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Abstract. In this note we first define the notions of (weak, strong) implicative hyper
K-algebras. Then we show by examples that these notions are different. After that we
state and prove some theorems which determine the relationship between these notions and
(weak) hyper K-ideals. Also we obtain some relations between these notions and (weak)
implicative hyper K-ideals. Finally, we study the implicative hyper K-algebras of order 3,
in particular we obtain a relationship between the positive implicative hyper K-algebras
and (weak, strong) implicative hyper K-algebras under a simple condition.
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(weak) implicative hyper K-ideal

MSC 2000 : 06F35, 03G25

1. Introduction

The hyperalgebraic structure theory was introduced by F. Marty [7] in 1934. Imai

and Iseki [5] in 1966 introduced the notion of a BCK-algebra. Recently [3], [6],
[11] Borzooei, Jun and Zahedi et al. applied the hyperstructure to BCK-algebras

and introduced the concept of the hyper K-algebra which is a generalization of
the BCK-algebra. It is well-known [9] that the category of bounded commutative

BCK-algebras is equivalent to the category of MV -algebras. In particular, any
bounded commutative BCK-algebra is anMV -algebra and vice-versa. On the other

hand, anMV -algebra is an algebraic structure of the Lukasiewicz many-valued logic.
Hence any bounded commutative BCK-algebra is somehow related to a many-valued

logic. Since the concept of the hyper K-algebra is a generalization of the notion of
the BCK-algebra, it is natural to search for a logic whose algebraic structure is

a hyper K-algebra. To this end, we first need a deeper understanding of hyper
K-algebras. Now, in this note we define the notions of (weak, strong) implicative
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hyper K-algebras, then we obtain some related results which have been mentioned

in the abstract.

2. Preliminaries

Definition 2.1 ([3]). Let H be a nonempty set and “◦” a hyperoperation on H ,

that is, “◦” is a function from H ×H to P∗(H) = P(H)\{∅}. Then H is called a
hyper K-algebra if it contains a constant “0” and satisfies the following axioms:
(HK1) (x ◦ z) ◦ (y ◦ z) < x ◦ y,

(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,

(HK3) x < x,

(HK4) x < y, y < x ⇒ x = y,

(HK5) 0 < x

for all x, y, z ∈ H , where x < y is defined by 0 ∈ x ◦ y and for every A, B ⊆ H ,
A < B is defined by ∃ a ∈ A, ∃ b ∈ B such that a < b.

Note that if A, B ⊆ H , then by A ◦B we mean the subset
⋃

a∈A
b∈B

a ◦ b of H .

Example 2.2 ([3]). Define the hyperoperation “◦” on H = [0, +∞) as follows:

x ◦ y =





[0, x] if x 6 y,

(0, y] if x > y 6= 0,

{x} if y = 0

for all x, y ∈ H . Then (H, ◦, 0) is a hyper K-algebra.

Theorem 2.3 ([3]). Let (H, ◦, 0) be a hyper K-algebra. Then for all x, y, z ∈ H

and for all nonempty subsets A, B and C of H the following relations hold:

(i) x ◦ y < z ⇔ x ◦ z < y, (ii) (x ◦ z) ◦ (x ◦ y) < y ◦ z,

(iii) x ◦ (x ◦ y) < y, (iv) x ◦ y < x,

(v) A ⊆ B ⇒ A < B, (vi) x ∈ x ◦ 0,

(vii) (A ◦ C) ◦ (A ◦B) < B ◦ C, (viii) (A ◦ C) ◦ (B ◦ C) < A ◦B,

(ix) A ◦B < C ⇔ A ◦ C < B.

Definition 2.4 ([3]). Let I be a nonempty subset of a hyper K-algebra (H, ◦, 0)
and 0 ∈ I . Then
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(i) I is called a weak hyper K-ideal of H if x ◦ y ⊆ I and y ∈ I imply that x ∈ I

for all x, y ∈ H ;

(ii) I is called a hyper K-ideal of H if x ◦ y < I and y ∈ I imply that x ∈ I for all
x, y ∈ H .

Theorem 2.5 ([3]). Any hyper K-ideal of a hyper K-algebra H is a weak hyper

K-ideal.

Definition 2.6 ([4]). Let I be a nonempty subset of H . Then we say that
I satisfies the additive condition, if for all x, y ∈ H , x < y and y ∈ I imply that

x ∈ I .

Definition 2.7 ([2]). Let H be a hyper K-algebra. An element a ∈ H is called
a left (right) scalar if |a ◦ x| = 1 (|x ◦ a| = 1) for all x ∈ H . If a ∈ H is both a left

and a right scalar, we say that a is a scalar element.

Definition 2.8 ([2]). We say that a hyper K-algebra H satisfies the transitive
condition if for all x, y, z ∈ H , x < y and y < z imply that x < z.

Definition 2.9 ([2]). A hyper K-algebra H is called a positive implicative hyper
K-algebra, if it satisfies (x ◦ z) ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ H .

Definition 2.10 ([1]). We say that a hyper K-algebra H satisfies the strong

transitive condition if for all A, B, C ⊆ H , A < B and B < C imply that A < C.

