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Abstract. A (p, q)-sigraph S is an ordered pair (G, s) where G = (V, E) is a (p, q)-graph
and s is a function which assigns to each edge of G a positive or a negative sign. Let the sets
E+ and E− consist of m positive and n negative edges of G, respectively, where m+n = q.
Given positive integers k and d, S is said to be (k, d)-graceful if the vertices of G can be
labeled with distinct integers from the set {0, 1, . . . , k + (q − 1)d} such that when each
edge uv of G is assigned the product of its sign and the absolute difference of the integers
assigned to u and v the edges in E+ and E− are labeled k, k + d, k + 2d, . . . , k + (m− 1)d
and −k,−(k + d),−(k + 2d), . . . ,−(k + (n− 1)d), respectively.
In this paper, we report results of our preliminary investigation on the above new

notion, which indeed generalises the well-known concept of (k, d)-graceful graphs due to
B. D. Acharya and S.M. Hegde.
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1. Introduction

Throughout this paper, unless mentioned otherwise, by a “graph” we shall mean
a finite simple graph without loops as treated in F. Harary [15]; in particular, by a

(p, q)-graph we mean a graph with p vertices and q edges.

Abundant literature exists as of today concerned with the structure of graphs
admitting a variety of functions assigning real numbers to their elements so that

certain given conditions are satisfied; hence, a graph G together with such a function
f is called a real weight network and if, in particular, f is injective then it is called

a (vertex, edge or mixed) valuation of G (e.g., see A. Rosa [18], S.W. Golomb [13],
G. S. Bloom [8], [9], J.C. Bermond et al [7], B.D. Acharya [1]–[3], [6], P. J. Slater

[19]–[22], B.D. Acharya and S.M. Hedge [4], [5], T. Grace [14], G. J. Chang et al [11],
I. Cahit [10], M. Maheo and H. Thuillier [17], A. Kotzig [16]; see J. A. Gallian [12] for a
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recent review). Perhaps the most famous notion amongst them all is that of a graceful

graph, viz., a (p, q)-graph G that admits a vertex valuation f : V (G) → {0, 1, . . . , q}
of G such that the induced edge-valuation gf defined by

(1.1) gf (uv) = |f(u)− f(v)|, ∀uv ∈ E(G),

called the bandwidth function, has the property that {gf (e) : e ∈ E(G)} :=
gf (E(G)) = {1, 2, . . . , q}; f is then called a graceful numbering of G. A few

graphs which are graceful in this sense are shown in Figure 1. The following are
some significant general facts known about graceful graphs.

Theorem 1 ([13], [18]). The complete graph Kn of order n is graceful if and only

if n 6 4.

Theorem 2 ([13], [18]). If G is an eulerian (p, q)-graph with q ≡ 0, 2 (mod 4)
then G is not graceful.

Theorem 3 ([1]). Every graph can be embedded as an induced subgraph in a
graceful graph.

In the following theorems, d.e (respectively, b.c) means the ceiling (floor) function
which assigns to each real number r the least (greatest) integer not less (greater)
than r.

Theorem 4 ([13]). A necessary condition for a (p, q)-graph G = (V, E) to be
graceful is that it be possible to partition its vertex set V := V (G) into two subsets
V0 and Ve such that there are exactly dq/2e edges each of which joins a vertex of V0

with one of Ve.

In a Group Discussion on Graph Labeling Problems held in Karnataka Regional
Engineering College (KREC), Surathkal, during August 16–25, 1999, B.D. Acharya

[6] raised the following problem:

Problem 1(m). Let � denote the set of natural numbers, k > 0 and d > 1 be
arbitrarily given integers, G = (V, E) be a connected (p, q)-graph, and G = {Gi} be
any collection of its edge-disjoint (pi, qi)-subgraphs Gi, 1 6 i 6 m, whose union is G.

Is it then possible to find an injective function f : V → {0, 1, 2, . . . , k+(q−1)d} such
that the band-width function gf : E → � , defined by (1.1), has the property that
gf (E(Gi)) = {ki, ki + di, ki + 2di, . . . , ki + (qi − 1)di} for some integers ki > 0 and
di > 1, 1 6 i 6 m? If so, what should be the relationships amongst the parameters

pi, qi, ki, di, k and d? If so, G is said to be (k, d)-gracefully packable, G is called a
(k, d)-graceful packing of G and f is called a (k, d)-graceful packing code for G.
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In this paper, we attempt to solve Problem 1(2) using the notion of signed graphs
(or, briefly, sigraphs) and taking k1 = k2 = k, d1 = d2 = d.

