Czechoslovak Mathematical Journal

Eva Špániková

Oscillation of differential systems of neutral type

Czechoslovak Mathematical Journal, Vol. 55 (2005), No. 1, 263-271

Persistent URL: http: //dml.cz/dmlcz/127975

Terms of use:

© Institute of Mathematics AS CR, 2005

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

OSCILLATION OF DIFFERENTIAL SYSTEMS OF NEUTRAL TYPE

Eva Špániková, Žilina

(Received July 11, 2002)

Abstract. We study oscillatory properties of solutions of systems

$$
\begin{aligned}
{\left[y_{1}(t)-a(t) y_{1}(g(t))\right]^{\prime} } & =p_{1}(t) y_{2}(t), \\
y_{2}^{\prime}(t) & =-p_{2}(t) f\left(y_{1}(h(t))\right), \quad t \geqslant t_{0} .
\end{aligned}
$$

Keywords: differential system of neutral type, oscillatory solution
MSC 2000: 34K15, 34K40

1. Introduction

In this paper we consider neutral differential systems of the form

$$
\begin{align*}
{\left[y_{1}(t)-a(t) y_{1}(g(t))\right]^{\prime} } & =p_{1}(t) y_{2}(t), \tag{S}\\
y_{2}^{\prime}(t) & =-p_{2}(t) f\left(y_{1}(h(t))\right), \quad t \geqslant t_{0} .
\end{align*}
$$

The following conditions are assumed to hold throughout the paper:
(a) $a:\left[t_{0}, \infty\right) \rightarrow(0, \infty)$ is a continuous function;
(b) $g:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ is a continuous and increasing function and $\lim _{t \rightarrow \infty} g(t)=\infty$;
(c) $p_{i}:\left[t_{0}, \infty\right) \rightarrow[0, \infty), i=1,2$ are continuous functions not identically equal to zero in every neighbourhood of infinity,

$$
\int^{\infty} p_{1}(t) \mathrm{d} t=\infty ;
$$

This work was supported by the Grant Agency of the Slovak Academy of Sciences under Grant No. 2/3205/23.
(d) $h:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ is a continuous and increasing function and $\lim _{t \rightarrow \infty} h(t)=\infty$;
(e) $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, $u f(u)>0$ for $u \neq 0$ and $|f(u)| \geqslant K|u|$, where $0<K=$ const.
Let $p_{1}(t) \equiv 1$ on $\left[t_{0}, \infty\right)$ and $f(u)=u, u \in \mathbb{R}$. Then the system (S) is equivalent to the equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left[y_{1}(t)-a(t) y_{1}(g(t))\right]+p_{2}(t) y_{1}(h(t))=0, \quad t \geqslant t_{0} \tag{E}
\end{equation*}
$$

In the paper [6] sufficient conditions are given for all bounded solutions and all solutions of the equation (E) to be oscillatory. In this paper we generalize Theorem 1 and Theorem 2 from [6] to the system (S). Our results are new and extend and improve the known criteria for the oscillation of differential systems of neutral type. The oscillatory theory of neutral differential systems has been studied for example in the papers [1]-[10] and in the references given therein.

Let $t_{1} \geqslant t_{0}$. Denote

$$
\tilde{t}_{1}=\min \left\{t_{1}, g\left(t_{1}\right), h\left(t_{1}\right)\right\} .
$$

A function $y=\left(y_{1}, y_{2}\right)$ is a solution of the system (S) if there exists a $t_{1} \geqslant t_{0}$ such that y is continuous on $\left[\tilde{t}_{1}, \infty\right), y_{1}(t)-a(t) y_{1}(g(t)), y_{2}(t)$ are continuously differentiable on $\left[t_{1}, \infty\right)$ and y satisfies (S) on $\left[t_{1}, \infty\right)$.

Denote by W the set of all solutions $y=\left(y_{1}, y_{2}\right)$ of the system (S) which exist on some ray $\left[T_{y}, \infty\right) \subset\left[t_{0}, \infty\right)$ and satisfy

$$
\sup \left\{\left|y_{1}(t)\right|+\left|y_{2}(t)\right|: t \geqslant T\right\}>0 \quad \text { for any } T \geqslant T_{y} .
$$

A solution $y \in W$ is nonoscillatory if there exists a $T_{y} \geqslant t_{0}$ such that its every component is different from zero for all $t \geqslant T_{y}$. Otherwise a solution $y \in W$ is said to be oscillatory.