Definition 2.11 ([1]). Let H be a hyper K-algebra, then a nonempty subset I

of H is called

(a) a weak implicative hyper K-ideal if it satisfies

(i) 0 ∈ I ,

(ii) (x ◦ z) ◦ (y ◦ x) ⊆ I and z ∈ I imply x ∈ I for all x, y, z ∈ H ,

(b) an implicative hyper K-ideal if it satisfies

(i) 0 ∈ I ,

(ii) (x ◦ z) ◦ (y ◦ x) < I and z ∈ I imply x ∈ I for all x, y, z ∈ H .

Theorem 2.12 ([1]). Let I be a weak hyper K-ideal of H . Then the following

statements hold:

(i) If for all x, y, z ∈ H , x ◦ (y ◦ x) ⊆ I implies x ∈ I , then I is a weak implicative

hyper K-ideal.

(ii) Let 0 ∈ H be a right scalar element and I a weak implicative hyper K-ideal.

Then for all x, y ∈ H , x ◦ (y ◦ x) ⊆ I implies that x ∈ I .
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Theorem 2.13 ([1]). Let I be a hyper K-ideal of H . Then I is an implicative

hyper K-ideal if and only if

x ◦ (y ◦ x) < I implies that x ∈ I for any x, y ∈ H.

Definition 2.14 ([10]). Let H = {0, 1, 2} be a hyper K-algebra of order 3. We

say that H satisfies the simple condition if 1 6< 2 and 2 6< 1.

Definition 2.15 ([10]). Let H = {0, 1, 2} be a hyper K-algebra of order 3. We

say that H satisfies the normal condition if 1 < 2 or 2 < 1.

3. Implicative hyper K-algebra

From now on H is a hyper K-algebra, unless stated otherwise.

Definition 3.1. H is said to be

(i) weak implicative if x < x ◦ (y ◦ x) for all x, y ∈ H ,

(ii) implicative if x ∈ x ◦ (y ◦ x) for all x, y ∈ H ,

(iii) strong implicative if x ◦ 0 ⊆ x ◦ (y ◦ x) for all x, y ∈ H .

Example 3.2. Let H = {0, 1, 2, 3}. Then the following table shows a hyper
K-algebra structure on H :

◦ 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0, 1, 2} {0, 1, 2} {0, 1, 2}
2 {2} {2} {0} {2}
3 {2, 3} {1, 2} {0, 2, 3} {0, 1, 2}

It can be checked that H is a weak implicative, implicative and strong implicative

hyper K-algebra.

Theorem 3.3.
(i) Any implicative hyper K-algebra is a weak implicative hyper K-algebra.

(ii) Any strong implicative hyper K-algebra is an implicative hyper K-algebra.

���������
. The proof is trivial. �

The following example shows that the notions given in Definition 3.1 are not
equivalent.
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Example 3.4. (i) Let H = {0, 1, 2}. Then the following table shows a hyper
K-algebra structure on H :

◦ 0 1 2
0 {0, 1} {0, 1} {0, 1}
1 {1, 2} {0, 2} {0, 2}
2 {2} {1, 2} {0, 1, 2}

We can see that H is a weak implicative hyper K-algebra. However it is not an
implicative hyper K-algebra, because 1 6∈ 1 ◦ (2 ◦ 1) = {0, 2}.

(ii) Let H = {0, 1, 2}. Then the following table shows a hyper K-algebra structure
on H :

◦ 0 1 2
0 {0, 1} {0} {0, 1, 2}
1 {1} {0, 1} {1, 2}
2 {2} {1, 2} {0, 1, 2}

Now, H is an implicative hyper K-algebra. However it is not a strong implicative
one because 0 ◦ 0 = {0, 1} 6⊆ 0 ◦ (1 ◦ 0) = {0}.

Proposition 3.5. Let 0 ∈ H be a right scalar element. Then the notions of

implicative and strong implicative hyper K-algebras are equivalent.
���������

. The proof follows from the fact that x ◦ 0 = x. �

Proposition 3.6. H is a weak implicative hyper K-algebra if and only if x◦0 <

x ◦ (y ◦ x) for all x, y ∈ H .
���������

. Let x◦0 < x◦ (y ◦x) for all x, y ∈ H . Then we have x◦ (x◦ (y ◦x)) < 0.
Thus there exists t ∈ x ◦ (x ◦ (y ◦ x)) such that t < 0. Hence t = 0, therefore
x < x ◦ (y ◦ x). The proof of the converse is trivial. �

Theorem 3.7. Let H be a hyper K-algebra of order 3 that satisfies the simple
condition. Then H is implicative if and only if it is weak implicative.
���������

. Let H be a weak implicative hyper K-algebra. We show that x ∈
x ◦ (y ◦ x) for all x, y ∈ H . If x = 0, then 0 ∈ 0 ◦ (y ◦ 0) for all y ∈ H . Let x 6= 0
and x 6∈ x ◦ (y ◦ x). Since x < x ◦ (y ◦ x), there exists t ∈ x ◦ (y ◦ x) such that x < t.
Clearly since x 6= 0, we must have t 6= 0 and t 6= x. Since H satisfies the simple

condition, x < t is impossible. Thus x ∈ x ◦ (y ◦x) for all x, y ∈ H . For the converse
see Theorem 3.3 (i). �
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Example 3.8. This example shows that in the above theorem, the simple condi-
tion can not be omitted. Indeed let H = {0, 1, 2}. Then the following table shows a
hyper K-algebra structure on H :

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0, 1} {0, 2}

Then H is weak implicative while it is not implicative, since 2 6∈ 2 ◦ (1 ◦ 2).

