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Abstract. Let G be a simple graph. A subset S ⊆ V is a dominating set of G, if for
any vertex v ∈ V − S there exists a vertex u ∈ S such that uv ∈ E(G). The domination
number, denoted by γ(G), is the minimum cardinality of a dominating set. In this paper
we prove that if G is a 4-regular graph with order n, then γ(G) 6 4

11n.
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1. Introduction

Let G = (V (G), E(G)) be a simple graph. For a vertex v ∈ V (G), denote by N(v)
the open neighborhood of v. Let N [v] = N(v) ∪ {v}. Denote by δ(G) the minimum
degree of G. For a subset S of V (G), denote by G[S] the subgraph induced by S.

A subset S ⊆ V is a dominating set of G, if for any vertex u ∈ V − S there exists
a vertex v ∈ S such that uv ∈ E(G). The domination number, denoted by γ(G), is
the minimum cardinality of a dominating set. A dominating set S of G is a γ-set
if |S| = γ(G). Some bounds on γ(G) with minimum degree conditions have been
obtained as follows.

Theorem 1 [3]. If a graph G has no isolated vertices, then γ(G) 6 n/2.

McGuaig and Shepherd made another improvement on the upper bound. LetA be

the collection of graphs in Figure 1.

The project was partially supported by NNSFC 19871036.
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Figure 1. Graphs in family A

Theorem 2 [2]. If G is a connected graph with δ(G) > 2 and G /∈ A , then

γ(G) 6 2n/5.

Reed again improved the bound by increasing the minimum degree requirement.

Theorem 3 [4]. If G is a connected graph with δ(G) > 3, then γ(G) 6 3n/8.

Motivated by the above conclusions, Haynes et al. [1] conjectured that

Conjecture 1 [1]. For any graph G with δ(G) > k, γ(G) 6 k(3k − 1)−1n.

The question still remains open for graphs G having 4 6 δ(G) 6 6. In the next
section, we will prove that γ(G) 6 4n/11 for any 4-regular graph G with order n.

2. Main results

First, we give some definitions and symbols needed for the proof of Theorem 4.

Let S be a γ-set of G, let Ni(S) = {u ∈ V − S : |N(u) ∩ S| = i} where 1 6 i 6 4.
For any vertex v ∈ S, let Ni(v, S) = N(v) ∩ Ni(S). Denote by λ(S) the number
of isolates in G[S]. Let µ(S) = |N1(S)| and η(S) = |N2(S)|. Let J0 = {v ∈
S : |N1(v, S)| = 0}, J1 = {v ∈ S : |N1(v, S)| = 1} and J2 = {v ∈ S : |N1(v, S)| > 2}.
Let B = {v ∈ J0 : N(v) ∩ N3(S) 6= ∅} and R = {u ∈ N3(S) : N(u) ∩ B 6= ∅}. For
any vertex v ∈ J1 there exists only one vertex u ∈ V − S such that u ∈ N1(v, S); we
write P (v) for u.
For any two vertex subsets C, D ⊆ V , we denote the set of edges between C and

D by E[C, D].

Theorem 4. If G is a 4-regular graph with order n, then γ(G) 6 4
11n.

���������
. Among all γ-sets of G, let S be chosen so that

(1) λ(S) is maximized;
(2) subject to (1), µ(S) is minimized;
(3) subject to (2), η(S) is minimized.
Before proceeding further, we prove the following claims.
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Claim 1. Each vertex v ∈ J0 ∪ J1 is an isolate in G[S].
���������

. Suppose to the contrary that v is not isolated in G[S]. If v ∈ J0, then

S′ = S − {v} is a domination set of G. This contradicts the fact that S is a γ-set
of G. If v ∈ J1, then S′ = (S − {v}) ∪ {P (v)} is a γ-set of G with λ(S ′) > λ(S).
This contradicts our choice of S. �

Claim 2. For any vertex v ∈ J1, if |N2(v, S)| = 0 then |N(P (v)) ∩N1(S)| = 0.
���������

. Suppose to the contrary that |N(P (v)) ∩N1(S)| > 0, then S′ = (S −
{v})∪ {P (v)} is also a γ-set of G with λ(S ′) = λ(S), µ(S′) < µ(S), a contradiction.

