Czechoslovak Mathematical Journal

Ethiraju Thandapani; S. Pandian

Oscillation theorems for certain second order perturbed nonlinear difference equations

Czechoslovak Mathematical Journal, Vol. 45 (1995), No. 4, 757-766

Persistent URL: http://dml.cz/dmlcz/128557

Terms of use:

© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

OSCILLATION THEOREMS FOR CERTAIN SECOND ORDER PERTURBED NONLINEAR DIFFERENCE EQUATIONS

E. Thandapani and S. Pandian, Salem

(Received May 25, 1994)

I. Introduction

In this paper we discuss the oscillatory behavior of the solutions of the perturbed second order nonlinear difference equation

$$
\begin{equation*}
\Delta\left(a_{n} h\left(y_{n+1}\right) \Delta y_{n}\right)+Q\left(n, y_{n+1}\right)=P\left(n, y_{n+1}, \Delta y_{n}\right), \quad n \in \mathbb{N} \tag{1}
\end{equation*}
$$

where $\mathbb{N}=\{0,1,2,3, \ldots\}, \Delta$ is the forward difference operator defined by $\Delta y_{n}=$ $y_{n+1}-y_{n},\left\{a_{n}\right\}$ is a real sequence with $a_{n}>0$ for all $n \in \mathbb{N}, h: \mathbb{R} \rightarrow \mathbb{R}=(-\infty, \infty)$, $Q: \mathbb{N} \times \mathbb{R} \rightarrow \mathbb{R}$ and $P: \mathbb{N} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ are continuous functions. The problem of determining oscillation criteria for less general equations has received a fair amount of attention on the last few years, see for example [4-13] and the references cited therein. To a large extent this is due to the realization that difference equations are important in applications. An excellent discussion of known oscillation criteria as well as some suggestions for future study and many references can be found in the recent monograph by Agarwal [1].

By a solution of equation (1) we mean a nontrivial sequence $\left\{y_{n}\right\}$ satisfying equation (1) for all $n \in \mathbb{N}$. A solution $\left\{y_{n}\right\}$ of (1) is said to be oscillatory if it is neither eventually positive nor eventually negative, and nonoscillatory otherwise.

For equations with perturbation terms such as equation (1), relatively few oscillation criteria are known, see for example [7] and [9]. In many instances our results will include, as special cases, known oscillation theorems established in $[4,5,9,11]$. Examples illustrating some of our theorems are also presented. The results obtained here are motivated by those in $[2,3,14]$.

2. Main Results

In the sequel we assume that there exist real sequences $\left\{q_{n}\right\},\left\{p_{n}\right\}, p_{n} \geqslant 0$, and continuous functions $q, f_{1}, f_{2}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
Q(n, u) / f_{1}(u) \geqslant q_{n} \quad \text { and } \quad P(n, u, v) / f_{2}(u) g(v) \leqslant p_{n} \tag{2}
\end{equation*}
$$

for $u, v \neq 0$, where

$$
\begin{equation*}
u f_{i}(u)>0 \quad \text { for all } u \neq 0, i=1,2 \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
f_{2}(u) / f_{1}(u) \leqslant K \quad \text { for } u \neq 0, K>0 \tag{4}\\
f_{1}(u)-f_{2}(v)=g_{1}(u, v)(u-v) \quad \text { for } u, v \neq 0 \tag{5}
\end{gather*}
$$

g_{1} is nonnegative function,

$$
\begin{equation*}
0<g(v) \leqslant c \quad \text { for some constant } c \tag{6}
\end{equation*}
$$

Also we assume that $0<c_{1} \leqslant h(u)$ for some constant c_{1}
and

$$
\begin{equation*}
\sum^{\infty} \frac{1}{a_{n}}=\infty \tag{8}
\end{equation*}
$$

We begin with the following theorem.

Theorem 1. Let conditions (2)-(8) be fulfilled. If

$$
\begin{equation*}
\sum^{\infty}\left(q_{n}-\mu p_{n}\right)=\infty \tag{9}
\end{equation*}
$$

where $\mu=c K$, then all solutions of equation (1) are oscillatory.
Proof. Suppose $\left\{y_{n}\right\}$ is a nonoscillatory solution of equation (1), say $y_{n} \neq 0$ for $n \geqslant n_{0} \in \mathbb{N}$. Then

$$
\begin{aligned}
\Delta\left(\frac{a_{n} h\left(y_{n+1}\right) \Delta y_{n}}{f_{1}\left(y_{n}\right)}\right) \leqslant & \frac{-Q\left(n, y_{n+1}\right)}{f_{1}\left(y_{n+1}\right)}+\frac{P\left(n, y_{n+1}, \Delta y_{n}\right)}{f_{1}\left(y_{n+1}\right)} \\
& -\frac{a_{n} h\left(y_{n+1}\right) g_{1}\left(y_{n}, y_{n+1}\right)\left(\Delta y_{n}\right)^{2}}{f_{1}\left(y_{n}\right) f_{2}\left(y_{n+1}\right)} \\
\leqslant & -\left(q_{n}-\mu p_{n}\right)
\end{aligned}
$$

