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CONVERGENCE ESTIMATE FOR SECOND ORDER CAUCHY

PROBLEMS WITH A SMALL PARAMETER

Branko Najman, Zagreb

(Received December 19, 1995)

Abstract. We consider the second order initial value problem in a Hilbert space, which is
a singular perturbation of a first order initial value problem. The difference of the solution
and its singular limit is estimated in terms of the small parameter ε. The coefficients are
commuting self-adjoint operators and the estimates hold also for the semilinear problem.

1. Introduction

We consider the initial value problem in a Hilbert space X

(1) εutt +Aut +Bu+ f(u) = 0, u(0) = u0ε, ut(0) = u1ε

for ε > 0, and its limit

(2) Aut +Bu + f(u) = 0, u(0) = u00.

The operators A and B are commuting positive self-adjoint operators in X. This
problem has been throughly investigated when A = aI (see [2]). If A is not a

multiple of identity, two papers have recently appeared treating the commutative
case. In [1], the space X is a Banach space, f = 0, B is the generator of a strongly

continuous cosine family and A is a bounded operator commuting with B. In [3],
the space X is a Hilbert space and A and B are commuting (in general unbounded)

positive self-adjoint operators. There it is shown that under mild conditions on f ,
u0ε and u1ε, the solutions uε of (1) converge locally uniformly in t to the solution u0

of (2). However, the convergence rate for uε − u0 has not been established. In [1],
this convergence rate was estimated.
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It is our aim to estimate uε− u0 and its derivative u′ε−u′0 under the assumptions

similar to those of [3].

We list our assumptions.

(A1) The operators A and B are commuting uniformly positive self-adjoint operators
in X such that

(3) B is A2-bounded.

This means that BA−2 is a bounded operator. The assumption (3) is sufficiently
general to allow the applications described in Cases 1 and 2 in [3]. The assumption

(3) implies that the damping term A is “large”. In the other extreme case when A

is bounded, the estimates from [1] apply.

In the first three results we consider the linear case. We always consider mild
solutions of (1) and (2) (see [3]); when the initial data are sufficiently regular, these

solutions have additional regularity properties.

Theorem 1. Assume (A1) and f = 0. There exist C > 0 and ε0 > 0 such that

for all t � 0 and ε ∈ (0, ε0) the following estimate holds:

‖uε(t)− u0(t)‖ � C[ε(‖u0ε‖+ t‖BA−1e−tBA−1u0ε‖+ ‖A−1u1ε‖)
+ ‖e−tBA−1(u0ε − u00)‖].(4)

The next estimates follow from (4).

Proposition 2. Assume (A1) and f = 0. There exist C > 0 and ε0 > 0 such that
for all t � 0 and ε ∈ (0, ε0) the following estimates hold:

(5) ‖uε(t)− u0(t)‖ � C[ε(‖u00‖+ ‖A−1u1ε‖) + ‖u0ε − u00‖],

(6) ‖u′ε(t)− u′0(t)‖ � C[ε‖BA−1u00‖+ ‖u1ε +BA−1u0ε‖+ ‖u1ε +BA−1u00‖].

Proposition 3. Assume f = 0. If A is B-bounded and γ � 1
‖AB−1‖ , then for

every δ ∈ (0, γ) there exists C > 0 such that for all t � 0 and ε ∈ (0, ε0) the following
estimate holds:

(7) ‖uε(t)− u0(t)‖ � C[ε
(
‖u0ε‖+ ‖A−1u1ε‖

)
+ e−(γ−δ)t‖u0ε − u00‖].
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The estimates (4)–(7) represent a strengthening of the results from [1] under the

present assumptions.

Next we consider a general f . In addition to (A1) we assume

(A2)

(8) B is A-bounded,

(A3) the mapping f : D(f)→ X is defined on D(f) ⊃ D(B1/2) and

a) f is the Gateaux derivative of a positive convex functional F in X with the

domain D(F ) ⊃ D(B1/2),

b) f is a locally Lipschitz mapping from D(B1/2) into X in the following sense:
for every R > 0 there exists C > 0 such that ‖A1/2u‖ � R, ‖A1/2v‖ � R imply

(9) ‖f(u)− f(v)‖ � C‖B1/2(u− v)‖,

(A4) u0ε ∈ D(A) (ε � 0), u1ε ∈ D(A1/2) ∩D(B) (ε > 0),

(A5) sup
ε
(ε1/2‖u1ε‖+ ‖A1/2u0ε‖+ F (u0ε)) < ∞,

(A6) lim
ε→0

B1/2(u0ε − u00) = 0.