Example 3.9. (i) It is not necessary that a (weak, strong) implicative hyper
K-algebra be a positive implicative hyper K-algebra. Example 3.2 shows a hyper

K-algebra which is strong implicative while it is not a positive implicative hyper
K-algebra. Indeed (3 ◦ 2) ◦ (1 ◦ 2) = {0, 1, 2, 3} 6= (3 ◦ 1) ◦ 2 = {0, 1, 2}.
(ii) In general it is not needed that a positive implicative hyper K-algebra be a

(weak, strong) implicative hyper K-algebra. Because let H = {0, 1, 2}. Then the
following table shows a positive implicative hyper K-algebra structure on H :

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0, 1} {0}
2 {2} {2} {0, 2}

but H is not a (weak, strong) implicative hyper K algebra. Indeed 1 6< 1 ◦ (2 ◦ 1).

Theorem 3.10. Let H be a positive implicative hyper K-algebra of order 3
that satisfies the simple condition. Then H is a (weak, strong) implicative hyper

K-algebra.
���������

. Since H satisfies the simple condition, we know that 1 ◦ 0 = {1},
2 ◦ 0 = {2}, 1 ◦ 2 6= {2} and 2 ◦ 1 6= {1} by Theorem 3.17 of [10]. Now we show that
H is a strong implicative hyper K-algebra, that is x ◦ 0 ⊆ x ◦ (y ◦x) for all x, y ∈ H .
To do this we consider three different cases:

(i) If x = 0, then we must show that 0 ◦ 0 ⊆ 0 ◦ (y ◦ 0) for all y ∈ H . If y = 0,
then we are done. We know that 0 ∈ 0 ◦ 0, so 0 ◦ 0 = {0}, {0, 1}, {0, 2} or {0, 1, 2}.
If 0 ◦ 0 = {0}, then clearly 0 ∈ 0 ◦ 1 and 0 ∈ 0 ◦ 2, and so we are done. Now let
0 ◦ 0 = {0, 1}. If y = 1, then we must show that 0 ◦ 0 ⊆ 0 ◦ (1 ◦ 0) = 0 ◦ 1. We have
(0◦0)◦0 = {0, 1}◦0 = (0◦0)∪(1◦0) = {0, 1}∪{1}= {0, 1}. On the other hand, since
H is positive implicative then {0, 1} = (0 ◦ 0) ◦ 0 = (0 ◦ 0) ◦ (0 ◦ 0) = {0, 1} ◦ {0, 1} =
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(0 ◦ 0)∪ (1 ◦ 0)∪ (0 ◦1)∪ (1◦1). Thus we conclude that (0 ◦ 1) and (1 ◦ 1) ⊆ {0, 1}. If
1 6∈ (0◦1), we get that 0◦1 = {0}. So (0◦1)◦1 = 0◦1 = {0} and on the other hand,
sinceH is positive implicative we have {0} = (0◦1)◦1 = (0◦1)◦(1◦1)⊇ 0◦0 = {0, 1},
which is a contradiction. Thus 0 ◦ 1 = {0, 1}, and hence 0 ◦ 0 = 0 ◦ 1. Now let y = 2.
Since 0 ∈ 0 ◦ 2 then 0 ◦ 2 = {0}, {0, 1}, {0, 2} or {0, 1, 2}. If 0 ◦ 2 = {0}, then
(0 ◦ 2) ◦ 2 = 0 ◦ 2 = {0} and on the other hand, since H is positive implicative we

have {0} = (0◦2)◦2 = (0◦2)◦(2◦2)⊇ 0◦0 = {0, 1}, which is a contradiction. Hence
0 ◦ 2 6= {0}. Let 0 ◦ 2 = {0, 2}. Since 1 6< 2, then 0 6∈ 1 ◦ 2. So 1 ◦ 2 = {1} or {1, 2}.
If 1 ◦ 2 = {1}, then {0, 2} = 0 ◦ 2 ⊆ (1 ◦ 1) ◦ 2 = (1 ◦ 2) ◦ 1 = 1 ◦ 1 ⊆ {0, 1}, which is a
contradiction. Hence 1◦2 = {1, 2}. Now we have 0 ∈ 2◦2 ⊆ (1◦2)◦(0◦2) = (1◦0)◦2 =
1 ◦ 2 = {1, 2}, which is a contradiction. Hence 0 ◦ 2 = {0, 1} or {0, 1, 2}. Thus in the
case 0◦0 = {0, 1}, we conclude that 0◦0 ⊆ 0◦2. The proof for the case 0◦0 = {0, 2}
is similar as above. If 0 ◦ 0 = {0, 1, 2}, then since H is a positive implicative we have
{1} = (1◦0) = (1◦0)◦0 = (1◦0)◦(0◦0) = 1◦{0, 1, 2}= (1◦0)∪(1◦1)∪(1◦2), thus we
must have 1◦1 = {1} and this is a contradiction with (HK3). Hence 0◦0 6= {0, 1, 2}.
Thus if x = 0, then 0 ◦ 0 ⊆ 0 ◦ (y ◦ 0) for all y ∈ H .

