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ALMOST PERIODIC COMPACTIFICATIONS OF
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Abstract. Let N and K be groups and let G be an extension of N by K. Given a
property P of group compactifications, one can ask whether there exist compactifications
N ′ and K′ of N and K such that the universal P-compactification of G is canonically
isomorphic to an extension of N ′ by K′. We prove a theorem which gives necessary and
sufficient conditions for this to occur for general properties P and then apply this result to
the almost periodic and weakly almost periodic compactifications of G.
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1. Introduction

Let N and K be groups, let G = N ×K be an extension of N by K, and let P
be a property of compactifications (such as that of being a topological group or a
semitopological semigroup). In this setting, it is natural to ask whether there exist

compactifications N ′ and K ′ of N and K such that the universal P-compactification
GP of G is canonically isomorphic to an extension of semigroups N ′×K ′. Results of

this type are known for AP - and LC-compactifications in the special case of a direct
or semidirect product (see, for example, [1], [2], [3], [7]), and in the general case for

the LC-compactification when N and K are topological groups with N compact and
K discrete [6]. In this paper we generalize these results, obtaining compactification

theorems of the form GP ∼= N ′ ×KP for general and specific properties P .

This research was supported in part by NSERC grant A7857.
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The paper is organized as follows. Section 2 presents notation and terminology. In

Section 3 we give necessary and sufficient conditions for GP ∼= N ′ ×KP to hold for
general properties P when N andK are semitopological semigroups. Section 4 treats
the almost periodic compactification, i.e., the universal P-compactification where P
is the property of being a topological group. It is shown that if N , K and G are
topological groups then GP ∼= N ′ ×KP holds iff the Schreier mapping [·, ·] enjoys a
certain relative compactness condition. This result is generalized to the semigroup
case in the last part of the section. The weakly almost periodic compactification is

treated in Section 5. Here P is the property of being a semitopological semigroup.
We show that if G is a topological group and K is compact, then GP ∼= N ′ × KP

holds and, moreover, the minimal ideal of GP is a canonical group extension of the
minimal ideal of N ′ by KP .

Distal and point distal compactifications of group extensions are examined in a

separate paper [4] which relies on the basic results established here in §3 and uses
their full generality.

2. Preliminaries

Let N and K be groups with identity e and let the Schreier mappings

(SM) (t, t′) �→ [t, t′] : K ×K → N and t �→ t(·) : K → Aut(N)

satisfy the Schreier extension formulation conditions ([9] or [10])

(SEF)





e(s) = s and [t, e] = [e, t] = e,

[t, t′](tt′)(s) = t(t′(s))[t, t′], and

[t, t′][tt′, t′′] = t([t′, t′′])[t, t′t′′].

Then G = N ×K with multiplication

(1) (s, t)(s′, t′) =
(
st(s′)[t, t′], tt′

)
(s, s′ ∈ N, t, t′ ∈ K),

is a group; we call G the extension of N by K and indicate this situation by

G = N ×K (SEF).

Conversely, Schreier has shown that if N is a normal subgroup of a group G, then

maps satisfying (SEF) can be determined so that G is canonically isomorphic (alge-
braically) to N ×K (SEF), where K = G/N .
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The conditions (SEF) still make sense when N and K are semigroups and each

t(·) is a homomorphism, and in this case G with multiplication (1) is a semigroup
with identity (e, e).

G is said to be a central extension if the range of [·, ·] is contained in the center
of N , and a semidirect product of N and K if the range of [·, ·] is {e}. For central
extensions and left or right cancellative semigroups N , the middle equation of (SEF)

tells us that K acts on N , i.e., the second map of (SM) is a homomorphism. When
both maps of (SM) are trivial, then G is the direct product of N and K.

In the sequel we assume that N and K are (at least) semitopological semigroups
and that G = N × K (SEF) has the product topology and is a semitopological

semigroup, which places some continuity requirements on the Schreier maps (SM)
(e.g., they must be separately continuous). If N , K and G = N × K (SEF) are
topological semigroups, those requirements become stronger; they become somewhat

weaker for (right topological semigroup) compactifications G′ = N ′×K ′ (SEF) of G
(see the proof of Lemma 3.3).

The remainder of this section is devoted to a brief overview of the theory of
semigroup compactifications. For details the reader is referred to [1], especially

Chapters 3 and 4.

A (right topological semigroup) compactification of a semitopological semigroup S

is a compact, Hausdorff, right topological semigroup S′ together with a continuous
homomorphism εS′ : S → S′ (the compactification map) such that the image εS′(S)

is dense in S′ and each mapping s′ �→ εS′(s)s′ : S′ → S′ is continuous. The phrase
“right topological” means that the map s′ �→ s′t′ : S′ → S′ is continuous for each
t′ ∈ S′.
Let C(S) denote the C∗-algebra of bounded, continuous, complex-valued functions

on S, and let R(·) and L(·) denote the translation operators on C(S), R(t)f(s) =
L(s)f(t) = f(st). The C∗-subalgebra F = ε∗S′(C(S

′)) of C(S) is called the function
space of the compactification S′; here ε∗S′ : C(S

′) → C(S) is the dual map. F is

easily seen to be m-admissible, i.e., it is a translation invariant C∗-subalgebra of
C(S) containing the constant functions and the functions s �→ µ(L(s)f), where

f ∈ F and µ is a member of the spectrum of F . Conversely, if A is an m-admissible
C∗-subalgebra of C(S), then the spectrum SA of A is a compactification of S.

