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Abstract. The signed distance-k-domination number of a graph is a certain variant of
the signed domination number. If v is a vertex of a graph G, the open k-neighborhood of v,
denoted by Nk(v), is the set Nk(v) = {u : u 6= v and d(u, v) 6 k}. Nk[v] = Nk(v) ∪ {v}
is the closed k-neighborhood of v. A function f : V → {−1, 1} is a signed distance-k-
dominating function of G, if for every vertex v ∈ V , f(Nk [v]) =

∑
u∈Nk[v]

f(u) > 1. The

signed distance-k-domination number, denoted by γk,s(G), is the minimum weight of a
signed distance-k-dominating function on G. The values of γ2,s(G) are found for graphs
with small diameter, paths, circuits. At the end it is proved that γ2,s(T ) is not bounded
from below in general for any tree T .

Keywords: signed distance-k-domination number, signed distance-k-dominating function,
signed domination number

MSC 2000 : 05C69

1. Introduction

Let G = (V, E) be a simple graph of order n and minimum degree δ. The open k-
neighborhood of a vertex v ∈ V , denoted by Nk(v), is the set Nk(v) = {u : u 6= v and

d(u, v) 6 k}. The closed k-neighborhood of v is the set Nk(v) ∪ {v}. The k-degree
of a vertex v is defined as degk(v) = |Nk(v)|. The maximum and minimum k-degree

of G are denoted by ∆k(G) = max{degk(v) : v ∈ V }, δk(G) = min{degk(v) : v ∈ V }
respectively. If ∆k(G) = δk(G), the graph G is called distance-k-regular.

A function f : V → {−1, 1} is a signed distance-k-dominating function of G,
if for every vertex v ∈ V , f(Nk[v]) =

∑
u∈Nk[v]

f(u) > 1. The signed distance-

k-domination number, denoted by γk,s(G), is the minimum weight of a signed
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distance-k-dominating function on G. Specially, signed distance-1-dominating func-
tion and signed distance-1-domination number are called signed dominating function
and signed domination number respectively. Signed domination number is denoted
by γs(G). It’s straightforward to obtain the following result.

Theorem 1. For any graph G,

γ1,s(G) = γs(G).

Theorem 2. For any complete graph Kn (n > 2),

γk,s(Kn) = γs(Kn) =

{
1 if n is odd,

2 if n is even.

Theorem 3. Let k > 2. If G is a graph of order n and with diameter 2, then

γk,s(G) = γ2,s(G) =

{
1 if n is odd,

2 if n is even.

Corollary 1. Let k > 2. For complete multipartite graph G ∼= K(m1, m2, . . . ,

mn) (n > 2),

γk,s(G) =





1 if
n∑

i=1

mi is odd,

2 if
n∑

i=1

mi is even.

2. Some results on signed distance-k-domination number

Theorem 4. Let f be a signed distance-k-dominating function of G, then f is

minimal if only if for each vertex v with f(v) = 1, there exists a vertex u ∈ Nk[v]
such that f(Nk[v]) ∈ {1, 2}.
���������

. Assume that f is a minimal distance-k-dominating function of G.
Suppose that there exists a vertex v with f(v) = 1 such that for any vertex u ∈ Nk[v],
f(Nk[u]) > 3, then let g be a function defined by g(v) = −1 and g(u) = f(u) for
any u 6= v. It is obvious that g is a signed distance-k-dominating function of G, with

g < f , which contradicts the fact that f is a minimal distance-k-dominating function
of G.
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Conversely, assume that for each vertex v with f(v) = 1 there exists a vertex
u ∈ Nk[v] such that f(Nk[u]) ∈ {1, 2}. Suppose that f is not minimal. Then there
exists a signed distance-k-dominating function g of G such that g < f . Therefore,
there exists a vertex v ∈ V such that g(v) < f(v) and g(w) 6 f(w) for any vertex w

(w 6= v). So g(v) = −1 and f(v) = 1. Hence there exists a vertex u ∈ Nk[v] such
that f(Nk[u]) ∈ {1, 2}. Therefore g(Nk[u]) 6 f(Nk[u]) − 2 6 0, which contradicts
the fact that g is a signed distance-k-dominating function of G. �

Theorem 5. Let k be a positive integer. For any path Pn of order n,

γ2,s(Pn) =





k if n = 5k,

k + 1 if n = 5k + 1,

k + 2 if n = 5k + 2 or n = 5k + 4,

k + 3 if n = 5k + 3.