It was shown in [3] that under the assumptions (A3)–(A6) the equation (1) has
a global classical solution uε and the equation (2) has a global classical solution u0.

The following theorem will be proved.

Theorem 4. Assume (A2)–(A6). Then there exist C > 0 and ε0 > 0 such that

for every β ∈ [0, 1) there is Kβ > 0 with the property that the estimate

(10) ‖B1/2[uε(t)− u0(t)]‖ � CeKβt[ε(1 + t+ ‖u1ε‖) + εβt1−β + ‖B1/2(u0ε − u00)‖]

holds.
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2. The linear case

We first consider the initial value problems (1) and (2) with f = 0.
Since A and B are commuting self-adjoint operators, there exists a self-adjoint

operator K in X and positive measurable functions a and b on σ = σ(K) such that
A = a(K), B = b(K). The assumption (A1) implies the existence of positive numbers
µ and b0 such that

(11) 0 < b0 � b(λ) � µa(λ)2 (λ ∈ σ).

Setting

(12) ε0 =
3
16µ

and qε(λ) = a(λ)2−4εb(λ), we conclude qε(λ) � a(λ)2−4εµa(λ)2 = (1− 3ε
4ε0
)a(λ)2 �

1
4a(λ)

2 if λ ∈ σ and ε � ε0, i.e.

(13)
√

qε(λ) � 1
2
a(λ) �

√
b0
4µ

(0 � ε < ε0, λ ∈ σ).

It was shown in [3] that if the condition (13) is satisfied, then the difference uε(t)−
u0(t) can be represented as

(14) uε(t)− u0(t) = fε(t, K)u0ε + sε(t, K)u1ε + e−tBA−1(u0ε − u00),

where

fε(t, λ) =
a(λ)e−

ta(λ)
2ε sh t

2ε

√
qε(λ)√

qε(λ)
+ e−

ta(λ)
2ε ch

t

2ε

√
qε(λ)− e−

tb(λ)
a(λ) ,

sε(t, λ) =
2εe−

ta(λ)
2ε sh t

2ε

√
qε(λ)√

qε(λ)
.

In order to estimate uε−u0, we need a precise estimates of sup
λ∈σ

|fε(t, λ)|, sup
λ∈σ

|sε(t, λ)|.
Note that the functions (ε, t) �→ fε(t, λ), sε(t, λ) are not C1 at (0, 0), which makes it
hard to find uniform estimates without the condition (11). This is why we imposed

the condition (3), which implies (13). The functions fε(t, λ), sε(t, λ) are well behaved
under the condition (13), and this will enable us to deduce the estimates (4)–(7).

We first prove the announced estimates of fε and sε.

Lemma 5. There exists C > 0 such that the estimate

(15) |fε(t, λ)| � Cε
[
1 +

tb(λ)
a(λ)

]
e−

tb(λ)
a(λ)

holds for all λ ∈ σ, t � 0 and ε ∈ (0, ε0).
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�����. Denote mε(λ) := a(λ) +
√

qε(λ); then mε(λ) � 3a(λ)
2 by (13). Fix λ ∈ σ

and denote

b := b(λ), a := a(λ), qε := qε(λ), mε := mε(λ), fε(t) := fε(t, λ).

Note that

e−
ta
2ε e

t
2ε

√
qε = e−

2tb
mε , e−

ta
2ε e−

t
2ε

√
qε = e−

tmε
2ε ,

which implies

e−
ta
2ε e

t
2ε

√
qε − e− tb

a = e−
tb
a (e

− 4εtb2

am2ε − 1),

e−
ta
2ε e−

t
2ε

√
qε − e− tb

a = e−
tb
a (e−

tm2ε
4aε − 1).

Define
g(ε, t) = 2e

tb
a fε(t).

Note that g(·, t) ∈ C1[0, ε0) for all t � 0 (because of (13)) and that g can be repre-
sented as

(16) g(ε, t) =
mε√
qε
e
− 4εtb2

am2ε − 4εb
mε
√

qε
e−

tm2ε
4aε − 2.