Summing the above inequality from n_{0} to $n-1$, we get

$$
\frac{a_{n} h\left(y_{n+1}\right) \Delta y_{n}}{f_{1}\left(y_{n}\right)} \leqslant \frac{a_{n_{0}} h\left(y_{n_{0}+1}\right) \Delta y_{n_{0}}}{f_{1}\left(y_{n_{0}}\right)}-\sum_{s=n_{0}}^{n-1}\left(q_{s}-\mu p_{s}\right)
$$

or

$$
\begin{equation*}
\frac{a_{n} \Delta y_{n}}{f_{1}\left(y_{n}\right)} \leqslant \frac{a_{n_{0}} h\left(y_{n_{0}+1}\right) \Delta y_{n_{0}}}{c_{1} f_{1}\left(y_{n_{0}}\right)}-\frac{1}{c_{1}} \sum_{s=n_{0}}^{n-1}\left(q_{s}-\mu p_{s}\right) . \tag{10}
\end{equation*}
$$

We assume that $y_{n}>0$ for $n \geqslant n_{1} \geqslant n_{0} \in \mathbb{N}$; the proof for the case $y_{n}<0, n \geqslant n_{1}$ is similar and will be omitted. In view of condition (9) it follows from (10) that there exists $n_{2} \geqslant n_{1}$ such that $\Delta y_{n} \leqslant 0$ for $n \geqslant n_{2}$. It also follows from condition (9) that there exists an integer $n_{3} \geqslant n_{2}$ such that

$$
\sum_{s=n_{3}}^{n-1}\left(q_{s}-\mu p_{s}\right) \geqslant 0 \quad \text { for } \quad n \geqslant n_{3}
$$

Now summing equation (1) and using condition (2) we have

$$
\begin{aligned}
a_{n} h\left(y_{n+1}\right) \Delta y_{n} \leqslant & a_{n_{3}} h\left(y_{n_{3}+1}\right) \Delta y_{n_{3}}-\sum_{s=n_{3}}^{n-1} f_{1}\left(y_{s+1}\right)\left(q_{s}-\mu p_{s}\right) \\
= & a_{n_{3}} h\left(y_{n_{3}+1}\right) \Delta y_{n_{3}}-f_{1}\left(y_{n+1}\right) \sum_{s=n_{3}}^{n-1}\left(q_{s}-\mu p_{s}\right) \\
& +\sum_{s=n_{3}}^{n-1} \Delta f_{1}\left(y_{s+1}\right)\left[\sum_{t=n_{3}}^{s}\left(q_{t}-\mu p_{t}\right)\right] \leqslant a_{n_{3}} h\left(y_{n_{3}+1}\right) \Delta y_{n_{3}} .
\end{aligned}
$$

Hence

$$
\Delta y_{n} \leqslant \frac{a_{n_{3}} h\left(y_{n_{3}+1}\right) \Delta y_{n_{3}}}{c_{1} a_{n}}
$$

From (8), it follows that $y_{n} \rightarrow \infty$ as $n \rightarrow \infty$ which is a contradiction. This completes the proof of the theorem.

Remark. Theorem 1 generalizes Theorem 1 given in [9]. Theorem 1 also includes the result of [11] as a special case.

As an example of Theorem 1, consider the difference equation

$$
\begin{equation*}
\Delta\left(n\left(1+y_{n+1}^{2}\right) \Delta y_{n}\right)+(10 n+4) y_{n+1}^{3}=4 n \frac{y_{n+1}^{3}}{1+y_{n+1}^{2}}, \quad n \geqslant 1 \tag{1}
\end{equation*}
$$

Choose $f_{1}(u)=u^{3}, f_{2}(u)=u$, then all hypotheses of Theorem 1 are satisfied. That this equation $\left(E_{1}\right)$ is oscillatory does not appear to be deducible from other known oscillation criteria.