���������
. Assume that Pn = v1v2 . . . vn. Let f be a minimum signed distance-

2-dominating function of Pn such that f(V (Pn)) = γ2,s(Pn). Since f(N2[vj ]) > 1
for every vertex vj (1 6 j 6 n) in Pn, there are at most two vertices assigned −1
under f in every five consecutive vertices on the path Pn. We consider the following

five cases.

Case 1 : n = 5k. Since there are at most two vertices assigned −1 under f in
every five consecutive vertices on Pn, we have

γ2,s(Pn) = f(V (Pn)) =
n∑

j=1

f(vj) =
k−1∑

i=0

5∑

m=1

f(v5i+m) >
k−1∑

i=0

1 = k.

On the other hand, for 0 6 i 6 k − 1, we define g : V → {−1, 1} by

g(vj) =

{
−1 if j = 5i + 1, 5i + 5,

1 if j = 5i + 2, 5i + 3, 5i + 4.

Then g is a signed distance-2-dominating function of Pn with weight k. Therefore,
we have γ2,s(Pn) 6 k. Hence, γ2,s(Pn) = k.

Case 2 : n = 5k + 1. If f(v1) = 1, then γ2,s(Pn) = f(V (Pn)) =
n∑

j=1

f(vj) =
k−1∑
i=0

6∑
m=2

f(v5i+m) +f(v1) > k + 1.

If f(v1) = −1, then we divide the path v2v3 . . . v5k+1 into k segment paths

v5i+2 . . . v5i+6 (i = 0, 1, . . . , k − 1). We claim that there is at least one segment
path v5l+2 . . . v5l+6 (0 6 l 6 k−1) such that there is at most one vertex assigned −1
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under f in the path v5l+2 . . . v5l+6. Suppose to the contrary that in every segment

path v5i+2 . . . v5i+6 (0 6 i 6 k − 1) there are two vertices assigned −1 under f . We
have f(v5i+2) = f(v5i+3) = f(v5i+4) = 1 and f(v5i+5) = f(v5i+6) = −1. But we
have f(N2[v5k+1]) 6 0, which is a contradiction. Therefore, γ2,s(Pn) = f(V (Pn)) =
n∑

j=1

f(vj) = f(v1) +
k−1∑
i=0

6∑
m=2

f(v5i+m) > −1+ (k− 1) +
6∑

m=2
f(v5l+m) > (k− 2) + 3 =

k + 1.
On the other hand, for 0 6 i 6 k − 1, we define g : V → {−1, 1} by

g(vj) =





1 if j = 1,

−1 if j = 5i + 2, 5i + 6,

1 if j = 5i + 3, 5i + 4, 5i + 5.

Then g is a signed distance-2-dominating function of Pn with weight k+1. Therefore
γ2,s(Pn) 6 k + 1. Hence γ2,s(Pn) = k + 1.

Case 3 : n = 5k+2. If f(v1) = f(v2) = 1, then γ2,s(Pn) = f(V (Pn)) =
n∑

j=1

f(vj) =

(f(v1) + f(v2)) +
k−1∑
i=0

7∑
m=3

f(v5i+m) > k + 2.