Denote

$$
P_{1}(t)=\int_{t_{0}}^{t} p_{1}(x) \mathrm{d} x, \quad t \geqslant t_{0} .
$$

For any $y_{1}(t)$ we define $z_{1}(t)$ by

$$
\begin{equation*}
z_{1}(t)=y_{1}(t)-a(t) y_{1}(g(t)) . \tag{1}
\end{equation*}
$$

2. Some basic lemmas

Lemma 1 ([4, Lemma 1]). Let $y \in W$ be a solution of the system (S) with $y_{1}(t) \neq 0$ on $\left[t_{1}, \infty\right), t_{1} \geqslant t_{0}$. Then y is nonoscillatory and $z_{1}(t), y_{2}(t)$ are monotone on some ray $[T, \infty), T \geqslant t_{1}$.

Lemma 2 ([7, Lemma 1]). In addition to the conditions (a) and (b) suppose that

$$
a(t) \leqslant 1 \quad \text { for } t \geqslant t_{0}
$$

Let $y_{1}(t)$ be a continuous nonoscillatory solution of the functional inequality

$$
y_{1}(t)\left[y_{1}(t)-a(t) y_{1}(g(t))\right]<0
$$

defined in a neighbourhood of infinity.
(i) Suppose that $g(t)<t$ for $t \geqslant t_{0}$. Then $y_{1}(t)$ is bounded.
(ii) Suppose that $g(t)>t$ for $t \geqslant t_{0}$. Then $y_{1}(t)$ is bounded away from zero, that is, there exists a positive constant C such that $\left|y_{1}(t)\right| \geqslant C$ for all large t.

Lemma 3 ([7, Lemma 3]). Assume that $q:\left[t_{0}, \infty\right) \rightarrow[0, \infty), \delta:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ are continuous functions, $\lim _{t \rightarrow \infty} \delta(t)=\infty$ and

$$
\delta(t)<t \quad \text { for } t \geqslant t_{0}, \quad \liminf _{t \rightarrow \infty} \int_{\delta(t)}^{t} q(s) \mathrm{d} s>\frac{1}{\mathrm{e}}
$$

Then the functional inequality

$$
x^{\prime}(t)+q(t) x(\delta(t)) \leqslant 0, \quad t \geqslant t_{0}
$$

cannot have an eventually positive solution and

$$
x^{\prime}(t)+q(t) x(\delta(t)) \geqslant 0, \quad t \geqslant t_{0}
$$

cannot have an eventually negative solution.

3. Oscillation theorems

In this section we shall study the oscillation of solutions of systems (S). In the next theorems $g^{-1}(t)$ and $h^{-1}(t)$ denote the inverse functions of $g(t), h(t)$ and α : $\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ is a continuous function.

Theorem 1. Suppose that $a(t)$ is bounded, $h(t)<t, t<\alpha(t), h(\alpha(t))<g(t)$ for $t \geqslant t_{0}$ and

$$
\begin{gather*}
\limsup _{t \rightarrow \infty}\left\{K P_{1}(t) \int_{h^{-1}(t)}^{\infty} p_{2}(s) \mathrm{d} s\right\}>1, \tag{2}\\
\liminf _{t \rightarrow \infty} \int_{g^{-1}(h(\alpha(t)))}^{t} K p_{1}(s) \int_{s}^{\alpha(s)} \frac{p_{2}(v) \mathrm{d} v}{a\left(g^{-1}(h(v))\right)} \mathrm{d} s>\frac{1}{\mathrm{e}} . \tag{3}
\end{gather*}
$$

Then every solution $y \in W$ of (S) with $y_{1}(t)$ bounded is oscillatory.
Proof. Let $y=\left(y_{1}, y_{2}\right) \in W$ be a nonoscillatory solution of (S) with $y_{1}(t)$ bounded. Without loss of generality we may suppose that $y_{1}(t)$ is positive and bounded for $t \geqslant t_{1}$. From the second equation of (S) and by the assumptions (c), (d), (e) we get

$$
y_{2}^{\prime}(t) \leqslant 0 \quad \text { for sufficiently large } t_{2} \geqslant t_{1}
$$

In view of Lemma 1 we have two cases for sufficiently large $t_{3} \geqslant t_{2}$:

1) $y_{2}(t)<0, t \geqslant t_{3}$;
2) $y_{2}(t)>0, t \geqslant t_{3}$.