Let S and T be semitopological semigroups with compactifications S′ and T ′ and
let ϕ : S → T be continuous. A continuous function ϕ′ : S′ → T ′ is an extension
of ϕ if ϕ′ ◦ εS′ = εT ′ ◦ ϕ. ϕ′ is unique, and exists iff ϕ∗(B) ⊂ A, where A and B are

the function spaces of the compactifications. If ϕ is a homomorphism then so is ϕ′.

Let S′ and S′′ be compactifications of S. Then S′′ is a factor of S′ if the identity

map on S has an extension S′ → S′′. We shall refer to this extension as the associated
compactification homomorphism. Note that a compactification homomorphism is
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necessarily surjective and unique. If it is one-to-one then S′ and S′′ are said to be

isomorphic.

A compactification with a given property P is called a P-compactification.
A universal P-compactification of S is a P-compactification of which every P-
compactification of S is a factor. Universal P-compactifications, if they exist, are
unique (up to isomorphism). We consider only properties P for which the universal
P-compactification exists. (Necessary and sufficient conditions for this are given
in [1, 3.3.4].) We denote the universal P-compactification of S by SP and the
function space of SP by P(S).
If S and T are semitopological semigroups, ϕ : S → T is a continuous homo-

morphism, and T ′ is a compactification of T , then the induced compactification

S′ = εT ′ ◦ ϕ(S) (with compactification map εS′ = εT ′ ◦ ϕ) is called a subcom-
pactification of T ′. If P is a property of compactifications which is inherited by
subcompactifications then every continuous homomorphism S → T has an extension
SP → TP .

In this paper we shall be concerned with universal P-compactifications GP of

G = N × K (SEF) for the topological group and the semitopological semigroup
properties. The function spaces P(G) corresponding to these properties are, re-
spectively, SAP(G), the algebra of strongly almost periodic functions on G, and
WAP (G), the algebra of weakly almost periodic functions. We shall also need to

consider the m-admissible algebra LC(G) of left norm continuous functions, and
the algebra RC(G) of right norm continuous functions, which is generally not m-
admissible. Note that if G is a topological group then SAP (G) = AP (G), the

algebra of almost periodic functions, and LC(G) (RC(G)) is the algebra of right
(left) uniformly continuous on G. Details concerning these and related spaces may

be found in Chapter 4 of [1].

Our goal is to find conditions under which there exists a compactification iso-
morphism GP ∼= N ′ ×K ′ (SEF), where N ′ and K ′ are compactifications of N and

K uniquely determined by GP . Here, and throughout the paper, it is assumed
that the compactification map εN ′×K′ is the natural one, namely the product map

εN ′ × εK′ : N × K → N ′ × K ′. This is equivalent to requiring the Schreier maps
[·, ·] : K ′ × K ′ → N ′ and (x, y) �→ y(x) : N ′ × K ′ → N ′ to be extensions of the

Schreier maps of N ×K.
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3. General compactifications of extensions

Let N and K be semitopological semigroups with identity e, and let G = N ×K

(SEF) (always with the product topology). We let q1 : N → G and q2 : K → G

denote the canonical injections, p1 : G→ N and p2 : G→ K the projection mappings

and set ri = qi ◦ pi. Note that in the (SEF) case, q1 and p2 are homomorphisms,
in the semidirect product case q1, q2 and p2 are homomorphisms, and in the direct

product case all four mappings are homomorphisms.

The following result was obtained for semidirect products in [3]. The proof there

works equally well here, since it relies only on the identity (s, e)(e, t) = (s, t).

Lemma 3.1. Let F be an m-admissible C∗-subalgebra of C(G) and let A and
B denote, respectively, the C∗-subalgebras q∗1(F ) and q

∗
2(F ). Suppose the following

conditions hold:

(a) A and B are m-admissible;

(b) p∗1(A) ⊂ F and p∗2(B) ⊂ F ;

(c) for each f ∈ F either f(N, ·) or f(·,K) is relatively compact.
Then there exists a multiplication on NA × KB relative to which NA × KB is a

compactification of G isomorphic to GF . Conversely, if N ′ and K ′ are compactifica-

tions of N and K, respectively, and if G′ := N ′ ×K ′ has a multiplication such that

G′ and GF are isomorphic compactifications of G, then conditions (a)–(c) hold and

A = ε∗N ′(C(N ′)) and B = ε∗K′(C(K ′)).

Remark 3.2. Because of the identity f(s, t) = L(s, e)f(e, t) = R(e, t)f(s, e),
condition (c) of Lemma 3.1 is implied by any one of the following:

(i) F ⊂ AP (G);

(ii) N is compact and F ⊂ LC(G);

(iii) K is compact and F ⊂ RC(G).

Lemma 3.3. Let N ′ and K ′ be compactifications of N and K and let G′ :=
N ′ ×K ′ have a multiplication relative to which it is a compactification of G. If N ′

is a topological semigroup or K is compact, then G′ = N ′×K ′ (SEF). Moreover, G′

is a semidirect product if G is a semidirect product, and it is a central extension if

N ′ is a topological semigroup and G is a central extension.

�����. Let ε denote the compactification map εN ′×εK′ of G′ and let q′1 : N
′ →

G′ and q′2 : K
′ → G′ denote the canonical injections and p′1 : G

′ → N ′ and p′2 : G
′ →

K ′ the projection mappings. For x ∈ N ′ and y, y′ ∈ K ′ define y(x) = p′1
(
q′2(y)q

′
1(x)

)

and [y, y′] = p′1
(
q′2(y)q

′
2(y

′)
)
. Note that y(x) and [y, y′] are continuous in y for fixed
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x and y′, and εK′(t)(x) and [εK′(t), y] are continous in x and y, respectively, for fixed

t. Moreover, one easily checks that for s ∈ N and t, t′ ∈ K,

(2) εK′(t)(εN ′(s)) = εN ′(t(s)) and [εK′(t), εK′(t′)] = εN ′([t, t′]).