If either f(v1) = −1 or f(v2) = −1, then f(v1)+f(v2) > 0. We claim that there is
at least one segment path v5l+3 . . . v5l+7 (0 6 l 6 k−1) such that there is at most one
vertex assigned −1 under f in the path v5l+3 . . . v5l+7. Suppose to the contrary that

in every segment path v5i+3 . . . v5i+7 (0 6 i 6 k−1) there are two vertices assigned−1
under f . Since f(N2[v2]) > 1, we have f(v3) = f(v4) = 1. Then there are two vertices
assigned −1 under f in {v5, v6, v7}. Since f(N2[v7]) > 1, we have f(v8) = f(v9) = 1.
Then there are two vertices assigned −1 under f in {v9, v10, v11}, . . ., by a similar
reason, we have that there are two vertices assigned−1 under f in {v5k, v5k+1, v5k+2}.
But f(N2[v5k+2]) = f(v5k) + f(v5k+1) + f(v5k+2) 6 −1. This is a contradiction.

Therefore, γ2,s(Pn) = f(V (Pn)) =
n∑

j=1

f(vj) = (f(v1) + f(v2)) +
k−1∑
i=0

7∑
m=3

f(v5i+m) >

0 + (k − 1) +
7∑

m=3
f(v5l+m) > k + 2.

On the other hand, for 0 6 i 6 k − 1, we define a function g by

g(vj) =





1 if j = 1, 2,

−1 if j = 5i + 3, 5i + 7,

1 if j = 5i + 4, 5i + 5, 5i + 6.

Then g is a signed distance-2-dominating function of Pn with weight k+2. Therefore
γ2,s(Pn) 6 k + 2. Hence γ2,s(Pn) = k + 2.
Case 4 : n = 5k + 3. Since f(N2[v1]) > 1, there is at most one vertex assigned −1

under f in {v1, v2, v3}.
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If f(v1) = f(v2) = f(v3) = 1, then γ2,s(Pn) = f(V (Pn)) =
n∑

j=1

f(vj) = (f(v1) +

f(v2) + f(v3)) +
k−1∑
i=0

8∑
m=4

f(v5i+m) > k + 3.

If there is exactly one vertex assigned −1 under f in {v1, v2, v3}, then we claim
that there is at least one segment path v5l+4 . . . v5l+8 (0 6 l 6 k− 1) such that there
is at most one vertex in the path v5l+4 . . . v5l+8 assigned −1 under f . Suppose to
the contrary that in every segment path v5i+4 . . . v5i+8 (0 6 i 6 k− 1) there are two
vertices assigned −1 under f . Since f(N2[v2]) > 1, we have f(v4) = 1. Then there
are two vertices assigned −1 under f in {v5, v6, v7, v8}. Since f(N2[v7]) > 1, we have
f(v9) = 1. Then there are two vertices assigned −1 under f in {v10, v11, v12, v13}, . . .,
by similar reason, we have that there are two vertices assigned −1 under f in

{v5k, v5k+1, v5k+2, v5k+3}. But f(N2[v5k+2]) =
3∑

m=0
f(v5k+m) 6 0. This is a con-

tradiction. Therefore, γ2,s(Pn) = f(V (Pn)) =
n∑

j=1

f(vj) = (f(v1) + f(v2) + f(v3)) +

k−1∑
i=0

8∑
m=4

f(v5i+m) > 1 + (k − 1) +
8∑

m=4
f(v5l+m) > k + 3.

On the other hand, for 0 6 i 6 k − 1, we define a function g by

g(vj) =





1 if j = 1, 2, 3,

−1 if j = 5i + 4, 5i + 5,

1 if j = 5i + 6, 5i + 7, 5i + 8.

Then g is a signed distance-2-dominating function of Pn with weight k+3. There-
fore γ2,s(Pn) 6 k + 3. Hence γ2,s(Pn) = k + 3.
Case 5 : n = 5k + 4. Since f(N2[v2]) > 1, there is at most one vertex assigned −1

under f in {v1, v2, v3, v4}. Furthermore, there are at most two vertices assigned −1
under f in every segment path v5i+5 . . . v5i+9 (0 6 i 6 k − 1). Therefore, we have

γ2,s(Pn) = f(V (Pn)) =
n∑

j=1

f(vj) =
4∑

j=1

f(vj) +
k−1∑
i=0

9∑
m=5

f(v5i+m) > k + 2.