�

Claim 3. For any u ∈ V −S, if v1, v2 ∈ N(u)∩J0 then |N2(v1, S)∩N2(v2, S)| > 2.
���������

. Suppose to the contrary that |N2(v1, S) ∩ N2(v2, S)| < 2. Then if
|N2(v1, S) ∩ N2(v2, S)| = 0, then S′ = (S − {v1, v2}) ∪ {u} is a dominating set
of G with |S′| < |S|, a contradiction. If |N2(v1, S) ∩ N2(v2, S)| = 1 then S′ =
(S − {v1, v2}) ∪ (N2(v1, S) ∩ N2(v2, S)) is a dominating set of G with |S ′| < |S|,
a contradiction. �

Claim 4. Assume that v ∈ J1 and |N2(v, S)| = 0. For 1 6 t 6 3, if |N4(v, S)| = t,

then |N(P (v)) ∩N3(S)| > t.

���������
. Suppose to the contrary that |N(P (v)) ∩ N3(S)| < t. Then we have

|N(P (v)) ∩N2(S)| = 3− |N(P (v)) ∩N3(S)| > 3− t. Thus S′ = (S − {v}) ∪ {P (v)}
is a γ-set of G with λ(S ′) = λ(S), µ(S′) = µ(S) and η(S′) < η(S). This contradicts
the choice of S. �

Now we define a function f : E[V − S, V ] → {0, 1
4 , 1

2 , 1} as follows.
For any v ∈ S, define

f(uv) =





1, u ∈ N1(v, S),
1
2 , u ∈ N2(v, S),
1
4 , u ∈ N3(v, S) ∪N4(v, S),

0, otherwise.

For any u ∈ N3(S), define

f(uw) =

{
1
2 , w ∈ N3(S),
1
4 , w ∈ V −N3(S).
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For any u ∈ V − S −N3(S), define

f(uw) =

{
1
4 , w ∈ N3(S),

0, w ∈ V − S −N3(S).

In order to prove the theorem, note that

n− |S| = |V − S| =
∑

uv∈E[V−S,V ]

f(uv),

so we need only to prove that

∑

uv∈E[V −S,V ]

f(uv) > 7
4
|S|.

If we can find a function g : E[V − S, S] satisfying the conditions

∑

uv∈E[V−S,V ]

f(uv) >
∑

uv∈E[V −S,S]

g(uv),(1)

∑

uv∈E[V−S,S]

g(uv) > 7
4
|S|,(2)

the conclusion will follow immediately.
For convenience, for any v ∈ S we define h(v) =

∑
u∈N(v)∩(V−S)

g(uv).

Note that

∑

uv∈E[V −S,S]

g(uv) =
∑

v∈S

( ∑

u∈N(v)∩(V−S)

g(uv)
)

=
∑

v∈S

h(v).

If the following condition holds, then condition (2) holds as well:

For any vertex v ∈ S, h(v) > 7
4
.

In the following, we will define a function g : E[V −S, S] → {0, 1
4 , 3

8 , 1
2} satisfying

conditions (1) and (3).
For any vertex v ∈ J2 and uv ∈ E[V − S, S], define

g(uv) =

{
1, u ∈ N1(v, S),

0, otherwise.

Assuming that w1, w2 ∈ N1(v, S), we have h(v) > g(w1v) + g(w2v) = 2.
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For any vertex v ∈ J1 and uv ∈ E[V − S, S], define

g(uv) =

{
1, u ∈ N1(v, S),
1
4 , otherwise.

Thus we have

h(v) = g(P (v)v) +
∑

u∈N(v)−{P (v)}
g(uv) = 1 +

3
4

=
7
4
.

