r, F ) 6 N(r, 0; F ) + N
(

r,
1

1 − γ
; F

)

+ N(r,∞; F ) + S(r, F )

= N(r, 0; F ) + N(r, 0; G) + N(r,∞; F ) + S(r, F ),

which implies (i) in view of (7).

If γ = 1 then FG ≡ 1, which is (iii). This proves the lemma. �

Lemma 14. If E3)(1; F ) = E3)(1; G) and F , G share (∞, k) then the conclusion

of Lemma 13 holds.

P r o o f. If H ≡ 0, then by Lemma 12 F , G share (1,∞), (∞, k). Hence the

result follows from Lemma 13.

Next suppose that H 6≡ 0. Then by the second fundamental theorem, Lemma 2

and Lemma 5 we get for m = 3

T (r, F ) 6 N(r, 0; F ) + N(r,∞; F ) + N(r, 1; F ) − N0(r, 0; F ′) + S(r, F )(8)

6 N(r, 0; F ) + N(r,∞; F ) + N(r, 0; F |> 2) + N(r, 0; G|> 2)

+ N∗(r,∞; F, G) + N(r, 1; F |> 4) + N(r, 1; G|> 4)

+ N(r, 1; F |> 2) + N0(r, 0; G′) + S(r, F ) + S(r, G).

Again by the second fundamental theorem we get

(9) T (r, G) 6 N(r, 0; G) + N(r,∞; G) + N(r, 1; G) − N0(r, 0; G′) + S(r, G).
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We note that

N(r, 1; F |> 2) + N(r, 1; F |> 4) + N(r, 1; G) + N(r, 1; G|> 4)(10)

=
1

2
N(r, 1; F |= 1) +

1

2
N(r, 1; G|= 1) + N(r, 1; F |> 2)

+ N(r, 1; G|> 2) + N(r, 1; F |> 4) + N(r, 1; G|> 4)

6
1

2
N(r, 1; F ) +

1

2
N(r, 1; G)

6
1

2
T (r, F ) +

1

2
T (r, G).

Adding (8) and (9) we get by using (10)

T (r, F ) + T (r, G) 6 2{N2(r, 0; F ) + N2(r, 0; G) + N(r,∞; F ) + N(r,∞; G)

+ N∗(r,∞; F, G)} + S(r, F ) + S(r, G).

This completes the proof of the lemma. �

Lemma 15 ([16]). If F , G share (1, 1), then

2NL(r, 1; F ) + 2NL(r, 1; G) + N
(2
E (r, 1; F ) − NF>2(r, 1; G)

6 N(r, 1; G) − N(r, 1; G).

Lemma 16. Let F , G be two nonconstant meromorphic functions such that they

share (1, 1), (∞, 0) and H 6≡ 0. Then

T (r, F ) 6 N2(r, 0; F ) + N2(r, 0; G) +
1

2
N(r, 0; F ) +

7

2
N(r,∞; F )

+ S(r, F ) + S(r, G).

P r o o f. By the second fundamental theorem we get

T (r, F ) + T (r, G) 6 N(r, 0; F ) + N(r,∞; F ) + N(r, 0; G) + N(r,∞; G)(11)

+ N(r, 1; F ) + N(r, 1; G) − N0(r, 0; F ′) − N0(r, 0; G′)

+ S(r, F ) + S(r, G).

Since F , G share (1, 1) and (∞; 0) we note that N
1)
E (r, 1; F ) = N(r, 1; F |= 1) and
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N∗(r,∞; F, G) 6 N(r,∞; F ). So using Lemmas 1, 4, 10 and 15 we get

N(r, 1; F ) + N(r, 1; G)(12)

6 N(r, 1; F |= 1) + NL(r, 1; F ) + NL(r, 1; G)

+ N
(2
E (r, 1; F ) + N(r, 1; G)

6 N(r, 1; F |= 1) + N(r, 1; G) − NL(r, 1; F )

− NL(r, 1; G) + NF>2(r, 1; G)