293



2. How to gracefully label a sigraph?

A (p, q)-sigraph S is an ordered pair (G, s) where G = (V, E) is a (p, q)-graph and
s is a function which assigns to each edge of G a positive or a negative sign. Let
the sets E+ and E− consist of m positive and n negative edges of G, respectively,

where m + n = q. Given positive integers k and d, B.D. Acharya [6] defines S

to be (k, d)-graceful if the vertices of S can be labeled with distinct integers from

the set {0, 1, . . . , k + (q − 1)d} such that when each edge uv of S is assigned the
product of its sign and the absolute difference of the integers assigned to u and v the
edges in E+ and E− are labeled k, k + d, k + 2d, . . . , k + (m− 1)d and −k,−(k + d),
−(k + 2d), . . . ,−(k + (n− 1)d), respectively. In particular, a (1, 1)-graceful labeling
is called a sigraceful labeling and S is called graceful if it admits a sigraceful labeling.

For example, consider the sistar K1,(m,n) which is defined as a sigraph on the star
K1,r, r = m + n, having m positive edges and n negative edges. Let the central

vertex of K1,r be labeled k +(n−1)d (respectively, k +(m−1)d), the n(m) pendant
vertices of the negative (respectively, positive) edges be labeled 0, d, 2d, . . . , (n− 1)d
(respectively, 0, d, 2d, . . . , (m − 1)d) and the m(n) pendant vertices of the positive
(respectively, negative) edges be labeled 2k+(n−1)d, 2k+nd, 2k+(n+1)d, . . . , 2k+
(n+m−2)d (respectively, 2k+(m−1)d, 2k+md, 2k+(m+1)d, . . . , 2k+(m+n−2)d).
Then, it may be easily seen that K1,(m,n) is (k, d)-gracefully numbered. Some more
(k, d)-gracefully labeled small sigraphs taking specific values of k and d are displayed
in Figure 2.
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In general, we shall call a sigraph S arbitrarily graceful if it is (k, d)-graceful for
all values of k and d. Thus, we have seen above that the star sigraph K1,(m,n) is
arbitrarily graceful. Are there any other such sigraphs? It may be interesting to
describe some specific classes of such sigraphs, since many infinite classes of graphs

are known to be arbitrarily graceful (e.g., see [3], [4]). In general, we pose

Problem 2. Determine (arbitrarily) graceful sigraphs.

In particular, one may be interested to solve Problem 2 for specific classes of
sigraphs on certain standard classes of graphs, say acyclic sigraphs. For example,

are all sitrees (arbitrarily) graceful? That all trees are graceful is the well-known
and long-standing Ringel-Kotzig conjecture (e.g., see [8]). We give below a necessary

condition for a sigraph to admit a graceful labeling.

Theorem 5. Let S = (G, s) be any (p, q)-sigraph with G = (V, E) as its underly-
ing graph and let the sets E+ and E− consist of m positive and n negative edges of

G, respectively, where m + n = q. A necessary condition for S to be (k, d)-graceful
for some positive integers k and d, which are not simultaneously even, is that it be

possible to partition V (G) := V (S) into two subsets Vo and Ve such that the num-

bers m+(Vo, Ve), m−(Vo, Ve) of positive and negative edges of S respectively each of
which joins a vertex of Vo with one of Ve are given as described below:

(i) when k and d are both odd,

m+(Vo, Ve) = b 1
2 (m + 1)c and m−(Vo, Ve) = b 1

2 (n + 1)c;

(ii) when k is even and d is odd,

m+(Vo, Ve) = b 1
2mc and m−(Vo, Ve) = b 1

2nc; and

(iii) when k is odd and d is even,

m+(Vo, Ve) = m and m−(Vo, Ve) = n.

���������
. Since S is (k, d)-graceful there must exist a (k, d)-graceful numbering f

of S. Let Vo = {u ∈ V (S) : f(u) is odd} and Ve = V (S)− Vo. Now, the conclusions
(i), (ii) and (iii) are obvious to see due to the fact that in each of these cases every

edge receiving an odd number in gf must join a vertex of Vo with one of Ve and
m+(Vo, Ve) and m−(Vo, Ve) precisely count these edges since f is given to be (k, d)-
graceful. �
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Corollary 5.1. If S = (G, s) is a (k, d)-graceful sigraph with k odd and d even,

then G is bipartite.

Problem 3. What can we say about (k, d)-graceful sigraphs when both k and d

are required to be even?

In the next section, we shall report the results of our preliminary study of sigraphs

that do, or do not, admit a (k, d)-graceful numbering for certain given values of k

and d.