On the other hand, for 0 6 i 6 k − 1, we define a function g by

g(vj) =





−1 if j = 1,

1 if j = 2, 3, 4,

−1 if j = 5i + 5, 5i + 6,

1 if j = 5i + 7, 5i + 8, 5i + 9.

Then g is a signed distance-2-dominating function of Pn with weight k+2. Therefore,
γ2,s(Pn) 6 k + 2. Hence γ2,s(Pn) = k + 2. �

233



Theorem 6. Let k be a positive integer. For any circuit Cn of order n,

γ2,s(Cn) =





k n = 5k,

k + 1 n = 5k + 1 or n = 5k + 3,

k + 2 n = 5k + 2 or n = 5k + 4.

���������
. Assume that Cn = v1v2 . . . vnv1. Let f be a minimum signed distance-

2-dominating function of Cn such that f(V (Cn)) = γ2,s(Cn).
Case 1 : n = 5k. Since there are at most two vertices assigned −1 under f in

every five consecutive vertices on Cn, we have γ2,s(Cn) = f(V (Cn)) =
n∑

j=1

f(vj) =
k−1∑
i=0

5∑
m=1

f(v5i+m) > k.

On the other hand, for 0 6 i 6 k − 1, we define a function g by

g(vj) =

{
−1 if j = 5i + 1, 5i + 5,

1 if j = 5i + 2, 5i + 3, 5i + 4.

Then g is a signed distance-2-dominating function of Cn with weight k. Therefore,
γ2,s(Cn) 6 k. It follows that γ2,s(Cn) = k.

Case 2 : n = 5k + 1. Without loss of generality, we assume that f(v1) = 1. Since
there are at most two vertices assigned −1 under f in every five consecutive vertices

on Cn, we have γ2,s(Cn) = f(V (Cn)) =
n∑

j=1

f(vj) = f(v1)+
k−1∑
i=0

6∑
m=2

f(v5i+m) > k+1.

On the other hand, for 0 6 i 6 k − 1, we define a function g by

g(vj) =





1 if j = 1,

−1 if j = 5i + 2, 5i + 6,

1 if j = 5i + 3, 5i + 4, 5i + 5.

Then g is a signed distance-2-dominating function of Cn with weight k+1. There-
fore, γ2,s(Cn) 6 k + 1. It follows that γ2,s(Cn) = k + 1.
Case 3 : n = 5k + 2. It is easy to see that there exists two consecutive vertices

of Cn, say v1, v2, such that f(v1) = f(v2) = 1. Since there are at most two vertices
assigned −1 under f in every five consecutive vertices on Cn, we have γ2,s(Cn) =

f(V (Cn)) =
n∑

j=1

f(vj) = (f(v1) + f(v2)) +
k−1∑
i=0

7∑
m=3

f(v5i+m) > k + 2.

On the other hand, for 0 6 i 6 k − 1, we define a function g by

g(vj) =





1 if j = 1, 2,

−1 if j = 5i + 3, 5i + 7,

1 if j = 5i + 4, 5i + 5, 5i + 6.
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Then g is a signed distance-2-dominating function of Cn with weight k+2. There-
fore, γ2,s(Cn) 6 k + 2. It follows that γ2,s(Cn) = k + 2.
Case 4 : n = 5k + 3. If there does not exist any vertex assigned −1 under f , then

f(V ) > k + 1. Otherwise, we can assume that f(v1) = −1. Since f(N2[v1]) > 1,
either f(v2) = f(v3) = 1 or f(vn−1) = f(vn) = 1. Without loss of generality, we
assume that f(v2) = f(v3) = 1. Since there are at most two vertices assigned −1
under f in every five consecutive vertices on Cn, we have γ2,s(Cn) = f(V (Cn)) =
n∑

j=1

f(vj) = (f(v1) + f(v2) + f(v3)) +
k−1∑
i=0

8∑
m=4

f(v5i+m) > k + 1.