(ii) If x = 1, then we must show that 1 ∈ 1 ◦ (y ◦ 1) for all y ∈ H . If y = 0 or 1
it is trivial, so let y = 2. Since 2 6< 1, then 0 6∈ 2 ◦ 1 and 2 ◦ 1 6= {1}. Thus we
conclude that 2 ◦ 1 = {2} or {1, 2}. Since 1 6< 2, then 0 6∈ 1 ◦ 2 and 1 ◦ 2 6= {2}.
Therefore 1 ◦ 2 = {1} or {1, 2}. Hence in all cases by some manipulations we can get
that 1 ∈ 1 ◦ (2 ◦ 1).
(iii) If x = 2, then by the same argument as in (ii) we can show that 2 ∈ 2 ◦ (y ◦ 2)

for all y ∈ H . �

Remark 3.11. The following example shows that in the above theorem the simple
condition can not be omitted. Let H = {0, 1, 2}. Then the following table shows a
positive implicative hyper K-algebra structure on H where H does not satisfy the
simple condition:

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {0} {0, 2}

and H is not an implicative hyper K-algebra, either, because 2 6∈ 2 ◦ (1 ◦ 2) = {0}.

Theorem 3.12. Let H be a weak implicative hyperK-algebra. Then each hyper
K-ideal of H is a weak implicative hyper K-ideal.

���������
. Let I be a hyper K-ideal and (x ◦ z) ◦ (y ◦ x) ⊆ I , z ∈ I . Then for all

t ∈ x ◦ (y ◦ x) we have t ◦ z ⊆ (x ◦ (y ◦ x)) ◦ z = (x ◦ z) ◦ (y ◦ x) ⊆ I and z ∈ I . Thus
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t ∈ I and hence x ◦ (y ◦x) ⊆ I . Since H is weak implicative, then x < x ◦ (y ◦x) ⊆ I .

So there exists r ∈ I such that x < r. Thus 0 ∈ x ◦ r, hence x ◦ r < I and r ∈ I

which implies that x ∈ I . �

Remark 3.13. (i) The following example shows that in the above theorem we
can not use “weak hyper K-ideal” instead of “hyper K-ideal”. Let H = {0, 1, 2}.
Then the following table shows a weak implicative hyper K-algebra structure on H :

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0, 1, 2} {2}
2 {2} {0, 1, 2} {0, 1}

Now I = {0, 1} is a weak hyper K-ideal and (2 ◦ 0) ◦ (1 ◦ 2) = {0, 1} ⊆ I and 0 ∈ I ,

but 2 6∈ I . Hence I is not a weak implicative hyper K-ideal.

(ii) The following example shows that in the above theorem, if we use “weak

hyper K-ideal” instead of “hyper K-ideal”, we can not conclude that “any weak
hyper K-ideal is implicative”. Let H = {0, 1, 2}. Then the following table shows a
weak implicative hyper K-algebra structure on H :

◦ 0 1 2
0 {0, 1} {0, 1, 2} {0, 1, 2}
1 {1} {0, 1} {1, 2}
2 {1, 2} {0, 1, 2} {0, 1, 2}

Then I = {0} is a weak hyper K-ideal and 1 ◦ (0 ◦ 1) = {0, 1, 2} < I , but 1 6∈ I .
Hence I is not an implicative hyper K-ideal.

(iii) The following example shows that the conditions of the above theorem do not

imply that any hyper K-ideal is implicative. Let H = {0, 1, 2}. Then the following
table shows a weak implicative hyper K-algebra structure on H :

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0, 1} {0, 1, 2}

We see that I = {0} is a hyper K-ideal and 2 ◦ (2 ◦ 2) = {0, 1, 2} < I , but 2 6∈ I .

Hence I is not an implicative hyper K-ideal.
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Theorem 3.14. Let H be an implicative hyper K-algebra. Then each weak

hyper K-ideal of H is a weak implicative hyper K-ideal.
���������

. Let I be a weak hyper K ideal and (x ◦ z) ◦ (y ◦ x) ⊆ I , z ∈ I . Then

(x ◦ (y ◦ x)) ◦ z ⊆ I . Since H is implicative, we have x ∈ (x ◦ (y ◦ x)). Therefore
x ◦ z ⊆ (x ◦ (y ◦ x)) ◦ z ⊆ I and since z ∈ I , we conclude that x ∈ I . �

Corollary 3.15. Let H be an implicative hyper K-algebra. Then each hyper

K ideal of H is a weak implicative hyper K-ideal.