6 N(r, 0; F |> 2) + N(r, 0; G|> 2) + N∗(r,∞; F, G)

+ N∗(r, 1; F, G) + T (r, G) − m(r, 1; G) + O(1)

− NL(r, 1; F ) − NL(r, 1; G) +
1

2
N(r, 0; F )

+
1

2
N(r,∞; F ) + N0(r, 0; F ′) + N0(r, 0; G′)

+ S(r, F ) + S(r, G)

6 N(r, 0; F |> 2) + N(r, 0; G|> 2) + N(r,∞; F )

+ T (r, G) +
1

2
N(r, 0; F ) +

1

2
N(r,∞; F )

+ N0(r, 0; F ′) + N0(r, 0; G′) + S(r, F ) + S(r, G).

From (11) and (12) we obtain

T (r, F ) 6 N2(r, 0; F ) + N2(r, 0; G) +
1

2
N(r, 0; F ) +

7

2
N(r,∞; F )

+ S(r, F ) + S(r, G).

This proves the lemma. �

Lemma 17 ([5]). Let F = fn, G = gn and V 6≡ 0. If f , g share (∞, 0) and F ,

G share (1, k), where 1 6 k 6 ∞, then

(

n − 1 −
1

k

)

N(r,∞; f)

6
k + 1

k
N(r, 0; f) + N(r, 0; g) −

1

k
N(r, 0; f ′| f 6= 0, 1, ω, . . . , ωn−1)

+ S(r, f) + S(r, g).
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3. Proofs of the theorems

P r o o f of Theorem 1. Assume that F = fn, G = gn and f , g do not sat-

isfy (1). Since Ef (S1, 1) = Eg(S1, 1) and Ef (S2, 0) = Eg(S2, 0), it follows that F ,

G share (1, 1) and (∞, 0). If possible, we suppose that H 6≡ 0. Then by the second

fundamental theorem and Lemma 16 we obtain

T (r, F ) 6 N2(r, 0; F ) + N2(r, 0; G) +
1

2
N(r, 0; F ) +

7

2
N(r,∞; F )(13)

+ S(r, F ) + S(r, G)

6
5

2
N(r, 0; f) + 2N(r, 0; g) +

7

2
N(r,∞; f) + S(r, f) + S(r, g).

Since F 6≡ G we get by Lemma 8 that V 6≡ 0. So by Lemma 17 for k = 1 we get

from (13)

nT (r, f) 6
5

2
N(r, 0; f) + 2N(r, 0; g) +

7

2(n − 2)
{2N(r, 0; f) + N(r, 0; g)}(14)

+ S(r, f) + S(r, g)

6

{5

2
+

7

n − 2

}

T (r, f) +
{

2 +
7

2(n − 2)

}

T (r, g) + S(r, f) + S(r, g).

Similarly we obtain

(15) nT (r, g) 6

{

2 +
7

2(n − 2)

}

T (r, f) +
{5

2
+

7

n − 2

}

T (r, g) + S(r, f) + S(r, g).

Adding (14) and (15) we get

{

n −
9

2
−

21

2(n − 2)

}

{T (r, f) + T (r, g)} 6 S(r, f) + S(r, g),

which is a contradiction for any integer n > 7. Hence H ≡ 0 and so the theorem

follows from Lemma 7 and Remark 2. �

P r o o f of Theorem 2. Assume that F = fn, G = gn and f , g do not satisfy (1).