For any v ∈ J0 and uv ∈ E[V − S, S], if u ∈ N2(v, S), define

g(uv) = f(uv) =
1
2
.

Before proceeding further, we introduce the following notation:
Let K = {v ∈ J0 : N(v) ∩N(J0 − {v}) = ∅} and L = J0 −K.

Denote

M1 = {y ∈ N(K) ∩N4(S)|N(y)−K ⊆ J1

and for any vertex x ∈ N(y)−K, N2(x, S) = ∅},
Q1 = {y ∈ N(K) ∩N4(S)|N(y)−K ⊆ J1

and there exist two vertices x1, x2 ∈ N(y)−K

such that N2(x1, S) = ∅ and N2(x2, S) = ∅ and an other vertex x3 ∈ N(y)−K such

that N2(x3, S) 6= ∅}.
Now, we consider the following two cases.

Case 1. v ∈ K.

Case 1.1. |N(v) ∩Q1| 6 1.

Case 1.1.1. N(v) ∩M1 = ∅.

For any u ∈ N(v)−Q1−N2(S), if u ∈ N3(S) then there exists a vertex x ∈ V −S

such that ux ∈ E(G). Define g(uv) = f(uv) + f(ux) = 1
4 + 1

4 = 1
2 . If u ∈ N4(S),

then (N(u) − {v}) ⊆ J1 ∪ J2. If (N(u) − {v}) ∩ J2 6= ∅, then there exists a vertex
x ∈ N(u) ∩ J2. Define g(uv) = f(uv) + f(ux) = 1

4 + 1
4 = 1

2 . Otherwise, there exist
two vertices x1, x2 ∈ N(u)−{v} such that N2(x1, S) 6= ∅ and N2(x2, S) 6= ∅. Assume
that w1 ∈ N2(x1, S) and w2 ∈ N2(x2, S) and define

g(uv) = f(uv) +
1
2

(
f(w1x1)−

1
4

)
+

1
2

(
f(w2x2)−

1
4

)
=

1
2
.
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If N(v) ∩Q1 6= ∅, for any vertex u ∈ N(v) ∩Q1 define g(uv) = f(uv) = 1
4 . Thus

h(v) =
∑

u∈N(v)∩(V−S)

g(uv) >
∑

u∈N(v)∩(V −S−Q1)

g(uv) +
∑

u∈N(v)∩Q1

g(uv) > 7
4
.

Case 1.1.2. N(v) ∩M1 6= ∅.

There exists a vertex u ∈ N(v)∩M1. For any vertex x ∈ N(u)−{v}, by Claim 4,
we can select a vertex z ∈ N(P (x))∩N3(S). We claim that z ∈ N3(S)− (R−N(v)).
Suppose to the contrary that z ∈ R−N(v), then there exists a vertex b ∈ B such that
bz ∈ E(G) and b 6= v. Since N(v) ∩ N(b) = ∅, we let S ′ = (S − {b, v, x}) ∪ {z, u}.
Then S′ is a dominating set of G with cardinality less than S, a contradiction.
Assume that N(u) − {v} = {x1, x2, x3}. Then for 1 6 i 6 3 there exist zi ∈
N(P (xi)) ∩ (N3(S) − (R −N(v))). Assume N(v) = {u1, u2, u3, u4}. For i = 1, 2, 3,
define

g(uiv) = f(uiv) + f(ziP (xi)) > 1
2
.

Moreover, define g(u4v) = f(u4v) > 1
4 . Thus we have

h(v) =
4∑

i=1

g(uiv) > 7
4
.

Case 1.2. |N(v) ∩Q1| > 2.