Case 1. Because $y_{2}(t)$ is negative and nonincreasing we have

$$
\begin{equation*}
y_{2}(t) \leqslant-L, \quad t \geqslant t_{3}, \quad 0<L=\text { const. } \tag{4}
\end{equation*}
$$

Since $y_{1}(t)$ and $a(t)$ are bounded hence also $z_{1}(t)$ defined by (1) is bounded. Integrating the first equation of (S) from t_{3} to t and then using (4) we get

$$
\begin{equation*}
z_{1}(t)-z_{1}\left(t_{3}\right) \leqslant-L \int_{t_{3}}^{t} p_{1}(s) \mathrm{d} s, \quad t \geqslant t_{3} \tag{5}
\end{equation*}
$$

From (5) and (c) we have $\lim _{t \rightarrow \infty} z_{1}(t)=-\infty$, which contradicts the fact that $z_{1}(t)$ is bounded. The Case 1 cannot occur.

Case 2. We shall consider two possibilities.
(A) Let $z_{1}(t)>0$ for $t \geqslant t_{4}$, where $t_{4} \geqslant t_{3}$ is sufficiently large. Because $z_{1}(t)$ is nondecreasing we get

$$
\begin{equation*}
z_{1}(t) \geqslant M, \quad t \geqslant t_{4}, \quad 0<M=\text { const. } \tag{6}
\end{equation*}
$$

From (1) we have $z_{1}(t)<y_{1}(t)$ and using (e) we get

$$
\begin{equation*}
p_{2}(t) z_{1}(h(t)) \leqslant \frac{p_{2}(t) f\left(y_{1}(h(t))\right)}{K}, \quad t \geqslant t_{5}, \tag{7}
\end{equation*}
$$

where $t_{5} \geqslant t_{4}$ is sufficiently large.

Integrating the second equation of (S) from t to t^{\star}, using (7) and then letting $t^{\star} \rightarrow \infty$ we obtain

$$
\begin{equation*}
y_{2}(t) \geqslant K \int_{t}^{\infty} p_{2}(s) z_{1}(h(s)) \mathrm{d} s, \quad t \geqslant t_{5} . \tag{8}
\end{equation*}
$$

With regard to (2) we get

$$
\begin{equation*}
\frac{1}{K}<\limsup _{t \rightarrow \infty}\left\{P_{1}(t) \int_{h^{-1}(t)}^{\infty} p_{2}(s) \mathrm{d} s\right\} \leqslant \limsup _{t \rightarrow \infty} \int_{t}^{\infty} P_{1}(s) p_{2}(s) \mathrm{d} s \tag{9}
\end{equation*}
$$

We claim that the condition (2) implies

$$
\begin{equation*}
\int_{T}^{\infty} P_{1}(s) p_{2}(s) \mathrm{d} s=\infty, \quad T \geqslant t_{0} . \tag{10}
\end{equation*}
$$

Otherwise if

$$
\int_{T}^{\infty} P_{1}(s) p_{2}(s) \mathrm{d} s<\infty
$$

we can choose $T_{1} \geqslant T$ so large that

$$
\int_{T_{1}}^{\infty} P_{1}(s) p_{2}(s) \mathrm{d} s<\frac{1}{K},
$$

which is a contradiction with (9).
Integrating $\int_{T}^{t} P_{1}(s) y_{2}^{\prime}(s) \mathrm{d} s$ by parts we have

$$
\begin{equation*}
\int_{T}^{t} P_{1}(s) y_{2}^{\prime}(s) \mathrm{d} s=P_{1}(t) y_{2}(t)-P_{1}(T) y_{2}(T)-z_{1}(t)+z_{1}(T) \tag{11}
\end{equation*}
$$