It follows from (2) that

(3) p′1(ε(s, t) · ε(s′, t′)) = εN ′(s) · εK′(t)(εN ′(s′)) · [εK′(t), εK′(t′)].

Now suppose N ′ is a topological semigroup. Letting first ε(s′, t′) → (x′, y′)
and then ε(s, t) → (x, y) in (3) we get p′1((x, y)(x

′, y′)) = xy(x′)[y, y′]. Similarly,

p′2
(
(x, y)(x′, y′)

)
= yy′. Thus, multiplication in G′ is given by (x, y)(x′, y′) =

(xy(x′)[y, y′], yy′). The (SEF) conditions follow from (2) and continuity or may

be deduced directly from the associativity of multiplication in G′. The proof for the
case K compact is similar.
If G is a semidirect product of N and K, then the second identity in (2) shows that

[y, y′] is trivial, hence G′ is a semidirect product. The assertion regarding central
extensions is clear. �

We may now prove the following general result on P-compactifications of semi-
group extensions.

Theorem 3.4. Let P be a property of semigroup compactifications which is inher-
ited by subcompactifications, and let A denote the m-admissible algebra q∗1(P(G)).
Suppose that the following conditions hold:

(a) q∗2(P(G)) ⊂ P(K);
(b) p∗1(A) ⊂ P(G);
(c) for each f ∈ P(G) either f(N, ·) or f(·,K) is relatively compact;
(d) NA is a topological semigroup or K is compact.

Then NA is a P-compactification of N and GP ∼= NA ×KP (SEF). Moreover, GP

is a semidirect product if G is a semidirect product, and GP is a central extension if

G is a central extension and NA is a topological semigroup.

Conversely, if GP ∼= N ′ ×K ′ (SEF) for some compactifications N ′ and K ′ and if

P is inherited by factors, then (a)–(c) hold, N ′ ∼= NA and K ′ ∼= KP .

�����. Set B := q∗2(P(G)). Since p2 : G → K is a continuous homomorphism
and P is inherited by subcompactifications, p2 has an extension p2 : GP → KP .

Then p∗2(P(K)) = ε∗GP
(
p∗2(C(K

P))
)
⊂ P(G), hence P(K) = q∗2p

∗
2(P(K)) ⊂ B

by (a). Therefore B = P(K), and Lemmas 3.1 and 3.3 imply that GP ∼= NA ×KP

(SEF). Since NA is a subcompactification of GP (via q1), NA is a P-compactification
of N .
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The converse follows from Lemma 3.1 and the observation that K ′, as a factor

of GP , is a P-compactification of K so (a) holds and K ′ ∼= KP . �

Remark 3.5. If P-compactifications of semitopological semigroups are topologi-
cal groups, then condition (b) of Theorem 3.4 is implied by condition (a). Indeed, if
(a) holds then r∗2(P(G)) ⊂ P(G), so r2 has an extension r2 : GP → GP . It follows

that x �→ xr2(x)−1 is an extension of r1, which implies (b).

4. Almost periodic compactifications

For the purposes of the next theorem we define, for (s, t) ∈ G = N ×K, operators
S�(s, t), Sr(s, t) : C(N)→ C(G) by

[S�(s, t)g](s′, t′) = g(st(s′)[t, t′]) and [Sr(s, t)g](s′, t′) = g(s′t′(s)[t′, t]).

Note that for f ∈ C(G),

(4) S�(s, t)q
∗
1f = L(s, t)r

∗
1f and Sr(s, t)q

∗
1f = R(s, t)r

∗
1f.

Theorem 4.1. Let N , K and G = N ×K (SEF) be topological groups and let

A = q∗1
(
AP (G)

)
. The following conditions are equivalent:

(a) GAP ∼= N ′ ×K ′ (SEF) for some compactifications N ′ and K ′ of N and K.

(b) q∗2(AP (G)) ⊂ AP (K).
(c) εGAP ([K, ·] × e) ⊂ (GAP )K is relatively compact in the topology of uniform

convergence.

(d) εGAP ([·,K] × e) ⊂ (GAP )K is relatively compact in the topology of uniform

convergence.

If (a) holds then K ′ ∼= KAP and N ′ ∼= NA; moreover,

A = {g ∈ C(N) : S�(G)g is norm relatively compact in C(G)}(5)

= {g ∈ C(N) : Sr(G)g is norm relatively compact in C(G)},(6)

and A is generated by the coefficients of the finite dimensional irreducible unitary

representations σ : N → B(Hσ) with the property that the sets

σ([K, ·]) = {σ([t, ·]) : t ∈ K} ⊂ B(Hσ)K and σ(K(·)) = {σ(t(·)) : t ∈ K} ⊂ B(Hσ)N

are relatively compact in the topologies of uniform convergence.