3. Some specific classes of graceful sigraphs

A finite caterpillar is a tree such that the removal of its pendant vertices (i.e.,

vertices of degree 1) results in a simple path. If we want to extend this definition to
include infinite trees, we need to adopt the following approach: A tree T is called a

caterpillar if its vertex set V (T ) can be arranged in two columns (or rows) L (for
left) and R (for right) on the euclidean plane such that (i) {L, R} is a bipartition of
T (i.e., L∩R = ∅ and each of L and R is a nonempty independent set of vertices of
T such that L ∪ R = V (T )), (ii) every edge of T is drawn as a “Jordan curve” (i.e.,
a simple curve which does not intersect itself and is topologically homeomorphic to
the closed unit interval) with its vertices as the two ends of the curve, and (iii) no

two of these curves (representing edges of T ) intersect at a point other than possibly
at their ends. Unless mentioned otherwise, by a tree we shall mean one which may

possibly be infinite.

Let S = (G, s) be any sigraph. We shall say that it is bifurcated if the positive
subgraph S+ = (V +, E+(S)) and the negative subgraph S− = (V −, E−(S)) of S are
both connected subgraphs of S, where V + (V −, respectively) denotes the subset of

V (G) consisting of the ends of the positive (negative) edges in S. Next, for any
vertex v of S, let E+

v (E
−
v , respectively) denote the set of positive (negative) edges of

S that are incident at v. Then, d+(v) (d−(v), respectively) denotes the cardinality
of E+

v (E
−
v , respectively) and is called the positive (negative) degree of v in S. Then

the degree d(v) of v in S is defined as the cardinality of E+
v ∪E−

v . If S is finite, then
clearly d(v) = d+(v) + d−(v).

Theorem 6. Every finite bifurcated signed caterpillar is graceful.
���������

. Let (T, s) be any finite bifurcated signed caterpillar of order p. Since T

is a bipartite graph, it has a bipartition {L, R} and since T is a (finite) caterpillar we

may assume that L and R are the left and the right columns of vertices, respectively,
in a plane vertical imbedding of T described above. Now, if either E+(T ) or E−(T )
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is empty, then T may be treated as the usual graph-theoretical caterpillar which

is well known to be graceful (e.g., see [18]). Hence, we shall assume that (T, s)
is a heterogeneous sigraph (i.e., a sigraph S in which both E+(S) and E−(S) are
nonempty). Then, clearly, since T is basically a tree there must exist a unique

vertex u such that both E+
u and E−

u are nonempty as also the positive and the
negative subgraphs (each of which is connected, by hypothesis) of (T, s) must be
positioned one above (with respect to the plane vertical embedding of the signed
caterpillar) the other as seen from u. Without loss of generality, we consider a plane

vertical imbedding of (T, s) in which the negative subgraph T− appears above the
positive subgraph T + at the vertex u. For convenience, we shall refer to such an

imbedding of (T, s) a negative-up plane imbedding. Hence, in such an imbedding
of (T, s) any vertex v for which E+

v = ∅ (called a negative vertex ) appears above
u and any vertex w for which E−

w = ∅ (called a positive vertex ) appears below u.
Without loss of generality, we may assume that u ∈ L; otherwise, we may permute

the columns L and R to interchange their labels L′ and R′. Hence, choose the lowest
negative vertex adjacent to u, say v1. Then, v1 ∈ R we label the negative vertices

in R lying above v1 successively v2, v3, . . . , vr as we go up, with vr as the “highest”
negative vertex in R. Next, we choose the “highest” negative vertex adjacent to vr

in L, if any, and label it as ur+1. We then label all the vertices below ur+1 in L

successively ur+2, ur+3, . . . , ur+s, with ur+s as the “lowest” vertex in L. Let ur+m

be the negative vertex immediately above u in L so that in the above procedure u is
labeled as ur+m+1. Since E+

u 6= ∅, there must exist a “lowest” vertex in R, which we

label as vr+s+1. Clearly, due to the plane imbedding of T , it follows that ur+s must
be adjacent to vr+s+1. Hence, we label the other positive vertices above vr+s+1 in

R successively vr+s+2, vr+s+3, . . . , vp as we go up in the right column R. Now, let
f : V (T ) → {0, 1, . . . , p−1} be a function defined by saying f(ui) = i−1 and f(vj) =
j−1 for each i ∈ {r+1, r+2, . . . , r+s} and j ∈ {1, 2, . . . , r}∪{r+s+1, r+s+2, . . . , p}.
It is not hard to verify that f so defined is indeed a sigraceful numbering of T . �

Some gracefully labeled bifurcated signed caterpillars are shown in Figure 3.

In general, B.D. Acharya [6] has offered the following generalisation of the famous
Ringel-Kotzig conjecture.

Conjecture 1. All bifurcated signed trees are graceful.

Next a (p, q)-sigraph with m positive edges and n negative edges will be called a

(p, m, n)-sigraph.