In the next theorem we study the oscillation criteria for equation (1) subject to the conditions

$$
\begin{equation*}
\frac{f_{1}}{h} \text { is a nondecreasing function on } \mathbb{R} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\alpha}^{\infty} \frac{h(x)}{f_{1}(x)} \mathrm{d} x<\infty \quad \text { and } \quad \int_{-\alpha}^{-\infty} \frac{h(x)}{f_{1}(x)} \mathrm{d} x<\infty \quad \text { for all } \alpha>0 \tag{12}
\end{equation*}
$$

Theorem 2. Suppose that conditions (2)-(8), (11) and (12) hold, and in addition

$$
\begin{gather*}
\sum^{\infty}\left(q_{n}-\mu p_{n}\right)<\infty \tag{13}\\
\liminf _{n \rightarrow \infty} \sum_{s=n_{0}}^{n-1}\left(q_{s}-\mu p_{s}\right) \geqslant 0 \quad \text { for large } n_{0}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{s=n_{0}}^{n} \frac{1}{a_{s}}\left[\sum_{t=s}^{\infty}\left(q_{t}-\mu p_{t}\right)\right]=\infty \tag{15}
\end{equation*}
$$

are satisfied. Then all solutions of equation (1) are oscillatory.
Proof. Let $\left\{y_{n}\right\}$ be a nonoscillatory solution of equation (1), say $y_{n}>0$ for all $n \geqslant n_{0} \in \mathbb{N}$. For any $n_{1} \geqslant n_{0}$, summation of (1) yields

$$
\begin{equation*}
\frac{a_{n} h\left(y_{n+1}\right) \Delta y_{n}}{f_{1}\left(y_{n+1}\right)} \leqslant \frac{a_{n_{1}} h\left(y_{n_{1}+1}\right) \Delta y_{n_{1}}}{f_{1}\left(y_{n_{1}+1}\right)}-\sum_{s=n_{1}}^{n-1}\left(q_{s}-\mu p_{s}\right) \tag{16}
\end{equation*}
$$

Now, if $\Delta y_{n}>0$ for all $n \geqslant n_{1} \geqslant n_{0} \in \mathbb{N}$, we have from (16)

$$
0 \leqslant \frac{a_{n_{1}} h\left(y_{n_{1}+1}\right) \Delta y_{n_{1}}}{f_{1}\left(y_{n_{1}+1}\right)}-\sum_{s=n_{1}}^{\infty}\left(q_{s}-\mu p_{s}\right) .
$$

Hence, for all $n \geqslant n_{1}$ we have

$$
\sum_{s=n}^{\infty}\left(q_{s}-\mu p_{s}\right) \leqslant \frac{a_{n} h\left(y_{n+1}\right) \Delta y_{n}}{h\left(y_{n+1}\right)}
$$

$$
\begin{equation*}
\frac{1}{a_{n}} \sum_{s=n}^{\infty}\left(q_{s}-\mu p_{s}\right) \leqslant \frac{h\left(y_{n+1}\right)}{f_{1}\left(y_{n+1}\right)} \Delta y_{n} \tag{17}
\end{equation*}
$$

Observe that for $y_{n} \leqslant x \leqslant y_{n+1}$ we have $\frac{h(x)}{f_{1}(x)} \geqslant \frac{h\left(y_{n+1}\right)}{f_{1}\left(y_{n+1}\right)}$ and it follows that

$$
\int_{y_{n}}^{y_{n+1}} \frac{h(x)}{f_{1}(x)} \mathrm{d} x \geqslant \frac{h\left(y_{n+1}\right)}{f_{1}\left(y_{n+1}\right)} \Delta y_{n} .
$$

Using the last inequality in (17) and summing from n_{1} to n, we obtain

$$
\begin{equation*}
\sum_{s=n_{1}}^{n} \frac{1}{a_{s}}\left[\sum_{t=s}^{\infty}\left(q_{t}-\mu p_{t}\right)\right] \leqslant \int_{y_{n_{1}}}^{y_{n+1}} \frac{h(x)}{f_{1}(x)} \mathrm{d} x \tag{18}
\end{equation*}
$$

This contradicts (12) since the left sum diverges.
If $\left\{\Delta y_{n}\right\}$ changes sign, then there exists a sequence $\left\{n_{k}\right\}$ such that $\Delta y_{n_{k}}<0$. Choose k large enough for (14) to hold. We then have

$$
\frac{a_{n} h\left(y_{n+1}\right) \Delta y_{n}}{f_{1}\left(y_{n+1}\right)} \leqslant \frac{a_{n_{k}} h\left(y_{n_{k}+1}\right) \Delta y_{n_{k}}}{f_{1}\left(y_{n_{k}+1}\right)}-\sum_{s=n_{k}}^{n-1}\left(q_{s}-\mu p_{s}\right)
$$

so

$$
\limsup _{n \rightarrow \infty} \frac{a_{n} h\left(y_{n+1}\right) \Delta y_{n}}{f_{1}\left(y_{n+1}\right)} \leqslant \frac{a_{n_{k}} h\left(y_{n_{k}+1}\right) \Delta y_{n_{k}}}{f_{1}\left(y_{n_{k}+1}\right)}+\limsup _{n \rightarrow \infty}\left[-\sum_{s=n_{k}}^{n-1}\left(q_{s}-\mu p_{s}\right)\right]<0
$$