Since E2)(S1, f) = E2)(S1, g) and Ef (S2, 0) = Eg(S2, 0), it follows that E2)(1, F ) =

E2)(1, G) and F , G share (∞, 0). If possible, we suppose that H 6≡ 0. Then by the

second fundamental theorem and Lemma 5 for m = 2 and k = 0 we obtain

T (r, F ) 6 N(r, 0; F ) + N(r,∞; F ) + N(r, 1; F |= 1) + N(r, 1; F |> 2)(16)

− N0(r, 0; F ′) + S(r, F ) + S(r, G)

6 N2(r, 0; F ) + N(r, 0; G|> 2) + 2N(r,∞; F ) + N(r, 1; F |> 3)

+ N(r, 1; G|> 3) + N(r, 1; F |> 2) + N0(r, 0; F ′)

+ N0(r, 0; G′) + S(r, F ) + S(r, G).
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Since N(r, 1; F |> 2) + N(r, 1; F |> 3) + N0(r, 0; F ′) 6 N(r, 0; F ′|F 6= 0) and

N(r, 1; G|> 3)+N0(r, 0; G′) 6 N(r, 0; G′|G 6= 0), it follows from Lemma 3, Lemma 6

and from (16)

(17) nT (r, f) 6 3N(r, 0; f) + 2N(r, 0; g) + 4N(r,∞; f) + S(r, f) + S(r, g).

Since F 6≡ G we get by Lemma 8 that V 6≡ 0. Now by Lemma 9 for m = 2 and k = 0

we get from (17)

nT (r, f) 6 3N(r, 0; f) + 2N(r, 0; g) +
6

n − 2
{N(r, 0; f) + N(r, 0; g)}(18)

+ S(r, f) + S(r, g)

6

{

3 +
6

n − 2

}

T (r, f) +
{

2 +
6

n − 2

}

T (r, g) + S(r, f) + S(r, g).

Similarly we obtain

(19) nT (r, g) 6

{

2 +
6

n − 2

}

T (r, f) +
{

3 +
6

n − 2

}

T (r, g) + S(r, f) + S(r, g).

Adding (18) and (19) we get

{

n − 5 −
12

n − 2

}

{T (r, f) + T (r, g)} 6 S(r, f) + S(r, g),

which is a contradiction for any integer n > 8. Hence H ≡ 0 and so the theorem

follows from Lemma 7 and Remark 2. �

P r o o f of Theorem 3. Assume that F = fn, G = gn and f , g do not satisfy (1).

Since E3)(S1, f) = E3)(S1, g) and Ef (S3, 0) = Eg(S3, 0), it follows that E3)(1, F ) =

E3)(1, G) and F , G share (∞, 0). Since F 6≡ G, by Lemma 8 we get V 6≡ 0. Now

using Lemma 6 and Lemma 9 we get

nT (r, f) + nT (r, g) 6 2N2(r, 0; F ) + 2N2(r, 0; G) + 6N(r,∞; F ) + S(r, F ) + S(r, G)

6 4N(r, 0; f) + 4N(r, 0; g) + 3N(r,∞; f) + 3N(r,∞; g)

+ S(r, f) + S(r, g)

6

{

4 +
24

3n − 5

}

T (r, f) +
{

4 +
24

3n − 5

}

T (r, g)

+ S(r, f) + S(r, g),

i.e.
(

n − 4 −
24

3n− 5

)

T (r, f) +
(

n − 4 −
24

3n − 5

)

T (r, g) 6 S(r, f) + S(r, g),

which is a contradiction for any integer n > 6 and so condition (i) of Lemma 13 does

not hold. Hence we must have FG ≡ 1. So f , g must satisfy one of (1) and (2). This

proves the theorem. �
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P r o o f of Theorem 4. Assume that F = fn, G = gn and f , g do not satisfy (1).

Since E1)(S1, f) = E1)(S1, g) and Ef (S2, 0) = Eg(S2, 0), it follows that E1)(1, F ) =

E1)(1, G) and F , G share (∞, 0). If possible, we suppose that H 6≡ 0. Then by

Lemma 8 we have V 6≡ 0. So proceeding in the same way as in Theorem 2 we obtain

by the second fundamental theorem, Lemma 6 and Lemma 9 for m = 1 and k = 0

nT (r, f) 6 4N(r, 0; f) + 2N(r, 0; g) + 5N(r,∞; f) + S(r, f) + S(r, g)(20)

6

(

4 +
10

n − 3

)

T (r, f) +
(

2 +
10

n − 3

)

T (r, g) + S(r, f) + S(r, g).