�����. By Theorem 3.4, (a) implies (b) as well as the isomorphismsK ′ ∼= KAP

and N ′ ∼= NA. Also, by Theorem 3.4 and Remarks 3.1 and 3.5, (b) implies (a).
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To show that (b) implies (c), let {tα} be a net in K and choose a subnet {tβ}
such that εKAP (tβ) and εGAP (e, tβ) converge. If (b) holds then q2 has an extension
q2 : K

AP → GAP , and the identity

εGAP ([tβ , t], e) = εGAP (e, tβ)εGAP (e, t)εGAP (e, tβt)−1

= εGAP (e, tβ)εGAP (e, t)q2(εKAP (tβ)εKAP (t))−1

implies that εGAP ([tβ , t], e) converges uniformly in t. Therefore (b) implies (c). The

converse follows from a rearrangement of the preceding identity. Using right instead
of left translations in these arguments shows that (b) and (d) are equivalent.

Now assume that the equivalent conditions (a)–(d) hold and let A1 denote the
algebra defined in (5). It is easy to see that p∗1(A1) ⊂ AP (G), hence A1 ⊂ A.

The reverse inclusion follows from the first identity in (4) and from the inclusion
r∗1(AP (G)) ⊂ AP (G), which is (b) of Theorem 3.4. Thus, A1 = A. A similar

argument shows that A also coincides with the algebra defined in (6).
To prove the last assertion of the theorem, first observe that A is generated by

functions q∗1(f), where f is a coefficient of a finite dimensional irreducible unitary

representation π : G → B(Hπ), say f(s, t) = fξζ(s, t) = 〈π(s, t)ξ, ζ〉. Let gξζ =
q∗1(fξζ) and define σ(s) = π(s, e), s ∈ N . Since S�(G)gξζ is norm relatively compact

for all ξ, ζ ∈ Hπ, S̃�(G)σ ⊂ B(Hπ)G is relatively compact in the topology of uniform
convergence, where

S̃�(s, t)σ(s′, t′) = σ(st(s′)[t, t′]).

It follows that σ([K, ·]) and σ(K(·)) are relatively compact in the topologies of uni-
form convergence of B(Hπ)K and B(Hπ)N , respectively. Since σ is a finite dimen-
sional unitary representation of N it is a direct sum of irreducible unitary representa-

tions, hence gξζ is a linear combination of coefficients of finite dimensional irreducible
unitary representations of N , each with the required compactness property.

Conversely, let σ : N → B(Hσ) be a finite dimensional unitary representation
with the stated compactness property. Since S̃�(s, t)σ(s′, t′) = σ(s)σ(t(s′))σ([t, t′]),

S̃�(G)σ is relatively compact in the topology of uniform convergence of B(Hσ)G.
Hence, if gξζ is a coefficient of σ, then S�(G)gξζ(·) = 〈S̃�(G)σ(·)ξ, ζ〉 is norm relatively
compact and therefore gξζ ∈ A. �

Corollary 4.2. Let [K, ·] or [·,K] be relatively compact in the topology of uniform
convergence of NK (with respect to either the left or right uniformity on N). For

t ∈ K define an operator T (t) on C(N) by T (t)g(s) = g(t(s)). Then GAP ∼= NA ×
KAP (SEF), where

(7) A = q∗1(AP (G)) = {g ∈ AP (N) : T (K)g is norm relatively compact in C(N)}.
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Moreover, A is generated by the coefficients of the finite dimensional irreducible uni-

tary representations σ : N → B(Hσ) with the property that σ(K(·)) is relatively com-
pact in the topology of uniform convergence of B(Hσ)N . Hence, if K(·) is relatively
compact in the topology of uniform convergence of NN , then GAP ∼= NAP ×KAP

(SEF).

�����. By Theorem 4.1, GAP ∼= NA ×KAP (SEF), where A = q∗1(AP (G)). It
remains to show that A equals the algebra A′ defined by the operators T (t) in (7).

It is clear from (8) that A ⊂ A′, since L(s′)g(s) = S�(s′, e)g(s, t) and T (t)g(s) =
S�(e, t)g(s, e). For the reverse inclusion, note first that T (K)AP (N) ⊂ AP (N). In-

deed, if g ∈ AP (N) then R(s)T (t)g = T (t)R(t(s))g, hence R(N)T (t)g ⊂ T (t)R(N)g.
Next, note that A′ is translation invariant. To see this let g ∈ A′, s ∈ N , t ∈ K and
let at denote the inverse of the automomorphism t(·) (see (3)). Then T (t)R(s)g =
R(at(s))T (t)g, hence T (K)R(s)g ⊂ R(N)T (K)g. Since T (K)g is a norm relatively

compact subset of AP (N), R(s)g ∈ A′. Similarly, L(s)g ∈ A′.
Now let g ∈ A′. Given a net {(sα, tα)} in G, choose a subnet {(sβ , tβ)} such

that T (tβ) → u and L(sβ) → v in the strong operator topology of B(A′) and
[tβ , t] converges uniformly in t to some function r(t). Since S�(sβ , tβ)g(s, t) =

T (tβ)L(sβ)R([tβ , t])g(s), we have

|S�(sβ , tβ)g(s, t)− uvR(r(t))g(s)| � ‖T (tβ)L(sβ)R([tβ , t])g − uvR(r(t))g‖
� ‖T (tβ)L(sβ)R([tβ , t])g − uL(sβ)R([tβ , t])g‖
+ ‖L(sβ)R([tβ , t])g − vR([tβ , t])g‖
+ ‖R([tβ, t])g −R(r(t))g‖

= aβ(t) + bβ(t) + cβ(t).

The mixed translates L(sβ)R([tβ , t])g belong to a totally bounded set in A′, hence
‖aβ‖ = sup

t∈K
aβ(t) → 0. Similarly, ‖bβ‖ → 0, and clearly ‖cβ‖ → 0. Therefore

S�(sβ , tβ)g converges in norm and g ∈ A. �

The first part of the following corollary is due to M. Landstad [5]. (See also [1],

[3] and [7].)