Remark 3.16. The following example shows that the conditions of the above
corollary do not imply that any hyper K-ideal is implicative. Let H = {0, 1, 2}.
Then the following table shows an implicative hyper K-algebra structure on H :

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {2} {0, 2}

Now I = {0} is a hyper K-ideal while it is not an implicative hyper K-ideal, since

(2 ◦ 0) ◦ (2 ◦ 2) = {0, 2} < I and 0 ∈ I , but 2 6∈ I .

Note that the following theorem says that if we restrict ourselves to the hyper

K-algebras of order 3, then the above corollary holds even if H is not implicative.

Theorem 3.17. If H is a hyper K-algebra of order 3, then each nonzero hyper
K-ideal is a weak implicative hyper K-ideal.

���������
. Let H = {0, 1, 2}. Without loss of generality let I = {0, 1} be a hyper

K-ideal of H . By Theorem 2.11 it is enough to show that x◦ (y ◦x) ⊆ I implies that

x ∈ I . If x = 0, 1 then we are done. Now let x = 2, then 2 ◦ (y ◦ 2) ⊆ I for all y ∈ H

and we will get a contradiction. To obtain it, consider three different cases:

(i) Let y = 0. Then 2 ∈ 2 ◦ (0 ◦ 2) ⊆ I , and this is a contradiction.

(ii) Let y = 1. If 1 < 2, then 0 ∈ 1 ◦ 2. Therefore 2 ∈ 2 ◦ 0 ⊆ 2 ◦ (1 ◦ 2) ⊆ I , and
this is a contradiction. If 1 6< 2, then 0 6∈ 1 ◦ 2, so we must have 1 ◦ 2 = {1}, {2} or
{1, 2}. If 1 ◦ 2 = {1}, then 2 ◦ 1 = 2 ◦ (1 ◦ 2) ⊆ I and 1 ∈ I imply that 2 ∈ I , which is
a contradiction. If 1 ◦ 2 = {2}, then 0 ∈ 0 ◦ 2 ⊆ (1 ◦ 1) ◦ 2 = (1 ◦ 2) ◦ 1 = 2 ◦ 1. Hence
2 ◦ 1 < I and 1 ∈ I imply that 2 ∈ I , which is a contradiction. If 1 ◦ 2 = {1, 2},
consider (2 ◦ 1) ∪ (2 ◦ 2) = 2 ◦ {1, 2} = 2 ◦ (1 ◦ 2) ⊆ I , therefore 2 ◦ 1 ⊆ I and 1 ∈ I

imply that 2 ∈ I , which is a contradiction.

(iii) If y = 2 then 2 ∈ 2 ◦ (2 ◦ 2) ⊆ I , which is a contradiction. �
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Remark 3.18. (i) The converse of the above theorem is not correct. Indeed let
H = {0, 1, 2, 3}. Then the following table shows a hyper K-algebra structure on H :

◦ 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0, 1, 2} {0, 1, 2} {0, 1, 2}
2 {2} {2} {0, 2} {2}
3 {2, 3} {1, 2, 3} {0, 1, 3} {0, 1, 2, 3}

Then I = {0, 1} is a weak implicative hyper K-ideal, which is not a hyper K-ideal,
since 3 ◦ 1 = {1, 2, 3} < I and 1 ∈ I , but 3 6∈ I .

(ii) The following example shows that the condition “nonzero hyper K-ideal” in

the above theorem can not be omitted. Let H = {0, 1, 2}. Then the following table
shows a hyper K-algebra structure on H :

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0} {0}
2 {2} {1} {0, 1}

Now it is easy to see that I = {0} is a hyperK-ideal while it is not a weak implicative
one since (1 ◦ 0) ◦ (2 ◦ 1) ⊆ I and 0 ∈ I , but 1 6∈ I .

Lemma 3.19. Let H be a positive implicative hyper K-algebra of order 3 that
satisfies the normal condition. Then the following statements hold:

(i) 1 ◦ 0 = {1},
(ii) 2 ◦ 0 = {2}.
���������

. (i) We know that 1 ∈ 1 ◦ 0 and 0 6∈ 1 ◦ 0, thus 1 ◦ 0 = {1} or {1, 2}. Let
1 ◦ 0 = {1, 2}. Since H satisfies the normal condition, then 1 < 2 or 2 < 1. Now we
consider the following two cases.

