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Abstract. We study oscillatory properties of solutions of systems

[y1(t)− a(t)y1(g(t))]
′ = p1(t)y2(t),

y′2(t) = −p2(t)f(y1(h(t))), t > t0.

Keywords: differential system of neutral type, oscillatory solution

MSC 2000 : 34K15, 34K40

1. Introduction

In this paper we consider neutral differential systems of the form

[y1(t)− a(t)y1(g(t))]′ = p1(t)y2(t),(S)

y′2(t) = −p2(t)f(y1(h(t))), t > t0.

The following conditions are assumed to hold throughout the paper:

(a) a : [t0,∞) → (0,∞) is a continuous function;
(b) g : [t0,∞) →  is a continuous and increasing function and lim

t→∞
g(t) = ∞;

(c) pi : [t0,∞) → [0,∞), i = 1, 2 are continuous functions not identically equal to
zero in every neighbourhood of infinity,

∫ ∞
p1(t) dt = ∞;

This work was supported by the Grant Agency of the Slovak Academy of Sciences under
Grant No. 2/3205/23.

263



(d) h : [t0,∞) →  is a continuous and increasing function and lim
t→∞

h(t) = ∞;
(e) f :  →  is a continuous function, uf(u) > 0 for u 6= 0 and |f(u)| > K|u|,
where 0 < K = const.

Let p1(t) ≡ 1 on [t0,∞) and f(u) = u, u ∈  . Then the system (S) is equivalent
to the equation

(E)
d2

dt2
[y1(t)− a(t)y1(g(t))] + p2(t)y1(h(t)) = 0, t > t0.

In the paper [6] sufficient conditions are given for all bounded solutions and all

solutions of the equation (E) to be oscillatory. In this paper we generalize Theorem 1
and Theorem 2 from [6] to the system (S). Our results are new and extend and im-

prove the known criteria for the oscillation of differential systems of neutral type.
The oscillatory theory of neutral differential systems has been studied for example
in the papers [1]–[10] and in the references given therein.

Let t1 > t0. Denote
t̃1 = min{t1, g(t1), h(t1)}.

A function y = (y1, y2) is a solution of the system (S) if there exists a t1 > t0 such that

y is continuous on [t̃1,∞), y1(t) − a(t)y1(g(t)), y2(t) are continuously differentiable
on [t1,∞) and y satisfies (S) on [t1,∞).
Denote by W the set of all solutions y = (y1, y2) of the system (S) which exist on

some ray [Ty,∞) ⊂ [t0,∞) and satisfy

sup{|y1(t)|+ |y2(t)| : t > T} > 0 for any T > Ty.

A solution y ∈ W is nonoscillatory if there exists a Ty > t0 such that its every

component is different from zero for all t > Ty. Otherwise a solution y ∈ W is said
to be oscillatory.

Denote

P1(t) =
∫ t

t0

p1(x) dx, t > t0.

For any y1(t) we define z1(t) by

(1) z1(t) = y1(t)− a(t)y1(g(t)).

264



2. Some basic lemmas

Lemma 1 ([4, Lemma 1]). Let y ∈ W be a solution of the system (S) with
y1(t) 6= 0 on [t1,∞), t1 > t0. Then y is nonoscillatory and z1(t), y2(t) are monotone
on some ray [T,∞), T > t1.

Lemma 2 ([7, Lemma 1]). In addition to the conditions (a) and (b) suppose that

a(t) 6 1 for t > t0.

Let y1(t) be a continuous nonoscillatory solution of the functional inequality

y1(t)[y1(t)− a(t)y1(g(t))] < 0

defined in a neighbourhood of infinity.

(i) Suppose that g(t) < t for t > t0. Then y1(t) is bounded.
(ii) Suppose that g(t) > t for t > t0. Then y1(t) is bounded away from zero, that
is, there exists a positive constant C such that |y1(t)| > C for all large t.

Lemma 3 ([7, Lemma 3]). Assume that q : [t0,∞) → [0,∞), δ : [t0,∞) →  are
continuous functions, lim

t→∞
δ(t) = ∞ and

δ(t) < t for t > t0, lim inf
t→∞

∫ t

δ(t)

q(s) ds >
1
e
.

Then the functional inequality

x′(t) + q(t)x(δ(t)) 6 0, t > t0

cannot have an eventually positive solution and

x′(t) + q(t)x(δ(t)) > 0, t > t0

cannot have an eventually negative solution.