Corollary 4.3. If G is a semidirect product of N andK, then GAP is a semidirect

product of NA and KAP . If K(·) ⊂ NN is relatively compact in the topology of

uniform convergence, then GAP is a semidirect product of NAP and KAP .

Corollary 4.4. If K is compact then GAP ∼= NA ×K (SEF).

The analog of Corollary 4.4 for the case N compact is generally false (see Exam-
ple 4.15, below).
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Example 4.5. Let G = N ×K = � ∗ × �2 have multiplication

(z, x, y)(z′, x′, y′) = (zz′ryx′eiθyx′, x+ x′, y + y′),

where r > 0 and θ ∈ �. Here [(x, y), (x′, y′)] = ryx′eiθyx′, and the automorphism
determined by (x, y) is the identity map, so G is an extension of N by K. G is also a

semidirect product of the subgroups N1 = � ∗×�×0 and K1 = 1×0×� (G = N1K1
and N1 � G); K1 acts on N1 by

y : (z, x) �→ y(z, x) = (1, 0, y)(z, x, 0)(1, 0, y)−1 = (zrxyeiθxy, x).

By Corollary 4.3, GAP is a semidirect product NA1
1 × KAP

1 = (� ∗ × �)A1 × �AP ,

where A1 is the algebra generated by the continuous characters

χ(z, x) = χa,k(z)χb(x) =
( z

|z|
)k

eia ln |z|eibx (k ∈ �, a, b ∈ �)

with the property that for each net {yα} in � there exists a subnet {yβ} such that

χ(yβ(z, x)) = χ(zrxyβeiθxyβ , x)

=
( z

|z|
)k

eixyβ(kθ+a ln r)ei(a ln |z|+bx)

converges uniformly in (z, x). This clearly forces kθ + a ln r = 0. Thus, if r = 1,
then GAP is a semidirect product ((0,∞)AP × �AP ) × �AP or (� ∗AP × �AP ) ×
�AP , according as θ �= 0 or θ = 0. If r �= 1 then GAP is a semidirect product
(� × (0,∞)B × �AP ) × �AP , where B is the algebra generated by the characters

t �→ eia ln t, a = kθ/ ln r, k ∈ �. If θ = 0 this reduces to the semidirect product
(�× �AP )× �AP .

In each case we may express GAP as an extension of NA by KAP . For example,

if r = 1 and θ �= 0 then

GAP = ((0,∞)AP×�AP ×0)·(1×0×�AP ) = (0,∞)AP×�2AP = �
∗A×�2AP (SEF),

where A is the algebra generated by the characters χa,0.

Example 4.6. Let G = N ×K = � ∗ ×�2 with multiplication

(z,m, n)(z′,m′, n′) = (zz′λnm′
,m+m′, n+ n′),

where λ = re2�iθ ∈ � ∗ . Here, [(m,n), (m′, n′)] = λnm′
, and the automorphism

determined by (m,n) is the identity. This is a subgroup of the group in the preceding
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example and may be analysed in the same way. Instead, we use Theorem 4.1 to show

directly that

(8) (� ∗ ×�
2)AP ∼= �

∗A ×�
2AP ∼= �

∗A × (�AP)2 (SEF),

where A is the algebra generated by the continuous characters

(9) χk,a(z) =
( z

|z|
)k

e2�ia ln |z| (k ∈ �, a ∈ �, a ln r + kθ ∈ �).

To establish (8) we show that q∗2(AP (G)) ⊂ AP (K). Let f ∈ AP (G) and g =
q∗2(f). We may assume that f is a coefficient of an irreducible finite dimensional

unitary representation π of G. Following [6] we note that if U = π(1, 0, 1) and
V = π(1, 1, 0) then UV U−1V −1 = π(λ, 0, 0) commutes with π, hence Schur’s Lemma

implies that UV U−1V −1 = ei2�tI for some t ∈ �. If t were irrational, then U and
V would generate the irrational rotation algebra, which is infinite dimensional [8].

Thus, t is rational and there exists a positive integer p such that π(λp, 0, 0) = I. For
n ∈ � let rn denote the remainder on division of n by p. Given a net {(mα, nα)}
in K choose a subnet {(mβ , nβ)} such that rmβ

is constant, say rmβ
= r0, and such

that R(1,mβ, nβ)f → h ∈ AP (G). Since

π(1,m+mβ , n+ nβ) = π(λ−nmβ ,m, n)π(1,mβ, nβ)

= π(λjp+r−nrmβ ,m, n)π(1,mβ , nβ)

= π
(
(λr−nr0 ,m, n)(1,mβ , nβ)

)
,

we have

R(mβ, nβ)g(m,n) = f(1,m+mβ , n+ nβ) = R(1,mβ, nβ)f(λr−nr0 ,m, n),

which converges uniformly to h(λr−nr0 ,m, n). Therefore g ∈ AP (K), as required.
From Theorem 4.1 we conclude that (8) holds, where A = q∗1(AP (G)) is generated

by the characters χk,a of � ∗ with the property that for each net {(mα, nα)} in �2
there exists a subnet {(mβ, nβ)} such that χk,a([(mβ , nβ), (m,n)]) = e2�imnβ(θk+a ln r)

converges uniformly in m ∈ �. This is possible only if θk + a ln r ∈ �.
We consider some special cases:

(a) r = 1 and θ is rational. Then A = AP (� ∗ ) and

(� ∗ ×�
2)AP ∼= �

∗AP × (�AP)2 ∼= (�× (0,+∞)AP )× (�AP)2 (SEF) .