Similarly we obtain

(21) nT (r, g) 6

{

2 +
10

n − 3

}

T (r, f) +
(

4 +
10

n − 3

)

T (r, g) + S(r, f) + S(r, g).

Adding (20) and (21) we get

{

n − 6 −
20

n − 3

}

{T (r, f) + T (r, g)} 6 S(r, f) + S(r, g),

which is a contradiction for any integer n > 10. Hence H ≡ 0 and so the theorem

follows from Lemma 7 and Remark 2. �

P r o o f of Theorem 5. Assume that F = fn, G = gn and f , g do not satisfy (1).

Since E1)(S1, f) = E1)(S1, g) and Ef (S2, 1) = Eg(S2, 1), it follows that E1)(1, F ) =

E1)(1, G) and F , G share (∞, n). We note that N(r,∞; F |> n + 1) = N(r,∞; F |

> 2n) = N(r,∞; f |> 2). If possible, we suppose H 6≡ 0. Then by Lemma 8 we have

V 6≡ 0. So by the second fundamental theorem, Lemma 3 and Lemma 5 for m = 1

and k = n we obtain

T (r, F ) 6 N(r, 0; F ) + N(r,∞; F ) + N(r, 0; F |> 2) + N(r, 0; G|> 2)(22)

+ N∗(r,∞; F, G) + 2N(r, 1; F |> 2) + N(r, 1; G|> 2)

+ N0(r, 0; F ′) + N0(r, 0; G′) + S(r, F ) + S(r, G)

6 N2(r, 0; F ) + N(r, 0; G|> 2) + N(r,∞; F ) + N(r,∞; f |> 2)

+ 2N(r, 0; F ′|F 6= 0) + N(r, 0; G′|G 6= 0) + S(r, F ) + S(r, G)

6 N2(r, 0; F ) + N2(r, 0; G) + 4N(r,∞; F ) + 2N(r, 0; F )

+ N(r,∞; f |> 2) + S(r, F ) + S(r, G).
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So using Lemma 6 and Lemma 9 for m = 1 and k = 1 we obtain from (22)

nT (r, f) 6 4N(r, 0; f) + 2N(r, 0; g) + 4N(r,∞; f)(23)

+
2

2n − 1
[N(r, 0; f) + N(r, 0; g) + N(r,∞; f)]

+ S(r, f) + S(r, g)

6

[

4 +
2

2n− 1

]

T (r, f) +
[

2 +
2

2n − 1

]

T (r, g)

+
{

4 +
2

2n − 1

}

N(r,∞; f) + S(r, f) + S(r, g).

Now again using Lemma 9 for m = 1 and k = 0 we get from (23)

nT (r, f) 6

[

4 +
2

2n− 1

]

T (r, f) +
[

2 +
2

2n − 1

]

T (r, g)(24)

+
2

n − 3

{

4 +
2

2n − 1

}

[N(r, 0; f) + N(r, 0; g)]

+ S(r, f) + S(r, g)

6

[

4 +
18n− 10

(n − 3)(2n − 1)

]

T (r, f) +
[

2 +
18n − 10

(n − 3)(2n − 1)

]

T (r, g)

+ S(r, f) + S(r, g).

Similarly we obtain

nT (r, g) 6

[

2 +
18n − 10

(n − 3)(2n− 1)

]

T (r, f) +
[

4 +
18n− 10

(n − 3)(2n − 1)

]

T (r, g)(25)

+ S(r, f) + S(r, g).

Adding (24) and (25) we get

{

n − 6 −
36n− 20

(2n − 1)(n − 3)

}

{T (r, f) + T (r, g)} 6 S(r, f) + S(r, g).

This is a contradiction for any integer n > 9. Hence H ≡ 0 and so the theorem

follows from Lemma 7 and Remark 2. �
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