Then there exist two vertices u, u′ ∈ N(v) ∩ Q1. Further, there exist x1, x2 ∈
N(u)∩J1 and x′1, x

′
2 ∈ N(u′)∩J1 such thatN2(x1, S) = ∅, N2(x2, S) = ∅, N2(x′1, S) =

∅ andN2(x′2, S) = ∅. By Claim 4 there exist zi ∈ N(P (xi))∩(N3(S)−(R−N(v))) and
z′i ∈ N(P (x′i))∩(N3(S)−(R−N(v))) where i = 1, 2. AssumeN(v) = {u1, u2, u3, u4}.
For i = 1, 2, define

g(uiv) = f(uiv) + f(ziP (xi)) > 1
2
.

Moreover, define g(u4v) = f(u4v) + f(z′1P (x′1)) > 1
2 and g(u4v) = f(u4v). Thus

we have

h(v) =
4∑

i=1

g(uiv) > 7
4
.
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Case 2. v ∈ L.

By the definition of L and Claim 3 there exists v′ ∈ L such that |N2(v, S) ∩
N2(v′, S)| > 2.
If |N2(v, S) ∩N2(v′, S)| = 4, then

h(v) =
∑

u∈N(v)

g(uv) = 4× 1
2

= 2 and h(v′) =
∑

u′∈N(v′)

g(u′v′) = 4× 1
2

= 2.

If |N2(v, S) ∩ N2(v′, S)| = 3, then for u ∈ N(v) − N2(v, S) and u′ ∈ N(v′) −
N2(v′, S), define g(uv) = f(uv) = 1

4 and g(u′v′) = f(u′v′) = 1
4 , thus

h(v) =
∑

y∈N(v)

g(yv) = 3× 1
2

+
1
4

=
7
4
and h(v′) =

∑

u′∈N(v′)

g(u′v′) = 3× 1
2

+
1
4

=
7
4
.

If |N2(v, S) ∩ N2(v′, S)| = 2, then we assume that u1, u2 ∈ N2(v, S) ∩ N2(v′, S)
and distinguish the following cases.

Case 2.1. |(N(v) ∪N(v′)) ∩ (N3(S) ∪N(J2))| > 2.

Case 2.1.1. |(N(v) ∪N(v′)) ∩N(J2)| > 2.

Without loss of generality, there exist y ∈ N(v) ∩N(J2) and y′ ∈ N(v′) ∩N(J2).
Then there exist vertices x, x′ ∈ J2 such that xy ∈ E(G) and x′y′ ∈ E(G). Define
g(yv) = f(yv) + f(yx) = 1

4 + 1
4 = 1

2 and g(y′v′) = f(y′v′) + f(y′x′) = 1
4 + 1

4 = 1
2 .

For z ∈ N(v) − {u1, u2, y} and z′ ∈ N(v′) − {u1, u2, y
′}, define g(zv) = f(zv) = 1

4

and g(z′v′) = f(z′v′) = 1
4 . Therefore, we have

h(v) = g(u1v) + g(u2v) + g(yv) + g(zv) =
1
2

+
1
2

+
1
2

+
1
4

=
7
4

and

h(v′) = g(u1v
′) + g(u2v

′) + g(yv′) + g(zv′) =
1
2

+
1
2

+
1
2

+
1
4

=
7
4
.

Case 2.1.2. |(N(v) ∪N(v′)) ∩N3(S)| > 2.

Without loss of generality, there exist vertices y ∈ N(v)∩N3(S) and y′ ∈ N(v′)∩
N3(S). Then there exist vertices x, x′ ∈ V −S such that xy ∈ E(G) and x′y′ ∈ E(G).
If x ∈ N3(S), define g(yv) = f(yv) + 1

2f(yx) = 1
4 + 1

2 × 1
2 = 1

2 . Otherwise, define

g(yv) = f(yv) + f(yx) = 1
4 + 1

4 = 1
2 . Similarly, we can define g(y′v′) = 1

2 . For
z ∈ N(v) − {u1, u2, y} and z′ ∈ N(v′) − {u1, u2, y

′}, define g(zv) = f(zv) = 1
4 and

g(z′v′) = f(z′v′) = 1
4 . Therefore, we have

h(v) = g(u1v) + g(u2v) + g(yv) + g(zv) =
1
2

+
1
2

+
1
2

+
1
4

=
7
4
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and

h(v′) = g(u1v
′) + g(u2v

′) + g(yv′) + g(zv′) =
1
2

+
1
2

+
1
2

+
1
4

=
7
4
.