On the other hand, for 0 6 i 6 k − 1, we define a function g by

g(vj) =





−1 if j = 1,

1 if j = 2, 3,

−1 if j = 5i + 4, 5i + 6,

1 if j = 5i + 5, 5i + 7, 5i + 8.

Then g is a signed distance-2-dominating function of Cn with weight k+1. There-
fore, γ2,s(Cn) 6 k + 1. It follows that γ2,s(Cn) = k + 1.
Case 5 : n = 5k+4. It is easy to see that there are at most two vertices assigned−1

under f in {v1, v2, v3, v4}.
If there is at most one vertex assigned −1 under f in {v1, v2, v3, v4}, then

γ2,s(C5k+4) = f(V (C5k+4)) =
n∑

j=1

f(vj) =
4∑

j=1

f(vj) +
k−1∑
i=0

9∑
m=5

f(v5i+m) > k + 2.

If there are exactly two vertices assigned −1 under f in {v1, v2, v3, v4}, then we
have the following claim.

Claim 1. If there are exactly two vertices assigned −1 under f in {v1, v2, v3, v4},
then there exists a segment path v5l+5 . . . v5l+9 (0 6 l 6 k − 1) on C5k+4 in which

there is at most one vertex assigned −1 under f .

���������
. Suppose to the contrary that in every segment path v5i+5 . . . v5i+9

(0 6 i 6 k− 1) on C5k+4 there are two vertices assigned −1 under f . Then we have

f(V (C5k+4)) 6 k. There are six cases to be considered.

Case a: f(v1) = f(v2) = −1 and f(v3) = f(v4) = 1. In this case, we
have f(v5k+4) = f(v5k+3) = f(v5k+2) = 1. Since there are at most two ver-
tices assigned −1 under f in every five consecutive vertices on the C5k+4, we

have f(V (C5k+4)) =
n∑

j=1

f(vj) = (f(v5k+2) + f(v5k+3) + f(v5k+4) + f(v1)) +
k−1∑
i=0

6∑
m=2

f(v5i+m) > k + 2, which contradicts the fact that f(V (C5k+4)) 6 k.
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Case b: f(v1) = f(v3) = −1 and f(v2) = f(v4) = 1. In this case, we have

f(v5k+4) = f(v5k+3) = 1. Then we have f(V (C5k+4)) =
n∑

j=1

f(vj) = (f(v1)+f(v2)+

f(v5k+3) + f(v5k+4)) +
k−1∑
i=0

7∑
m=3

f(v5i+m) > k + 2, which contradicts the fact that
f(V (C5k+4)) 6 k.
Case c: f(v1) = f(v4) = −1 and f(v2) = f(v3) = 1. In this case, we have

f(v5) = 1. Then we have f(V (C5k+4)) =
n∑

j=1

f(vj) > k +
5∑

j=2

f(vj) = k + 2, which

contradicts the fact that f(V (C5k+4)) 6 k.

Case d : f(v1) = f(v2) = 1 and f(v3) = f(v4) = −1. In this case, we have
f(v5) = f(v6) = 1 and argue as in Case a.
Case e: f(v1) = f(v4) = 1 and f(v2) = f(v3) = −1. In this case, we have

f(v5) = 1 and argue as in Case a.
Case f : f(v1) = f(v3) = 1 and f(v2) = f(v4) = −1. In this case, we have

f(v5) = 1 and argue as in Case b. �

By Claim 1, we have that γ2,s(C5k+4) = f(V (C5k+4)) =
n∑

j=1

f(vj) =
4∑

j=1

f(vj) +
k−1∑
i=0

9∑
m=5

f(v5i+m) > 0 + (k − 1) +
9∑

m=5
f(v5l+m) > k + 2.