Case 1 : Let 1 < 2. Then 0 6∈ 2◦1. Since 0 ∈ 2◦2 ⊆ (2◦0)◦{1, 2} = (2◦0)◦(1◦0) =
(2 ◦ 1) ◦ 0, thus 2 ◦ 1 < 0. So there is x ∈ 2 ◦ 1 such that x < 0, therefore x = 0.
Hence 0 ∈ 2 ◦ 1, which is a contradiction.
Case 2 : Let 2 < 1. Then 0 6∈ 1◦2. Since 0 ∈ 2◦2 ⊆ {1, 2}◦(2◦0) = (1◦0)◦(2◦0) =

(1 ◦ 2) ◦ 0, thus there is x ∈ 1 ◦ 2 such that x < 0, so x = 0. Hence 0 ∈ 2 ◦ 1, which
is a contradiction. Thus we must have 1 ◦ 0 = {1}.
(ii) The proof is similar to the proof of (i). �
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Theorem 3.20. Let H be a hyper K-algebra of order 3 and I ⊂ H . Then

(i) If H satisfies the simple condition, then I is a weak implicative hyper K-ideal

if and only if I is a weak hyper K-ideal;

(ii) if H is positive implicative and satisfies the normal condition then I 6= {0} is a
weak implicative hyper K-ideal if and only if I is a weak hyper K-ideal.

���������
. (i) Let I = {0} be a weak hyper K-ideal and (x ◦ z) ◦ (y ◦ x) ⊆ I and

z ∈ I . Then x ◦ (y ◦ x) ⊆ (x ◦ 0) ◦ (y ◦ x) = {0}. We must show that x = 0. On the
contrary, let x = 1. Then 1 ◦ (y ◦ 1) = {0}. If y = 0 or 1, we get the contradiction
1 ∈ {0}. If y = 2, since H satisfies the simple condition, then 1 ◦ (2 ◦ 1) 6= {0}, which
is a contradiction, hence x = 1 is impossible. By a similar argument we show that
x = 2 is also impossible. Thereby x = 0 ∈ I . Note that since I = {0} is always a
weak hyper K-ideal the converse is trivial. For the case I 6= {0} see Theorem 4.11
of [1].

(ii) Without loss of generality let I = {0, 1} be a weak hyper K-ideal. By Theo-
rem 2.11 (i), it is enough to show that if x ◦ (y ◦ x) ⊆ I for x, y ∈ H , then x ∈ I . If

x = 0 or 1 we are done. Now let x = 2. So 2 ◦ (y ◦ 2) ⊆ I for arbitrary y ∈ H . We
consider three cases for y and show that none of these cases holds.

(a) Let y = 0. Then 2 ∈ 2 ◦ 0 ⊆ 2 ◦ (0 ◦ 2) ⊆ I , which is a contradiction.

(b) Let y = 1. If 1 < 2, then 0 ∈ 1 ◦ 2, hence 2 ∈ 2 ◦ 0 ⊆ 2 ◦ (1 ◦ 2) ⊆ I , which
is a contradiction. If 1 6< 2, then 1 ◦ 2 = {1}, {2} or {1, 2}. If 1 ◦ 2 = {1}, then
2 ◦ 1 = 2 ◦ (1 ◦ 2) ⊆ I . Since 1 ∈ I , we get that 2 ∈ I , which is a contradiction. If
1◦2 = {2}, then we have 2◦2 = 2◦(1◦2) ⊆ I = {0, 1}. Since H is positive implicative

we have 2 ∈ 2 ◦ 0 ⊆ 2 ◦ (2 ◦ 2) = (1 ◦ 2) ◦ (2 ◦ 2) = (1 ◦ 2) ◦ 2 = 2 ◦ 2 ⊆ I = {0, 1} which
is a contradiction. If 1 ◦ 2 = {1, 2}, then (2 ◦ 1)∪ (2 ◦ 2) = 2 ◦ {1, 2} = 2 ◦ (1 ◦ 2) ⊆ I .

Hence 2 ◦ 1 ⊆ I . Since I is a weak hyper K-ideal and 1 ∈ I , so 2 ∈ I , which is a
contradiction.

(c) Let y = 2. Then 2 ∈ 2 ◦ 0 ⊆ 2 ◦ (2 ◦ 2) ⊆ I , which is a contradiction. Hence

x = 2 is impossible and therefore I is a weak implicative hyper K-ideal.

Conversely, let I = {0, 1} be a weak implicative hyper K-ideal and x ◦ y ⊆ I and
y ∈ I . We must show that x ∈ I . If x = 0 or 1 then x ∈ I and we are done. Now

we show that x = 2 is impossible. If x = 2 then we have 2 ◦ y ⊆ I and y ∈ I . We
consider three different cases for y:

(a′) If y = 0, then 2 ∈ 2 ◦ 0 ⊆ I , which is a contradiction.

(b′) The case y = 2 never occurs since we must have y ∈ I .

(c′) If y = 1, since 2 ◦ 1 ⊆ I we conclude that 2 ◦ 1 = {0}, {1} or {0, 1}. Now
consider the following cases:
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(c′1) If 2 ◦ 1 = {0}, then 0 6∈ 1 ◦ 2, therefore 1 ◦ 2 = {1}, {2} or {1, 2}. Thus we
have to consider the following three subcases:

(c′1.1) If 1 ◦ 2 = {1}, since by Lemma 3.19, 2 ◦ 0 = {2}, hence (2 ◦ 0) ◦ (1 ◦ 2) =
2 ◦ 1 = {0} ⊆ I . Since I is a weak implicative hyperK-ideal and 0 ∈ I , we have
2 ∈ I , which is a contradiction.