Case 2.3. |(N(v) ∪N(v′)) ∩N(J2)| = 1 and |(N(v) ∪N(v′)) ∩N3(S)| = 1.

Without loss of generality, there exist vertices y ∈ N(v)∩N3(S) and y′ ∈ N(v′)∩
N(J2). Then there exist a vertex x ∈ V −S such that xy ∈ E(G) and a vertex x′ ∈ J2

such that x′y′ ∈ E(G). If x ∈ N3(S), define g(yv) = f(yv)+ 1
2f(yx) = 1

4 + 1
2× 1

2 = 1
2 .

Otherwise, define g(yv) = f(yv) + f(yx) = 1
4 + 1

4 = 1
2 . Define g(y′v′) = f(y′v′) +

f(y′x′) = 1
4 + 1

4 = 1
2 . For z ∈ N(v)−{u1, u2, y} and z′ ∈ N(v′)− {u1, u2, y

′}, define
g(zv) = f(zv) = 1

4 and g(z′v′) = f(z′v′) = 1
4 . Therefore, we have

h(v) = g(u1v) + g(u2v) + g(yv) + g(zv) =
1
2

+
1
2

+
1
2

+
1
4

=
7
4

and

h(v′) = g(u1v
′) + g(u2v

′) + g(y′v′) + g(z′v′) =
1
2

+
1
2

+
1
2

+
1
4

=
7
4
.

Case 2.2. |(N(v) ∪N(v′)) ∩ (N3(S) ∪N(J2))| 6 1.

Denote

M2 = {y ∈ N(L) ∩N4(S)|N(y)− L ⊆ J1 and there exist two vertices

x1, x2 ∈ N(y)− L such that N2(x1, S) = ∅, N2(x2, S) = ∅},
Q2 = {y ∈ N(L) ∩N4(S)|N(y)− L ⊆ J1 and |N(y)− L| = 2

and for x1, x2 ∈ N(y)− L, N2(x1, S) = ∅, N2(x2, S) 6= ∅}.

Case 2.2.1. |N(v) ∪N(v′) ∩Q2| 6 1.

Case 2.2.1.1. (N(v) ∪N(v′)) ∩M2 = ∅.

If N(v) ∩ Q2 6= ∅, assume u3 ∈ N(v) ∩ Q2 and u4 ∈ N(v) − {u1, u2, u3} and
u5 ∈ N(v′) − {u1, u2, u3}. Then, without loss of generality, there exist vertices
x1, x2, x3 and x4 such that x1, x2 ∈ N(u3)−L, x3, x4 ∈ N(u4)−L and N2(x1, S) =
∅, N2(x2, S) 6= ∅, N2(x3, S) 6= ∅ and N2(x4, S) 6= ∅. Assume wi ∈ N2(xi, S) for
i = 2, 3, 4. By Claim 4 we can select z1 ∈ (N(P (x1))∩(N3(S)−(R−(N(v)∩N(v′)))).
Define g(u3v

′) = f(u3v)+f(z1x1) = 1
2 , g(u4v) = f(u4v) = 1

4 and g(u3v) = f(u3v) =
1
4 , g(u5v

′) = f(u5v
′)+ 1

2 ×(f(w2x2)− 1
4 )+ 1

2 ×(f(w3x3)− 1
4 )+ 1

2 ×(f(w4x4)− 1
4 ) > 1

2 .
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Therefore, we have

h(v) = g(u1v) + g(u2v) + g(u3v) + g(u4v) > 7
4
,

h(v′) = g(u1v
′) + g(u2v

′) + g(u3v
′) + g(u5v

′) > 7
4
.