(b) r = 1 and θ is irrational. Then A = AP ((0,∞)) and

(� ∗ ×�
2)AP ∼= (0,+∞)AP × (�AP)2 (SEF).
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(c) r �= 1 and ln r and θ are rational. Then

(� ∗ ×�
2)AP ∼= (�× (0,∞)B)× (�AP)2 (SEF),

where B is the algebra generated by the characters s �→ e2�a ln s of (0,∞) with
a rational.

Examples 4.1 and 4.2 have higher dimensional analogs, which may be handled in

a similar manner. For instance, one could take N = � ∗2 , K = �4 and multiplication

(z, w, j, k,m, n)(z′, w′, j′, k′,m′, n′) = (zz′λjm′
, ww′µkn′ , j+j′, k+k′,m+m′, n+n′).

Example 4.7. Let G = N ×K = � ∗2 ×�2 with multiplication

(z1, z2,m, n)(z′1, z
′
2,m

′, n′) = (z1z′1z
′n
2 λ

m′n(n−1)/2, z2z
′
2λ

m′n,m+m′, n+ n′).

Here [(m,n), (m′, n′)] = (λm′n(n−1)/2, λnm′
), λ ∈ � ∗ , and the automorphism deter-

mined by (m,n) is the map (z1, z2) �→ (z1zn
2 , z2). If u = (1, 1, 0, 1) and v = (1, 1, 1, 0),

then uvu−1v−1 = (1, λ, 0, 0) = w and uwu−1w−1 = (λ, 1, 0, 0), and using this one
can argue as in Example 4.6 to show that

(� ∗2 ×�
2)AP ∼= �

∗2A × (�AP)2 (SEF),

where A = q∗2(AP (G)). One can also use the method of Example 4.5, since G is a

semidirect product (� ∗2 ×�)×�.

Example 4.8 (Heisenberg groups). Let G = N × K = � × (�n × �n ) with
multiplication

(s, x, y)(s′, x′, y′) = (s+ s′ + y · x′, x+ x′, y + y′).

Here, [(x, y), (x′, y′)] = y · x′, and the automorphism determined by (x, y) is trivial.
G is a semidirect product of the subgroups N1 = � × �n × 0 and K1 = 0× 0× �n ,
so K1 acts on N1 by automorphisms

y : (s, x, 0) �→ y(s, x, 0) = (s+ y · x, x, 0).

GAP is therefore a semidirect product NA1
1 ×KAP

1 = (� × �n )A1 × (�AP )n, where

A1 is generated by the characters χa,y(s, x) = ei(as+y·x) with the property that for
each net {yα} in �n there exists a subnet {yβ} such that χa,y(s+ yβ ·x, x) converges
uniformly in (s, x). This is possible only if a = 0, so NA1

1 = (�
AP )n and GAP reduces

to the direct product (�AP )2n.
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A similar analysis shows that the AP -compactification of the subgroup H = �×
(�n×�n) is a semidirect product (�B × (�AP)n)× (�AP)n, where B is the algebra
generated by the characters m �→ λm, λ a root of unity. Thus, while the factor
� of G is annihilated by taking the AP-compactification, the factor � of H is not.

One consequence of this is that not every member of AP (H) extends to a member
of AP (G). Note that HAP may also be viewed as an extension of �B by (�AP)2n.

Next, we consider generalizations of the above results to the semigroup case.

Theorem 4.9. Let N , K and G = N ×K (SEF) be semitopological semigroups

and let A = q∗1(SAP (G)). The following conditions are equivalent:

(a) GSAP ∼= N ′ ×K ′ (SEF) for some compactifications N ′ and K ′ of N and K.

(b) q∗2(SAP (G)) ⊂ SAP (K).

(c) εGSAP ([K, ·] × e) ⊂ (GSAP )K is relatively compact in the topology of uniform

convergence, and the mapping [·, ·] : (K ×K, TSAP × TSAP ) → (N, TA) is con-
tinuous, where TSAP is the initial topology on K for the family SAP (K), and

TA is the initial topology on N for the family A.

If (a) holds then K ′ ∼= KSAP , N ′ ∼= NA, and A is generated by the coefficients of the

finite dimensional irreducible unitary representations of N having the compactness

property described in Theorem 4.1.

�����. As in the proof of Theorem 4.1, (a) implies (b) and the isomorphisms
K ′ ∼= KSAP and N ′ ∼= NA, and (b) implies the first part of (c). To show that (b)

implies the second part of (c), let {(tα, t′α)} be a net in K ×K which TSAP ×TSAP -
converges to (t, t′). If (b) holds then, εGSAP (e, tα) → εGSAP (e, t), εGSAP (e, t′α) →
εGSAP (e, t′), and εGSAP (e, tαt′α)→ εGSAP (e, tt′), so

εGSAP ([tα, t
′
α], e) = εGSAP (e, tα)εGSAP (e, t′α)εGSAP (e, tαt

′
α)

−1

→ εGSAP (e, t)εGSAP (e, t′)εGSAP (e, tt′)−1

= εGSAP ([t, t′], e).

Therefore [tα, t′α]→ [t, t′] in (N, TA).