(c′1.2) If 1 ◦ 2 = {2}, since H is positive implicative we have {0} = 2 ◦ 1 =
(1 ◦ 2) ◦ 1 = (1 ◦ 1) ◦ 2 = (1 ◦ 2) ◦ (1 ◦ 2) = 2 ◦ 2. Since by Lemma 3.19, 2 ◦ 0 = {2},
(2 ◦ 0) ◦ (1 ◦ 2) = 2 ◦ (1 ◦ 2) = 2 ◦ 2 = {0} ⊆ I and 0 ∈ I , we conclude that 2 ∈ I ,

which is a contradiction.

(c′1.3) If 1 ◦ 2 = {1, 2}, since 1 ◦ 0 = {1} and 2 ◦ 0 = {2} hence (1 ◦ 0) ◦ 2 =
1 ◦ 2 = {1, 2} and (1 ◦ 0) ◦ 2 = (1 ◦ 2) ◦ (0 ◦ 2) = {1, 2} ◦ (0 ◦ 2). If 1 or 2 belongs
to 0 ◦ 2, then 0 ∈ (1 ◦ 0) ◦ 2 = {1, 2} which is a contradiction, thus 0 ◦ 2 = {0}. We
know that 0 ∈ 2 ◦ 2; if 2 ◦ 2 = {0} then (2 ◦ 0) ◦ (1 ◦ 2) = 2 ◦ (1 ◦ 2) = 2 ◦ {1, 2} =
(2 ◦ 1) ∪ (2 ◦ 2) = {0} ⊆ I . Since 0 ∈ I and I is weak implicative, we get that 2 ∈ I ,
which is a contradiction. Thus 2 ◦ 2 6= {0}. Since H is positive implicative we have

{0} = 0 ◦ 2 = (2 ◦ 1) ◦ 2 = (2 ◦ 2) ◦ (1 ◦ 2) = (2 ◦ 2) ◦ {1, 2} 6= {0}, hence this case is
impossible.

(c′2) If 2 ◦ 1 = {1}, we know that 1 ◦ 0 = {1}. Then {1} = 1 ◦ 0 = (2 ◦ 1) ◦ 0 =
(2 ◦ 0) ◦ 1 = (2 ◦ 1) ◦ (0 ◦ 1) = 1 ◦ (0 ◦ 1), therefore 0 ◦ 1 = {0}. We have 0 ∈ 0 ◦ 2. If
0◦2 = {0}, then by considering (2◦1)◦ (0◦2) = 1◦0 = {1} ⊆ I , 1 ∈ I and I is weak

implicative, we conclude that 2 ∈ I , which is a contradiction. Hence 0 ◦ 2 6= {0}.
Consider (0 ◦ 2) ◦ 1 = (0 ◦ 1) ◦ (2 ◦ 1) = 0 ◦ {1} = {0}. But if 0 ◦ 2 6= {0} then
(0 ◦ 2) ◦ 1 6= {0}, hence this case is impossible.

(c′3) If 2 ◦ 1 = {0, 1}, since 0 ∈ 2 ◦ 1, hence 0 6∈ 1 ◦ 2. Therefore 1 ◦ 2 = {1}, {2}
or {1, 2}. Now we discuss the following three different subcases.

(c′3.1) If 1 ◦ 2 = {1}, since (2 ◦ 0) ◦ (1 ◦ 2) = 2 ◦ 1 ⊆ I , 0 ∈ I and I is weak
implicative, we get that 2 ∈ I , which is impossible.

(c′3.2) Suppose 1 ◦ 2 = {2}. Consider (2 ◦ 0) ◦ (1 ◦ 2) = 2 ◦ (1 ◦ 2) = 2 ◦ 2 =
(1 ◦ 2) ◦ (1 ◦ 2) = (1 ◦ 1) ◦ 2 = (1 ◦ 2) ◦ 1 = 2 ◦ 1 = {0, 1} ⊆ I . Since 0 ∈ I and I is
weak implicative, we get that 2 ∈ I , which is a contradiction.

(c′3.3) If 1 ◦ 2 = {1, 2}, then since H is positive implicative we have {1, 2} =
1 ◦ 2 = (1 ◦ 0) ◦ 2 = (1 ◦ 2) ◦ (0 ◦ 2) = {1, 2} ◦ (0 ◦ 2). If 1 or 2 ∈ 0 ◦ 2, then
0 ∈ (1 ◦ 0) ◦ 2 = {1, 2} which is a contradiction, hence 0 ◦ 2 = {0}. Consider
{1} = 1 ◦ 0 = (1 ◦ 0) ◦ 0 = (1 ◦ 0) ◦ (0 ◦ 0) = 1 ◦ (0 ◦ 0). Then we conclude that
0 ◦ 0 = {0}. Then (2 ◦ 1) ◦ (0 ◦ 2) = {0, 1} ◦ 0 = (0 ◦ 0) ∪ (1 ◦ 0) = {0, 1} ⊆ I . Since

1 ∈ I we get that 2 ∈ I , which is a contradiction.