On the other hand, for 0 6 i 6 k − 1, we define g : V → {−1, 1} by

g(vj) =





−1 if j = 1,

1 if j = 2, 3, 4,

−1 if j = 5i + 5, 5i + 9,

1 if j = 5i + 6, 5i + 7, 5i + 8.

Then g is a signed distance-2-dominating function of C5k+4 with weight k + 2.
Therefore, we have γ2,s(V (C5k+4)) 6 k + 2. It follows that γ2,s(C5k+4) = k + 2. �

Theorem 7. If G is distance-k-regular and ∆k(G) = δk(G) = r, then

γk,s(G) > n

r + 1
,

and this bound is sharp.
���������

. Let f be a minimum signed distance-k-dominating function of G such
that f(V (G)) = γk,s(G). Let N =

∑
v∈V

f(Nk[v]). Then

N =
∑

v∈V

f(Nk[v]) = (r + 1)
∑

v∈V

f(v) = (r + 1)f(V )(1)

N =
∑

v∈V

f(Nk[v]) >
∑

v∈V

1 = |V | = n.(2)
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Combining (1) and (2), we have

γk,s(G) > n

r + 1
.

Now we show that the bound is sharp. Let n be odd and n > 3. We consider
the complete graph Kn. We have r = ∆k(G) = δk(G) = n − 1. By Theorem 2,
γk,s(Kn) = 1 = n/(r + 1). This completes the proof. �

Let Ts,t,k be a graph obtained from a path Pk by adding s paths of length 1 and

t paths of length 2 to each vertex u of Pk and identifying one end vertex of each of
them with u. T3,4,4 is illustrated in Fig. 1. Then we have the following theorem.

Fig. 1. T3,4,4

Theorem 8. For any positive integer k, there exists a tree T such that

γ2,s(T ) 6 −k.

���������
. For Ts,t,k where t > 2s− 2, s > 2 and k > 5, let ci (1 6 i 6 k) denote

the vertex on path Pk of Ts,t,k. Denote byMi the set of vertices adjacent to ci whose

degree is one. Denote by Ti the set of vertices adjacent to ci whose degree is two
and Li the set of vertices adjacent to a vertex in Ti and different from ci.

We define a function on Ts,t,k as follows:

f(u) =

{
−1 u ∈ Mi ∪ Li,

1 u ∈ Ti ∪ {ci}.

In the following, we prove that f is a signed distance-2-dominating function on
Ts,t,k. We consider the following three cases.

If i = 1 or i = k, then for any vertex u ∈ Mi, we have f(N2[u]) = t + 2− s > 1. If
u = ci, then f(N2[u]) = t + 3− 2s > 1. For any vertex u ∈ Ti, we have f(N2[u]) =
t + 1− s > 1. For any vertex u ∈ Li, we have f(N2[u]) = 1.
If i = 2 or i = k−1, then for any vertex u ∈ Mi, we have f(N2[u]) = t+3−s > 1.

If u = ci, we have f(N2[u]) = 2t + 4 − 3s > 1. For any vertex u ∈ Ti, we have
f(N2[u]) = t + 2− s > 1. For any vertex u ∈ Li, we have f(N2[u]) = 1.
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If 3 6 i 6 k − 2, then for any vertex u ∈ Mi, we have f(N2[u]) = t + 3 − s > 1.
If u = ci, we have f(N2[u]) = 2t + 5 − 3s > 1. For any vertex u ∈ Ti, we have
f(N2[u]) = t + 2− s > 1. For any vertex u ∈ Li, we have f(N2[u]) = 1.
Therefore, f is a signed distance-2-dominating function of Ts,t,k. Let T = Ts,t,k.

Then γ2,s(T ) 6 w(f) = −(s− 1)k 6 −k.
For 1 6 k 6 5, let T = Ts,t,5. Then γ2,s(T ) 6 −5 6 −k. For k > 6, let T = Ts,t,k.

Then γ2,s(T ) 6 −k. This completes the proof. �
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