Now assume that (c) holds. As in the proof of Theorem 4.1, q∗2(SAP (G)) ⊂
AP (K). Let f ∈ SAP (G), g = q∗2(f) and ĝ = (ε

∗
KAP )−1(g). To show that g ∈

SAP (K) it suffices to show that g is distal, i.e., ĝ(εKAP (t)yεKAP (t′)) = g(tt′) for

t, t′ ∈ K and y = y2 ∈ KAP [1, 4.6.6]. Let εKAP (tα) → y. Since q∗2(SAP (G)) ⊂
AP (K) and y is an idempotent, εGSAP (e, tα) and εGSAP (e, t2α) converge to the same

member of GSAP . Moreover, tα → e and ttα → t in (K, TSAP ), hence, by the
continuity hypothesis, [t, tα]→ e, [tα, tα]→ e and [ttα, t′]→ [t, t′] in (N, TA). Thus,
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setting ε = εGSAP , we have

ε(e, tα) = ε([tα, tα], e)ε(e, t2α)ε(e, tα)
−1 → ε(e, e),

ε(e, ttα) = ε([t, tα], e)−1ε(e, t)ε(e, tα)→ ε(e, t)

and

ε(e, ttαt′) = ε([ttα, t′], e)−1ε(e, ttα)ε(e, t′)

→ ε([t, t′], e)−1ε(e, t)ε(e, t′) = ε(e, tt′).

In particular, g(ttαt′)→ g(tt′). Therefore, (c) implies (b).

The remaining assertions of the theorem are proved as in Theorem 4.1. �

Corollary 4.10. Let K be a compact topological group. Then GSAP ∼= NA ×K
(SEF).

Corollary 4.11. Suppose that [t, t′] is a homomorphism in one of the variables
for each fixed value of the other. If A := q∗2(SAP (G)) ⊂ AP (K), then GSAP ∼=
NA ×KSAP (SEF).

�����. Let π be a finite dimensional unitary representation of G. Since A ⊂
AP (K), π2 := π ◦ q2 : K → U has an extension π2 : KAP → U , where U is the
closure of π(G). Set θ(t, t′) = π([t, t′], e)−1. The identity

θ(t, t′) = π2(tt
′)π2(t

′)−1π2(t)
−1

implies that θ(t, t′) is almost periodic and hence has an extension θ : (K ×K)AP =
KAP ×KAP → U which is a homomorphism in one of its variables and satisfies

π2(uv) = θ(u, v)π2(u)π2(v) (u, v ∈ KAP ).

It follows from the fact that U is a group that π2(uvw) = π2(uw) if v2 = v. Therefore
(b) of Theorem 4.9 holds: If f is a coefficient of π then q∗2(f) is distal and almost
periodic and hence strongly almost periodic. �

From 4.11 we have immediately

Corollary 4.12 [3]. If G is a semidirect product of N and K, then GSAP is a

semidirect product of NA and KSAP . If K(·) ⊂ NN is relatively compact in the

topology of uniform convergence, then GSAP is a semidirect product of NSAP and

KSAP .
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Example 4.13. Let �p denote the p-adic integers and let N be a subsemigroup

of (� , ·) which is invariant under rotations. Give G = N ×�2p multiplication

(z, x, y)(z′, x′, y′) = (zz′e2�ix0yx′ , x+ x′, y + y′),

where x0 is a fixed p-adic number. By Corollary 4.10, (N × �2p)
SAP = NA × �2p

(SEF).

Example 4.14. Consider the subsemigroup G1 = N × K1 = � ∗ × �+
2 of the

group G of Example 4.6. As in that example, q∗2(SAP (G1)) ⊂ AP (K1), so by

Corollary 4.11,
(� ∗ ×�+

2)SAP ∼= �
∗A × (�+SAP )2 (SEF),

where A = q∗1(SAP (G1)).

Similarly, for the subsemigroup � ∗2 ×�+
2 of the group G in Example 4.7,

(� ∗2 ×�+
2)SAP ∼= �

∗2A × (�+SAP )2 (SEF).

Example 4.15. LetN be an abelian topological group,K a semitopological semi-
group and let ψ : K → N be a continuous function such that ψ(e) = e. Then [t, t′] =
ψ(t)ψ(t′)ψ(tt′)−1 satisfies the cocycle identity of (SEF) (in fact it is a coboundary),

hence G = N ×K (SEF), where t �→ t(·) is trivial. If ψ∗(AP (N)) ⊂ SAP (K) then
[·, ·] satisfies condition (c) of Theorem 4.9, hence GSAP ∼= NAP ×KSAP (SEF).

Now take N = � and K = �. Then χ(z, t) = zψ(t) defines a continuous character

of G such that q∗2(χ) = ψ, so if ψ �∈ AP (G) then q∗2(AP (G)) �⊂ AP (K) and hence
GAP cannot be isomorphic to N ′ ×K ′ (SEF) for any compactifications N ′ and K ′.

For instance if ψ(n) = ein/(1+n2) or ψ(n) = ein
2
then (�×�)AP �∼= �′ ×�′.

Similarly, if ψ(t) = eit
2
then (�×�)F �∼= �′×�′ (SEF) for F = AP or WAP , and

(�× �+ )SAP �∼= �′ × �+
′ (SEF).

5. Weakly almost periodic compactifications

Theorem 5.1. If K is compact then GWAP ∼= NW × K (SEF), where W =
q∗1(WAP (G)). Moreover, the homomorphism t̃(·) : NW → NW corresponding to

t ∈ K is an automorphism.