If N(v) ∩Q2 = ∅, assume u3, u4 ∈ N(v)− {u1, u2} and u5, u6 ∈ N(v′)− {u1, u2}.
Then, without loss of generality, there exist vertices x1, x2, x3 and x4 such that

x1, x2 ∈ N(u3)−L, x3, x4 ∈ N(u4)−L andN2(x1, S) 6= ∅, N2(x2, S) 6= ∅, N2(x3, S) 6=
∅ and N2(x4, S) 6= ∅. Assume wi ∈ N2(xi, S) for i = 1, 2, 3, 4.
Define g(u3v) = f(u3v) + 1

2 × (f(w1x1)− 1
4 ) + 1

2 × (f(w2x2)− 1
4 ) = 1

2 , g(u4v) =
f(u4v) = 1

4 and g(u5v
′) = f(u5v

′) + 1
2 × (f(w3x3)− 1

4 ) + 1
2 × (f(w4x4)− 1

4 ) =
1
2 , g(u6v

′) = f(u6v
′) = 1

4 . Therefore, we have

h(v) = g(u1v) + g(u2v) + g(u3v) + g(u4v) > 7
4
,

and

h(v′) = g(u1v
′) + g(u2v

′) + g(u5v
′) + g(u6v

′) > 7
4
.

Case 2.2.1.2. (N(v) ∪N(v′)) ∩M2 6= ∅.

Assume u ∈ (N(v) ∪ N(v′)) ∩ M2, then there exist two vertices x1, x2 ∈ N(u) −
{v, v′} ⊆ J1 such that N2(x1, S) = ∅, N2(x2, S) = ∅. By the same argument as in
case 1, we can select two vertices z1 ∈ N(P (x1)) ∩ N3(S), z2 ∈ N(P (x2)) ∩ N3(S);
we claim that z1, z2 ∈ N3(S) − (R − (N(v) ∪ N(v′))). Without loss of generality,
suppose to the contrary that there exists a vertex b ∈ B such that bz1 ∈ E(G) and
b /∈ {v, v′}. SinceN(v)∩N(b) = ∅, S ′ = S−{b, v, x1}∪{z1, u} is a dominating set ofG
with cardinality less than S, a contradiction. Assume that y1, y2 ∈ N(v)− {u1, u2},
y′1, y

′
2 ∈ N(v′)−{u1, u2}, define g(y1v) = f(y1v)+f(z1P (x1)) > 1

2 , g(y2v) = f(y2v) >
1
4 and g(y′1v

′) = f(y′1v
′) + f(z2P (x2)) > 1

2 , g(y′2v
′) = f(y′2v

′) > 1
4 . Thus we have

h(v) = g(u1v) + g(u2v) + g(y1v) + g(y2v) > 1
2

+
1
2

+
1
2

+
1
4

=
7
4

and

h(v′) = g(u1v
′) + g(u2v

′) + g(y′1v
′) + g(y′2v

′) > 1
2

+
1
2

+
1
2

+
1
4

=
7
4
.
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Case 2.2.2. |N(v) ∪N(v′) ∩Q2| > 2.

Then there exist two distinct vertices y, y′ ∈ (N(v) ∪N(v′)) ∩ Q2, so there exist
x1, x2 ∈ (N(y)∪N(y′)) ∩ J1 such that N2(x1, S) = ∅ and N2(x2, S) = ∅. (Note that
this is possible for x1 = x2). By Claim 4, we can select z1 ∈ (N(P (x1)) ∩ (N3(S) −
(R − (N(v) ∩ N(v′)))), z2 ∈ N(P (x2)) ∩ (N3(S) − (R − (N(v) ∩ N(v′)))). We can
argue in the same way as before, and conclude that h(v) > 7

4 and h(v′) > 7
4 .

Thus we complete the definition of the function g. It is easy to find that g satisfies

conditions (1) and (3). This completes the proof of the theorem. �
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