Differentiating, we find

−∂g(ε, t)
∂ε

=
2b
qε
e
− 4εtb2

am2ε

(
− a√

qε
+
2tbmε

√
qε + 8tb2ε

am2ε

)

+
b

qε
e−

tm2ε
4aε

( 8bε
mε
√

qε
+
8bε
m2ε
+
4
√

qε

mε
+
4bt
a
+

tmε
√

qε

aε

)
.

Using (13), this implies

∣∣∣∂g(ε, t)
∂ε

∣∣∣ � 16µ4εtb
2

am2ε
e
− 4εtb2

am2ε + 16µ+
256µ2

9
bt

a

+
(16µ
3
+
256µ2

9
ε
) tm2ε
4aε
e−

tm2ε
4aε +

512
9

µ2ε+
16µ
3

.

Denote r(x) = xe−x. It follows that

(17)
∣∣∣∂g(ε, t)

∂ε

∣∣∣ � C
[
r
(4εtb2

am2ε

)
+ 1 +

bt

a
+ r

( tm2ε
4aε

)]
.

Note that r(0) = 0 and r(x) � 1 (x > 0). From g(0, t) = 0 (t � 0) it follows that

|g(ε, t)| � ε max
0<δ<ε

∣∣∣∂g

∂ε
(δ, t)

∣∣∣.
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Hence

|fε(t)| =
1
2
e−

tb
a |g(ε, t)| � Cε

[
(1 + r̃a,b(ε, t))e

− tb
a + r

(bt

a

)]

with C independent of a and b, r̃a,b(ε, 0) = 0 and 0 � r̃a,b(ε, t) � 1. This implies
(15).

Lemma 6. Let β � 0. There exists C > 0 such that the estimate

(18)
∣∣∣1
ε
sε(t, λ) −

1
a(λ)

e−
tb(λ)
a(λ)

∣∣∣ � C
[ ε

a(λ)
+

εβ

a(λ)1+βtβ

]

holds for all λ ∈ σ, t � 0 and ε ∈ (0, ε0).
�����. Fix λ and recall the notation a, b, qε, mε from Lemma 5. Further denote

sε(t) := sε(t, λ) and

k(ε, t) =
√

qε

a
e

tb
a

[a

ε
sε(t)−

a√
qε
e−

tb
a

]
.

Then k = k1 + k2 with

k1(ε, t) = e
− 4tb2ε

am2ε − 1, k2(ε, t) = −e−
tm2ε
4aε .

From

−∂k1(ε, t)
∂ε

=
4tb2

am3ε
√

qε
(mε

√
qε + 4bε)e

− 4tb2ε

am2ε

it follows that |∂k1
∂ε (ε, t)| � 4tb2

am2
ε
+ 4b

mε

√
qεr(4tb

2ε
am2

ε
). From (13) it follows that |∂k1(ε,t)

∂ε | �
C( tba + 1). Since k1(0, t) = 0 for all t � 0, we conclude a√

qε
e−

tb
a |k1(ε, t)| � Cε.

Further, note that xβe−x � Cβ (x � 0), hence ( tm
2
ε

4aε )
β |k2(ε, t)| � Cβ , implying

a√
qε
e−

tb
a |k2(ε, t)| � Cβ( ε

at )
β . This yields

∣∣∣1
ε
sε(t)−

1
a
e−

tb
a

∣∣∣ =
∣∣∣1
a

[a

ε
sε(t)−

a√
qε
e−

tb
a

]
+

( 1√
qε
− 1

a

)
e−

tb
a

∣∣∣

� Cβ
εβ

a(at)β
+ C

ε

a
+

4εb
amε

√
qε
e−

tb
a ,

and this implies (18). �

Setting β = 0, we obtain

Corollary 7. There exists C > 0 such that the estimate

(19) a(λ)|sε(t, λ)| � Cε

holds for all λ ∈ σ, t � 0 and ε ∈ (0, ε0).
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����� �� ������� �. The estimate (4) is a direct consequence of (14),

(15) and (19). �

����� �� ���	�
����
 �. The estimate (5) is a direct consequence of (4).