Using (6), (7) and the second equation of (S), by virtue of (11) we get

$$
\int_{T}^{t} P_{1}(s) y_{2}^{\prime}(s) \mathrm{d} s \leqslant-M K \int_{T}^{t} P_{1}(s) p_{2}(s) \mathrm{d} s, \quad t \geqslant T \geqslant t_{5}
$$

and

$$
\begin{array}{r}
M K \int_{T}^{t} P_{1}(s) p_{2}(s) \mathrm{d} s \leqslant-P_{1}(t) y_{2}(t)+P_{1}(T) y_{2}(T)+z_{1}(t)-z_{1}(T) \tag{12}\\
t \geqslant T \geqslant t_{5}
\end{array}
$$

Combining (10) with (12) we get $\lim _{t \rightarrow \infty}\left(z_{1}(t)-P_{1}(t) y_{2}(t)\right)=\infty$ and

$$
z_{1}(t) \geqslant P_{1}(t) y_{2}(t), \quad t \geqslant t_{6}, \quad \text { where } t_{6} \geqslant t_{5} \text { is sufficiently large. }
$$

The last inequality together with (8) and the monotonicity of $z_{1}(t)$ implies

$$
\begin{aligned}
z_{1}(t) & \geqslant K P_{1}(t) \int_{t}^{\infty} p_{2}(s) z_{1}(h(s)) \mathrm{d} s \geqslant K P_{1}(t) \int_{h^{-1}(t)}^{\infty} p_{2}(s) z_{1}(h(s)) \mathrm{d} s \\
& \geqslant K P_{1}(t) z_{1}(t) \int_{h^{-1}(t)}^{\infty} p_{2}(s) \mathrm{d} s, \quad t \geqslant t_{6}
\end{aligned}
$$

and

$$
1 \geqslant K P_{1}(t) \int_{h^{-1}(t)}^{\infty} p_{2}(s) \mathrm{d} s, \quad t \geqslant t_{6}
$$

which contradicts (2). This case cannot occur.
(B) Let $z_{1}(t)<0$ for $t \geqslant t_{4}$. Denote $\beta(t)=g^{-1}(h(t))$.

From (1) we have $z_{1}(\beta(t))>-a(\beta(t)) y_{1}(h(t)), t \geqslant t_{5} \geqslant t_{4}$, where t_{5} is sufficiently large and

$$
\frac{-K p_{2}(t) z_{1}(\beta(t))}{a(\beta(t))} \leqslant K p_{2}(t) y_{1}(h(t)), \quad t \geqslant t_{5}
$$

In view of (e) and the second equation of (S) the last inequality implies

$$
\begin{equation*}
y_{2}^{\prime}(t)-\frac{K p_{2}(t) z_{1}(\beta(t))}{a(\beta(t))} \leqslant 0, \quad t \geqslant t_{5} . \tag{13}
\end{equation*}
$$

Integrating (13) from t to $\alpha(t)$ and then using $y_{2}(\alpha(t))>0$, we have

$$
\begin{equation*}
y_{2}(t)+\int_{t}^{\alpha(t)} \frac{K p_{2}(s) z_{1}(\beta(s)) \mathrm{d} s}{a(\beta(s))} \geqslant 0, \quad t \geqslant t_{5} . \tag{14}
\end{equation*}
$$

Multiplying (14) by $p_{1}(t)$ and then using the monotonicity of $z_{1}(t)$ and the first equation of (S), we get

$$
z_{1}^{\prime}(t)+\left(K p_{1}(t) \int_{t}^{\alpha(t)} \frac{p_{2}(s) \mathrm{d} s}{a(\beta(s))}\right) z_{1}(\beta(\alpha(t))) \geqslant 0, \quad t \geqslant t_{5} .
$$

By condition (3) and Lemma 3 the last inequality cannot have an eventually negative solution and this contradicts the hypothesis that $z_{1}(t)<0$. The proof is complete.

Theorem 2. Suppose that $a(t) \leqslant 1, g(t)<t, h(t)<t, t<\alpha(t), h(\alpha(t))<g(t)$ for $t \geqslant t_{0}$ and the conditions (2), (3) are satisfied. Then all solutions of (S) are oscillatory.

Proof. Let $y=\left(y_{1}, y_{2}\right) \in W$ be a nonoscillatory solution of (S). Without loss of generality we may suppose that $y_{1}(t)$ is positive for $t \geqslant t_{1}$. As in the proof of Theorem 1 we get two cases - Case 1 and Case 2.