�����. We show first that each map t(·) : N → N extends to an automorphism
t̃(·) : NW → NW such that (t, x)→ t̃(x) : K ×NW → NW is continuous. For t ∈ K
let T (t) : C(N)→ C(N) denote the dual of the map t(·). The identity T (t)q∗1(f) =
q∗1(L(e, t)R

(
(e, t)−1)f

)
shows that T (t)W ⊂ W , hence t(·) has an extension t̃(·) :
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NW → NW . To show that (t, x) → t̃(x) is continuous, let tα → t ∈ K, f ∈
WAP (G) and set g = q∗1(f) = ε∗NA(ĝ), where ĝ ∈ C(NW ). Since WAP (G) ⊂
LC(G) ∩ RC(G), ĝ

(
t̃α(εNW (s))

)
= g(tα(s)) = f

(
(e, tα)(s, e)(e, tα)−1

)
converges to

f
(
(e, t)(s, e)(e, t)−1

)
= ĝ

(
t̃(εNW (s))

)
uniformly in s. It follows that ĝ(t̃α(x)) →

ĝ(t̃(x)) uniformly in x ∈ NW , which is equivalent to the continuity of (t, x)→ t̃(x).
For t ∈ K the inverse at of the automomorphism t(·) : N → N is given by

at(s) = [t−1, t]−1t−1(s)[t−1, t];

define ãt : NW → NW by ãt(x) = εNW

(
[t−1, t]−1)t̃−1(x)εNW ([t−1, t]). Then ãt is

an extension of at, and the relations εNW (t(s)) = t̃(εNW (s)) and εNW (at(s)) =
ãt(εNW (s)) imply that ãt ◦ t̃ and t̃ ◦ ãt are the identity mappings on εNW (N) and

hence, by continuity, on NW . Thus, ãt is the inverse of t̃ and t̃ is an automorphism.
Moreover, since (t, x)→ t̃(x) is continuous so is (t, x)→ ãt(x).

Next, we use Grothendieck’s double limit criterion to show that p∗1(W ) ⊂
WAP (G). Let g ∈ W , ĝ = ε∗−1

NW (g), f = p∗1(g), and let {(sn, tn)} and {(sm, tm)} be
sequences in G such that the following limits exist:

a := lim
m
lim
n
f
(
(sn, tn)(sm, tm)

)
and b := lim

n
lim
m
f
(
(sn, tn)(sm, tm)

)
.

We need to show that a = b. Choose subnets {(sα, tα)} of {(sn, tn)} and {(sβ , tβ)}
of {(sm, tm)} such that εNW (sα)→ x ∈ NW , εNW (sβ)→ y ∈ NW , tα → t ∈ K, and
tβ → u ∈ K. Then, for fixed β,

tα(sβ)[tα, tβ ] = p1
(
(e, tα)(sβ , tβ)

)
→ p1

(
(e, t)(sβ , tβ)

)
= t(sβ)[t, tβ ],

and since g ∈ WAP (N) ⊂ LC(N) ∩RC(N) we have

a = lim
β
lim
α
ĝ
(
εNW (sα)εNW (tα(sβ)[tα, tβ])

)

= lim
β
ĝ
(
xεNW (t(sβ)[t, tβ ])

)

= lim
β
ĝ
(
xt̃(εNW (sβ))εNW ([t, tβ ])

)

= ĝ
(
xt̃(y)εNW ([t, u])

)
= ĝ

(
t̃(ãt(x)y)εNW ([t, u])

)

= lim
α
ĝ
(
t̃α(ãtα(εNW (sα))y)εNW ([tα, u])

)

= lim
α
ĝ
(
εNW (sα)t̃α(y)εNW ([tα, u])

)

= lim
α
lim
β
ĝ
(
εNW (sα)t̃α(εNW (sβ))εNW ([tα, tβ])

)
= b.

The theorem now follows from Theorem 3.4 and Remark 3.2. �
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The next corollary shows that the minimal idealM(GWAP ) of GWAP is a canonical

group extension of M(NW ) by K.

Corollary 5.2. M(GWAP ) ∼= M(NW ) × K (SEF), and M(NW ) is canonically

isomorphic to NA, where A = q∗1(AP (G)).

�����. Since t̃(·) is surjective, t̃(M(NW )) =M(NW ), hence the first coordinate

of
(
xt̃(x′)[t, t′], tt′

)
= (x, t)(x′, t′) is in M(NW ) whenever x or x′ is in M(NW ).

Thus J := M(NW ) ×K is a closed ideal of GWAP . Since J is also a group it must

coincide with M(GWAP ). Since GAP is canonically isomorphic to M(GWAP ) and
GAP ∼= NA ×K (SEF) (Corollary 4.4), M(NW ) ∼= NA. �

Example 5.3. Let G = N ×K = � ∗ ×�2p, as in Example 4.13. By Theorem 5.1,
GWAP ∼= � ∗W ×�2p (SEF), where W = q

∗
1(WAP (G)).

The analog of Theorem 5.1 for compact N is false, as the following example shows.

Example 5.4. Consider the subgroupG1 = �×�2 of the group G of Example 4.6
(when |λ| = 1). As observed in [6], if λ = ei then GWAP

1 �∼= � × (�2)WAP . In fact,
since r∗1(WAP (G1)) �⊂ WAP (G1) (the function f(z,m, n) = z(m2 + n2 + 1)−1 will

serve), it follows from Theorem 3.4 that GWAP
1 cannot be isomorphic to �′×(�2)WAP

(SEF) for any compactification �′ of �.

On the other hand, if λ is a root of unity then GWAP
1

∼= �× (�2)WAP , as can be
seen by an application of Grothendieck’s double limit criterion.
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