To estimate u′ε − u′0, note that u′ε = vε is a solution of (1) with f = 0, v(0) = u1ε,
vt(0) = − 1ε (Bu0ε +Au1ε) and that u′0 = v0 is the solution of (2) with f = 0, v(0) =

−A−1Bu00. Inserting these initial data into (5) and using t‖BA−1e−tBA−1‖ � 1, we
obtain (6). �

����� �� ���	�
����
 �. The estimate (7) is a direct consequence of (4),

‖e−tBA−1‖ � e−tγ and of

t‖BA−1e−tBA−1‖ � sup
λ∈σ

t
b(λ)
a(λ)
e−

tb(λ)
a(λ)

� sup
x�γ

txe−tx � Cδe−(γ−δ)t.

�

We end this Section by estimating the difference of the solutions of nonhomoge-
neous equations. Besides being of independent interest, this estimate is needed in

the next Section.
Let fε(ε � 0) be continuous X-valued functions and let uε (ε > 0) be the mild

solution (see [3]) of

(20) εutt +Aut +Bu = fε, u(0) = 0, ut(0) = 0

and let u0 be the solution of

(21) Aut +Bu = f0, u(0) = 0.

Proposition 8. Let β ∈ (0, 1). There exists C > 0 such that the estimate

(22) ‖B1/2(uε(t)− u0(t))‖ � C[‖fε − f0‖L1([0,t],X) + (εt+ εβt1−β)‖f0‖C([0,t],X)]

holds for all t � 0 and ε ∈ (0, ε0).

�����. The difference uε − u0 is estimated using the identity

uε(t)− u0(t)

=
1
ε

∫ t

0
Sε(t− s)[fε(s)− f0(s)] ds+

∫ t

0

[1
ε
Sε(t− s)− A−1e−(t−s)BA−1

]
f0(s) ds
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where Sε(t) = sε(t, K). The first term is estimated using (19):

∫ t

0

∥∥∥1
ε
B1/2Sε(t− s)[fε(s)− f0(s)]

∥∥∥ds

� ‖B1/2A−1‖
∫ t

0

∥∥∥1
ε
ASε(t− s)

∥∥∥‖fε(s)− f0(s)‖ ds � C

∫ t

0
‖fε(s)− f0(s)‖ ds,

and the second term by (18):

∫ t

0

∥∥∥B1/2
[1
ε
Sε(t− s)−A−1e−(t−s)BA−1

]
f0(s)

∥∥∥ ds

� C‖B1/2A−1‖
∫ t

0
(ε+ εβ‖A−β‖(t− s)−β)‖f0(s)‖ ds.

This implies (22). �

If fε and f0 are C1-functions then we can apply (22) to the differentiated initial
value problems to obtain an estimate for ‖B1/2(u′ε(t)−u′0(t))‖. The precise statement
is omitted.

3. Proof of Theorem 4

The existence of a continuousD(B1/2)-valued global classical solution follows from

Proposition 6 in [3] (with Z = B1/2). We estimate

‖B1/2(uε(t)− u0(t))‖ �
5∑

i=1

l(i)ε (t)

with

l(1)ε (t) = ‖B1/2[Cε(t)− C0(t)]u00‖,
l(2)ε (t) = ‖B1/2Cε(t)(u0ε − u00)‖,
l(3)ε (t) = ‖B1/2Sε(t)u1ε‖,

l(4)ε (t) =
∫ t

0

∥∥∥B1/2
[1
ε
Sε(t− s)−A−1C0(t− s)

]
f(u0(s))

∥∥∥ds,

l(5)ε (t) =
1
ε

∫ t

0
‖B1/2Sε(t− s)[f(uε(s))− f(u0(s))]‖ ds.

From (5) it follows that

l(1)ε (t) � Cε‖B1/2u00‖, l(2)ε (t) � C‖B1/2(u0ε − u00)‖
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and

l(3)ε (t) � Cε‖u1ε‖.

From (22) it follows that

l(4)ε (t) � C‖f(u0)‖C([0,t],X)(εt+ εβt1−β)

and

l(5)ε (t) �
∫ t

0
‖f(uε(s)− f(u0(s))‖ ds .

Since ‖A1/2uε(t)‖ is bounded independently of ε and t by the energy inequality
(see [3], p. 101), it follows from (9) that

l(5)ε (t) � C

∫ t

0
‖B1/2(uε(s)− u0(s))‖ ds.

Applying Gronwall’s lemma we find (10).
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