3. Oscillation theorems

In this section we shall study the oscillation of solutions of systems (S). In the

next theorems g−1(t) and h−1(t) denote the inverse functions of g(t), h(t) and α :
[t0,∞) →  is a continuous function.
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Theorem 1. Suppose that a(t) is bounded, h(t) < t, t < α(t), h(α(t)) < g(t) for
t > t0 and

lim sup
t→∞

{
KP1(t)

∫ ∞

h−1(t)

p2(s) ds

}
> 1,(2)

lim inf
t→∞

∫ t

g−1(h(α(t)))

Kp1(s)
∫ α(s)

s

p2(v) dv

a(g−1(h(v)))
ds >

1
e
.(3)

Then every solution y ∈ W of (S) with y1(t) bounded is oscillatory.
���������

. Let y = (y1, y2) ∈ W be a nonoscillatory solution of (S) with y1(t)
bounded. Without loss of generality we may suppose that y1(t) is positive and
bounded for t > t1. From the second equation of (S) and by the assumptions (c),
(d), (e) we get

y′2(t) 6 0 for sufficiently large t2 > t1.

In view of Lemma 1 we have two cases for sufficiently large t3 > t2:

1) y2(t) < 0, t > t3;
2) y2(t) > 0, t > t3.

Case 1. Because y2(t) is negative and nonincreasing we have

(4) y2(t) 6 −L, t > t3, 0 < L = const.

Since y1(t) and a(t) are bounded hence also z1(t) defined by (1) is bounded. Inte-
grating the first equation of (S) from t3 to t and then using (4) we get

(5) z1(t)− z1(t3) 6 −L

∫ t

t3

p1(s) ds, t > t3.

From (5) and (c) we have lim
t→∞

z1(t) = −∞, which contradicts the fact that z1(t) is
bounded. The Case 1 cannot occur.

Case 2. We shall consider two possibilities.
(A) Let z1(t) > 0 for t > t4, where t4 > t3 is sufficiently large. Because z1(t) is

nondecreasing we get

(6) z1(t) > M, t > t4, 0 < M = const.

From (1) we have z1(t) < y1(t) and using (e) we get

(7) p2(t)z1(h(t)) 6 p2(t)f(y1(h(t)))
K

, t > t5,

where t5 > t4 is sufficiently large.
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Integrating the second equation of (S) from t to t?, using (7) and then letting

t? →∞ we obtain

(8) y2(t) > K

∫ ∞

t

p2(s)z1(h(s)) ds, t > t5.

With regard to (2) we get

(9)
1
K

< lim sup
t→∞

{
P1(t)

∫ ∞

h−1(t)

p2(s) ds

}
6 lim sup

t→∞

∫ ∞

t

P1(s)p2(s) ds.

We claim that the condition (2) implies

(10)
∫ ∞

T

P1(s)p2(s) ds = ∞, T > t0.

Otherwise if ∫ ∞

T

P1(s)p2(s) ds < ∞,

we can choose T1 > T so large that

∫ ∞

T1

P1(s)p2(s) ds <
1
K

,

which is a contradiction with (9).

Integrating
∫ t

T P1(s)y′2(s) ds by parts we have

(11)
∫ t

T

P1(s)y′2(s) ds = P1(t)y2(t)− P1(T )y2(T )− z1(t) + z1(T ).

Using (6), (7) and the second equation of (S), by virtue of (11) we get

∫ t

T

P1(s)y′2(s) ds 6 −MK

∫ t

T

P1(s)p2(s) ds, t > T > t5

and

MK

∫ t

T

P1(s)p2(s) ds 6 − P1(t)y2(t) + P1(T )y2(T ) + z1(t)− z1(T ),(12)

t > T > t5.

Combining (10) with (12) we get lim
t→∞

(z1(t)− P1(t)y2(t)) = ∞ and

z1(t) > P1(t)y2(t), t > t6, where t6 > t5 is sufficiently large.
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The last inequality together with (8) and the monotonicity of z1(t) implies

z1(t) > KP1(t)
∫ ∞

t

p2(s)z1(h(s)) ds > KP1(t)
∫ ∞

h−1(t)

p2(s)z1(h(s)) ds

> KP1(t)z1(t)
∫ ∞

h−1(t)

p2(s) ds, t > t6

and

1 > KP1(t)
∫ ∞

h−1(t)

p2(s) ds, t > t6,

which contradicts (2). This case cannot occur.

(B) Let z1(t) < 0 for t > t4. Denote β(t) = g−1(h(t)).

From (1) we have z1(β(t)) > −a(β(t))y1(h(t)), t > t5 > t4, where t5 is sufficiently
large and

−Kp2(t)z1(β(t))
a(β(t))

6 Kp2(t)y1(h(t)), t > t5.

In view of (e) and the second equation of (S) the last inequality implies

(13) y′2(t)−
Kp2(t)z1(β(t))

a(β(t))
6 0, t > t5.

Integrating (13) from t to α(t) and then using y2(α(t)) > 0, we have

(14) y2(t) +
∫ α(t)

t

Kp2(s)z1(β(s)) ds

a(β(s))
> 0, t > t5.

Multiplying (14) by p1(t) and then using the monotonicity of z1(t) and the first
equation of (S), we get

z′1(t) +
(

Kp1(t)
∫ α(t)

t

p2(s) ds

a(β(s))

)
z1(β(α(t))) > 0, t > t5.