Case 1. Analogously to Case 1 of the proof of Theorem 1 we can show that $\lim _{t \rightarrow \infty} z_{1}(t)=-\infty$. By Lemma $2 y_{1}(t)$ is bounded and thereby $z_{1}(t)$ is bounded, which is a contradiction. Case 1 cannot occur.

Case 2. We can treat this case in the same way as in the proof of Theorem 1. The proof is complete.

Example 1. We consider the system

$$
\begin{align*}
& {\left[y_{1}(t)-\frac{1}{2} y_{1}\left(\frac{t}{2}\right)\right]^{\prime}=t y_{2}(t)} \\
& y_{2}^{\prime}(t)=-\frac{c}{t^{3}} y_{1}\left(\frac{t}{6}\right), \quad t \geqslant 1 \tag{15}
\end{align*}
$$

where c is a positive constant. In this example $f(t)=t$ and $K=1$. We choose $\alpha(t)=2 t$ and calculate the conditions (2) and (3) as follows:

$$
\begin{aligned}
& \limsup _{t \rightarrow \infty}\left\{\frac{\left(t^{2}-1\right)}{2} \int_{6 t}^{\infty} \frac{c}{s^{3}} \mathrm{~d} s\right\}=\frac{c}{144}, \\
& \liminf _{t \rightarrow \infty} \int_{\frac{2}{3} t}^{t} s \int_{s}^{2 s} \frac{2 c \mathrm{~d} v}{v^{3}} \mathrm{~d} s=\frac{3 c}{4} \ln \frac{3}{2} .
\end{aligned}
$$

For $c>144$ all conditions of Theorem 2 are satisfied and so all solutions of (15) are oscillatory.

Theorem 3. Suppose that $a(t) \leqslant 1, t<g(t), g(t)<h(t)$ for $t \geqslant t_{0}$ and

$$
\begin{gather*}
\limsup _{t \rightarrow \infty} \int_{h^{-1}(g(t))}^{t} \frac{K\left(P_{1}(t)-P_{1}(s)\right) p_{2}(s) \mathrm{d} s}{a\left(g^{-1}(h(s))\right)}>1 \tag{16}\\
\int_{T}^{\infty} p_{1}(s) \int_{s}^{\infty} p_{2}(v) \mathrm{d} v \mathrm{~d} s=\infty, \quad T \geqslant t_{0} \tag{17}\\
\quad \limsup _{t \rightarrow \infty}\left\{K P_{1}(t) \int_{t}^{\infty} p_{2}(s) \mathrm{d} s\right\}>1
\end{gather*}
$$

Then all solutions of (S) are oscillatory.

Proof. Let $y=\left(y_{1}, y_{2}\right) \in W$ be a nonoscillatory solution of (S). Without loss of generality we may suppose that $y_{1}(t)$ is positive for $t \geqslant t_{1}$. As in the proof of Theorem 1 we get two cases - Case 1 and Case 2.

Case 1. From (1) we have

$$
z_{1}(t)>-a(t) y_{1}(g(t)) \text { for } t \geqslant t_{3}
$$

and

$$
\begin{equation*}
f\left(y_{1}(h(t))\right) \geqslant K y_{1}(h(t))>-\frac{K z_{1}\left(g^{-1}(h(t))\right)}{a\left(g^{-1}(h(t))\right)}, \quad t \geqslant t_{4} \tag{18}
\end{equation*}
$$

where $t_{4} \geqslant t_{3}$ is sufficiently large.
In this case $y_{2}(t)<0$ and $z_{1}(t)<0$ for $t \geqslant t_{5}$, where $t_{5} \geqslant t_{4}$ is sufficiently large. Then the integral identity

$$
z_{1}(t)=z_{1}(\xi)+\left(P_{1}(t)-P_{1}(\xi)\right) y_{2}(\xi)+\int_{\xi}^{t}\left(P_{1}(t)-P_{1}(s)\right) y_{2}^{\prime}(s) \mathrm{d} s
$$

yields

$$
z_{1}(t)<\int_{\xi}^{t}\left(P_{1}(t)-P_{1}(s)\right) y_{2}^{\prime}(s) \mathrm{d} s, \quad t>\xi \geqslant t_{5}
$$