Thus the above arguments show that x = 2 is impossible, hence I is a weak hyper
K-ideal of H .
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Remark 3.21. (i) In part (ii) of the above theorem the condition “positive im-
plicative” can not be omitted. Let H = {0, 1, 2}. Then the following table shows a
hyper K-algebra structure on H which satisfies the normal condition:

◦ 0 1 2
0 {0, 1, 2} {0, 1, 2} {0, 1, 2}
1 {1} {0, 1, 2} {1, 2}
2 {1, 2} {0, 1} {0, 1, 2}

We can check that I = {0, 1} is a weak implicative hyper K-ideal, but it is not a

weak hyperK-ideal, since 2◦1 ⊆ I and 1 ∈ I but 2 6∈ I . Note that H is not a positive
implicative hyper K-algebra, since {1, 2} = (1 ◦ 2) ◦ 0 6= (1 ◦ 0) ◦ (2 ◦ 0) = {0, 1, 2}.
(ii) In part (ii) of above theorem the condition “I 6= {0}” can not be omitted,

since hyper K-algebra H of Example 3.9 (ii) is positive implicative and normal and
I = {0} is weak hyper K-ideal but is not weak implicative hyper K-ideal, since

2 ◦ (1 ◦ 2) = {0} ⊆ I but 2 6∈ I .

Theorem 3.22. Let H be an implicative hyper K-algebra that satisfies the

strong transitive condition and let I be a hyperK-ideal ofH . Then I is an implicative

hyper K-ideal.
���������

. Let x ◦ (y ◦ x) < I . Since H is implicative, then x ∈ x ◦ (y ◦ x). Hence
x < I and I is a hyper K-ideal, so x ∈ I . Thus by Theorem 2.13, I is an implicative

hyper K-ideal. �

Note that the example given in Remark 3.16 shows that the “strong transitive
condition” is necessary in the above proposition.

Theorem 3.23. Let H be a hyper K-algebra of order 3 and 0 ∈ H a right scalar

element. If I = {0} is an implicative hyper K-ideal, then H is a strong implicative

hyper K-algebra.
���������

. Since 0 is a right scalar element, it is enough to show that x ∈ x◦ (y ◦x)
for all x, y ∈ H . To do this consider the following cases:
(i) If x = 0, then it is clear that 0 ∈ 0 ◦ (y ◦ 0) for all y ∈ H .

(ii) If x = 1, we consider three cases: (a) if y = 0, then 1 ∈ 1 ◦ 0 ⊆ 1 ◦ (0 ◦ 1).
(b) if y = 1, then 1 ∈ 1 ◦ 0 ⊆ 1 ◦ (1 ◦ 1). (c) Let y = 2, consider two cases 2 < 1
and 2 6< 1. If 2 < 1, then 0 ∈ 2 ◦ 1. Therefore 1 ∈ 1 ◦ 0 ⊆ 1 ◦ (2 ◦ 1). If 2 6< 1,
then 0 6∈ 2 ◦ 1. Thus 2 ◦ 1 = {1}, {2} or {1, 2}. If 2 ◦ 1 = {1}, then 0 ∈ 1 ◦ (2 ◦ 1)
and therefore 1 ◦ (2 ◦ 1) < I . Since I is implicative, by Theorem 2.13 we conclude
that 1 ∈ I , which is a contradiction. If 2 ◦ 1 = {2}, we show that 1 ◦ 2 = {1}.
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To do this, we show that 0 6∈ 1 ◦ 2 and 2 6∈ 1 ◦ 2. If 0 ∈ 1 ◦ 2, then we have
0 ∈ 1 ◦ 2 = 1 ◦ (2 ◦ 1), so 1 ◦ (2 ◦ 1) < I . Since I is implicative, by Theorem 2.13 we
conclude that 1 ∈ I , which is a contradiction. If 2 ∈ 1◦2, then 0 ∈ 2◦(1◦2), therefore
2◦ (1◦2) < I . Since I is implicative, by Theorem 2.12 we conclude that 2 ∈ I , which

is a contradiction. Therefore 1 ◦ 2 = {1}, so 1 ∈ 1 ◦ (2 ◦ 1). Now, let 2 ◦ 1 = {1, 2}.
Hence 0 ∈ (1 ◦ 1) ∪ (1 ◦ 2) = 1 ◦ {1, 2} = 1 ◦ (2 ◦ 1), thus 1 ◦ (2 ◦ 1) < I . Since I is

implicative, by Theorem 2.13 we conclude that 1 ∈ I , which is a contradiction.

(iii) If x = 2 then by the same argument as in the case (ii) we can obtain that
2 ∈ 2 ◦ (y ◦ 2) for all y ∈ H . �

Remark 3.24. If in the above theorem we replace I = {0} by I = {0, 1}, then
the theorem does not hold. Let H = {0, 1, 2}. Then the following table shows a
hyper K-algebra structure on H :

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0, 1} {0}
2 {2} {2} {0, 1}

Here 0 ∈ H is a scalar element and I = {0, 1} is an implicative hyper K-ideal, but

H is not an implicative hyperK-algebra since 1 6∈ 1 ◦ (2 ◦ 1).
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