By condition (3) and Lemma 3 the last inequality cannot have an eventually negative

solution and this contradicts the hypothesis that z1(t) < 0. The proof is complete.
�
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Theorem 2. Suppose that a(t) 6 1, g(t) < t, h(t) < t, t < α(t), h(α(t)) < g(t)
for t > t0 and the conditions (2), (3) are satisfied. Then all solutions of (S) are
oscillatory.

���������
. Let y = (y1, y2) ∈ W be a nonoscillatory solution of (S). Without loss

of generality we may suppose that y1(t) is positive for t > t1. As in the proof of

Theorem 1 we get two cases—Case 1 and Case 2.

Case 1. Analogously to Case 1 of the proof of Theorem 1 we can show that
lim

t→∞
z1(t) = −∞. By Lemma 2 y1(t) is bounded and thereby z1(t) is bounded,

which is a contradiction. Case 1 cannot occur.

Case 2. We can treat this case in the same way as in the proof of Theorem 1. The
proof is complete. �

Example 1. We consider the system

[
y1(t)−

1
2
y1

( t

2

)]′
= t y2(t),

y′2(t) = − c

t3
y1

( t

6

)
, t > 1,(15)

where c is a positive constant. In this example f(t) = t and K = 1. We choose
α(t) = 2t and calculate the conditions (2) and (3) as follows:

lim sup
t→∞

{
(t2 − 1)

2

∫ ∞

6t

c

s3
ds

}
=

c

144
,

lim inf
t→∞

∫ t

2
3 t

s

∫ 2s

s

2c dv

v3
ds =

3c

4
ln

3
2
.

For c > 144 all conditions of Theorem 2 are satisfied and so all solutions of (15) are
oscillatory.

Theorem 3. Suppose that a(t) 6 1, t < g(t), g(t) < h(t) for t > t0 and

lim sup
t→∞

∫ t

h−1(g(t))

K(P1(t)− P1(s))p2(s) ds

a(g−1(h(s)))
> 1,(16)

∫ ∞

T

p1(s)
∫ ∞

s

p2(v) dv ds = ∞, T > t0,(17)

lim sup
t→∞

{
KP1(t)

∫ ∞

t

p2(s) ds

}
> 1.(2′)

Then all solutions of (S) are oscillatory.
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���������
. Let y = (y1, y2) ∈ W be a nonoscillatory solution of (S). Without loss

of generality we may suppose that y1(t) is positive for t > t1. As in the proof of
Theorem 1 we get two cases—Case 1 and Case 2.
Case 1. From (1) we have

z1(t) > −a(t)y1(g(t)) for t > t3

and

f(y1(h(t))) > Ky1(h(t)) > −Kz1(g−1(h(t)))
a(g−1(h(t)))

, t > t4(18)

where t4 > t3 is sufficiently large.

In this case y2(t) < 0 and z1(t) < 0 for t > t5, where t5 > t4 is sufficiently large.
Then the integral identity

z1(t) = z1(ξ) + (P1(t)− P1(ξ))y2(ξ) +
∫ t

ξ

(P1(t)− P1(s))y′2(s) ds

yields

z1(t) <

∫ t

ξ

(P1(t)− P1(s))y′2(s) ds, t > ξ > t5.

Combining the last inequality with the second equation of (S) and (18) we get

z1(t) <

∫ t

ξ

(P1(t)− P1(s))(−p2(s)f(y1(h(s)))) ds

<

∫ t

ξ

K(P1(t)− P1(s))p2(s)z1(g−1(h(s))) ds

a(g−1(h(s)))
, t > ξ > t5.

Putting ξ = h−1(g(t)) and using the monotonicity of z1(t), from the last inequality
we get

z1(t) < z1(t)
∫ t

h−1(g(t))

K(P1(t)− P1(s))p2(s) ds

a(g−1(h(s)))

and

1 >

∫ t

h−1(g(t))

K(P1(t)− P1(s))p2(s) ds

a(g−1(h(s)))
,

which contradicts the condition (16).
Case 2. As in the proof of Theorem 1 we shall consider two posibilities A) and B).
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A) We can treat the proof in the same way as in Theorem 1 using the condition (2′)

instead of the condition (2).
B) In this case z1(t) is negative and bounded for t > t4. Then by Lemma 2 it

follows that

(19) y1(t) > C, 0 < C = const. for t > t4.

Integrating the second equation of (S) from s to s?, using (e), (19) and then letting

s? →∞, we obtain

(20) y2(s) > KC

∫ ∞

s

p2(v) dv for sufficiently large s.

Multiplying (20) by p1(s) and integrating from T to T ? and then letting T ? → ∞
we get

−z1(T ) > KC

∫ ∞

T

p1(s)
∫ ∞

s

p2(v) dv ds for sufficiently large T

and with regard to condition (17) we have a contradiction. The proof is complete.
�
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