Combining the last inequality with the second equation of (S) and (18) we get

$$
\begin{aligned}
z_{1}(t) & <\int_{\xi}^{t}\left(P_{1}(t)-P_{1}(s)\right)\left(-p_{2}(s) f\left(y_{1}(h(s))\right)\right) \mathrm{d} s \\
& <\int_{\xi}^{t} \frac{K\left(P_{1}(t)-P_{1}(s)\right) p_{2}(s) z_{1}\left(g^{-1}(h(s))\right) \mathrm{d} s}{a\left(g^{-1}(h(s))\right)}, \quad t>\xi \geqslant t_{5} .
\end{aligned}
$$

Putting $\xi=h^{-1}(g(t))$ and using the monotonicity of $z_{1}(t)$, from the last inequality we get

$$
z_{1}(t)<z_{1}(t) \int_{h^{-1}(g(t))}^{t} \frac{K\left(P_{1}(t)-P_{1}(s)\right) p_{2}(s) \mathrm{d} s}{a\left(g^{-1}(h(s))\right)}
$$

and

$$
1>\int_{h^{-1}(g(t))}^{t} \frac{K\left(P_{1}(t)-P_{1}(s)\right) p_{2}(s) \mathrm{d} s}{a\left(g^{-1}(h(s))\right)}
$$

which contradicts the condition (16).
Case 2. As in the proof of Theorem 1 we shall consider two posibilities A) and B).
A) We can treat the proof in the same way as in Theorem 1 using the condition (2^{\prime}) instead of the condition (2).
B) In this case $z_{1}(t)$ is negative and bounded for $t \geqslant t_{4}$. Then by Lemma 2 it follows that

$$
\begin{equation*}
y_{1}(t) \geqslant C, \quad 0<C=\text { const. for } t \geqslant t_{4} . \tag{19}
\end{equation*}
$$

Integrating the second equation of (S) from s to s^{\star}, using (e), (19) and then letting $s^{\star} \rightarrow \infty$, we obtain

$$
\begin{equation*}
y_{2}(s)>K C \int_{s}^{\infty} p_{2}(v) \mathrm{d} v \quad \text { for sufficiently large } s \tag{20}
\end{equation*}
$$

Multiplying (20) by $p_{1}(s)$ and integrating from T to T^{\star} and then letting $T^{\star} \rightarrow \infty$ we get

$$
-z_{1}(T)>K C \int_{T}^{\infty} p_{1}(s) \int_{s}^{\infty} p_{2}(v) \mathrm{d} v \mathrm{~d} s \quad \text { for sufficiently large } T
$$

and with regard to condition (17) we have a contradiction. The proof is complete.

References

[1] I. Györi and G. Ladas: Oscillation of systems of neutral differential equations. Diff. and Integral Equat. 1 (1988), 281-286.
[2] Y. Kitamura and T. Kusano: On the oscillation of a class of nonlinear differential systems with deviating argument. J. Math. Anal. Appl. 66 (1978), 20-36.
[3] P. Marušiak: Oscillation criteria for nonlinear differential systems with general deviating arguments of mixed type. Hiroshima Math. J. 20 (1990), 197-208.
[4] P. Marušiak: Oscillatory properties of functional differential systems of neutral type. Czechoslovak Math. J. 43(118) (1993), 649-662.
[5] B. Mihaliková: Some properties of neutral differential systems equations. Bolletino U.M.I. 8 5-B (2002), 279-287.
[6] H. Mohamad and R. Olach: Oscillation of second order linear neutral differential equations. In: Proceedings of the International Scientific Conference of Mathematics. University of Žilina, Žilina, 1998, pp. 195-201.
[7] R. Olach: Oscillation of differential equation of neutral type. Hiroshima Math. J. 25 (1995), 1-10.
[8] R. Olach and H. Samajová: Oscillation of nonlinear differential systems with retarded arguments. 1st International Conference APLIMAT 2002. Bratislava, 2002, pp. 309-312.
[9] E. Špániková: Oscillatory properties of solutions of three-dimensional differential systems of neutral type. Czechoslovak Math. J. 50(125) (2000), 879-887.
[10] E. Špániková: Oscillatory properties of solutions of neutral differential systems. Fasc. Math. 31 (2001), 91-103.

Author's address: Department of Appl. Mathematics, University of Žilina, J. M. Hurbana 15, 01026 Žilina, Slovak Republic, e-mail: eva.spanikova@fstroj.utc.sk.