Theorem 7. Let S = (G, s) be any (p, m, n)-sigraph such that G is eulerian. If

S is graceful, then m2 + n2 + m + n ≡ 0 (mod 4).
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���������
. Let f be any sigraceful numbering of S and Z be any eulerian circuit

in S. Then, since the signs of the edges in S are disregarded while computing∑
e∈Z

gf (e) ≡ ∑
ei∈Z

(ai − ai+1), where gf (ei) = |ai − ai+1| for each i, the result follows

from a result in [13] (p. 26, Theorem 2), that for any integer-valued function f defined

on the vertex set of G, if each edge uv of G is given an edge number equal to its
band-width |f(u)− f(v)| then the sum of the band-widths of the edges forming any
circuit of G is even as also that the edge set of any eulerian graph can be decomposed

into disjoint subsets each of which spans a circuit. �

Corollary 7.1. If a (k, m, n) signed cycle Zk, k = m + n > 3, is graceful then
m2 + n2 + m + n ≡ 0 (mod 4).

Corollary 7.2 ([13]). If G is a graceful eulerian (p, q)-graph then q ≡ 0, or 3
(mod 4).

So, the signed cycles of lengths ≡ 1 (mod 4) are not graceful. We will now begin
examining the sufficiency part of Corollary 7.1. Since this is known to be true in

the case of all-positive cycles (see [18]), we shall deal only with the heterogeneous
case. Towards this end, in a heterogeneously signed cycle Zn, n > 3, by a negative
(positive) section we mean a maximal subgraph consisting of only the negative (posi-
tive) edges of Zn. The following result demonstrates that there are further necessary

conditions for Zn to be graceful!
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Theorem 8. Let Zn be a heterogeneous signed cycle of length n ≡ 0 (mod 4). If
Zn is graceful then the number of negative sections of odd lengths is even.
���������

. Let Zn be any heterogeneous signed cycle of length n, n ≡ 0 (mod 4),
possessing a sigraceful numbering f and let l1, l2, . . . , lk be the lengths of the negative

sections, k > 1. Suppose the number of negative sections of odd lengths in Zn is odd,
say 2r + 1 for some positive integer r. Without loss of generality, we may assume
l1, l2, . . . , l2r+1 are the odd ones. Let li = 2ai+1 for i ∈ {1, 2, . . . , 2r+1} and li = 2bi

for i ∈ {2r + 2, 2r + 3, . . . , k}. Since the sum of the band-widths of the edges in a
cycle is even, for some positive integer m we must have

2m =
∑

e∈Zn

gf (e) =
∑

e∈E−(Zn)

gf (e) +
∑

e∈E+(Zn)

gf (e)(3.1)

=
(

q− + 1
2

)
+

(
q+ + 1

2

)
,

which implies

(3.2) 4m = q−(q− + 1) + q+(q+ + 1).

Now,

(3.3) q− =
2r+1∑

i=1

li +
k∑

i=2r+2

li = 2
(

r +
2r+1∑

i=1

ai +
k∑

i=2r+2

bi

)
+ 1.

Thus, q− is of the form

(3.4) q− = 2R + 1, R =
(

r +
2r+1∑

i=1

ai +
k∑

i=2r+2

bi

)
.

Now, since n ≡ 0 (mod 4), there exists a positive integer x such that n = 4x.
Further, since n is the number of edges in Zn, we also have 4x = q−+q+. Therefore,

q+ = n − q− = (4x − 2R − 1). Substituting this in (3.2), we get 4m = (2R + 1)×
(2R + 2) + (4x− 2R− 1)(4x− 2R) which implies

(3.5) 2m = (R + 1)(2R + 1) + (2x−R)(4x− 2R− 1).

If R = 2t + 1 for some positive integer t, then (3.5) gives 2m = 2(t + 1)(4t +
3) + (2x − 2t − 1)(4x − 4t− 3) ≡ 1 (mod 2), a preposterous statement. Therefore,
R = 2t for some positive integer t. Again, substituting this in (3.5) gives 2m =
(2t +1)(4t +1) +2(x− t)(4x− 4t− 1) ≡ 1 (mod 2), a preposterous statement again.
Thus, our assumption that the number of negative sections of odd lengths in Zn is
odd cannot be sustained, and hence it must be even as claimed. �
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Sufficiency of the condition in Theorem 8 is not guaranteed in general, since it

may be verified that Z4 having two negative sections of length 1 each is not graceful.
However, it appears that excepting this case, the sufficiency of the condition must also
hold. Before embarking on examining this contention, all the structural possibilities

amenable for gracefulness of Z4 are exhaustively illustrated in Figure 4.
An exhaustive treatment of the sufficiency part of Theorem 8 for values of n ≡ 0,

3 (mod 4), n > 7, being quite involved and tedious, will be dealt with separately
elsewhere.
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