which contradicts the fact that $\left\{\Delta y_{n}\right\}$ oscillates. Hence there exists an integer $n_{2} \geqslant$ n_{1} such that $\Delta y_{n}<0$ for all $n \geqslant n_{2}$. Condition (14) implies that for any integer $n_{3} \geqslant n_{0}$ there exists $n_{4} \geqslant n_{3}$ such that

$$
\sum_{s=n_{4}}^{n-1}\left(q_{s}-c k p_{s}\right)>0
$$

for all $n \geqslant n_{4}$. Choosing $n_{4} \geqslant n_{2}$ as indicated and then summing equation (1), we have

$$
\begin{align*}
a_{n} h\left(y_{n+1}\right) \Delta y_{n} \leqslant & a_{n_{4}} h\left(y_{n_{4}+1}\right) \Delta y_{n_{4}}-\sum_{s=n_{4}}^{n-1} f_{1}\left(y_{s+1}\right)\left(q_{s}-\mu p_{s}\right) \\
= & a_{n_{4}} h\left(y_{n_{4}+1}\right) \Delta y_{n_{4}}-f_{1}\left(y_{n+1}\right) \sum_{s=n_{4}}^{n-1}\left(q_{s}-\mu p_{s}\right) \\
& +\sum_{s=n_{4}}^{n-1} \Delta f_{1}\left(y_{s+1}\right)\left[\sum_{t=n_{4}}^{s}\left(q_{t}-\mu p_{t}\right] \leqslant a_{n_{4}} h\left(y_{n_{4}+1}\right) \Delta y_{n_{4}}\right. \\
& h\left(y_{n+1} \Delta y_{n} \leqslant \frac{a_{n_{4}} h\left(y_{n_{4}+1}\right) \Delta y_{n_{4}}}{a_{n}} .\right. \tag{19}
\end{align*}
$$

Since $\left\{y_{n}\right\}$ is positive decreasing and h is positive and continuous, there exists a positive constant C and an integer $n_{5} \geqslant n_{4}$ such that $0<h\left(y_{n+1}\right) \leqslant C, n \geqslant n_{5}$. Hence

$$
\Delta y_{n} \leqslant \frac{a_{n_{4}} h\left(y_{n_{4}+1}\right) \Delta y_{n_{4}}}{C a_{n}}, \quad n \geqslant n_{5}
$$

Summing the above inequality and using (8) we get $y_{n} \rightarrow-\infty$ as $n \rightarrow \infty$, a contradiction. A similar proof holds when $\left\{y_{n}\right\}$ is eventually negative.

Remark. If $h(u) \equiv 1$ and $f_{1}(u)=f_{2}(u)$, then Theorem 2 reduces to Theorem 2 given [9].

Corollary 3. If conditions (2)-(8) and (13)-(15) hold, then all bounded solutions of equation (1) are oscillatory.

Proof. Condition (10) was only used in the first part of the proof of Theorem 2. We had $y_{n}>0$ and $\Delta y_{n} \geqslant 0$ for $n \geqslant n_{1} \geqslant n_{0} \in \mathbb{N}$, so by (5), $f_{1}\left(y_{n}\right) \geqslant f_{1}\left(y_{n_{1}}\right)$ for $n \geqslant n_{1}$. From (15) and (18) we then obtain a contradiction to the boundedness of $\left\{y_{n}\right\}$.

Theorem 4. Let conditions (2)-(7), (11) and (14) hold. Assume that

$$
\begin{equation*}
\int_{0}^{ \pm \alpha} \frac{h(x)}{f_{1}(x)} \mathrm{d} x<\infty \quad \text { for every } \quad \alpha>0 \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum^{\infty}\left[\frac{M}{a_{s}}-\frac{1}{a_{s}} \sum_{t=n_{0}}^{s-1}\left(q_{t}-\mu p_{t}\right)\right]=-\infty \tag{21}
\end{equation*}
$$

for every constant M. Then all solutions of equation (1) are oscillatory.
Proof. Let $\left\{y_{n}\right\}$ be a nonoscillatory solution of equation (1), say $y_{n}>0$ for all $n \geqslant n_{0} \in \mathbb{N}$; the proof for the case $y_{n}<0$ for all $n \geqslant n_{0} \in \mathbb{N}$ is similar and will be omitted. Since (14) holds we see from the proof of Theorem 2 that $\left\{\Delta y_{n}\right\}$ cannot change sign for arbitrarily large n. If $\Delta y_{n} \geqslant 0$ for all $n \geqslant n_{1} \geqslant n_{0} \in \mathbb{N}$, then (16) implies

$$
\frac{h\left(y_{n+1}\right)}{f_{1}\left(y_{n+1}\right)} \Delta y_{n} \leqslant \frac{a_{n_{1}} h\left(y_{n_{1}+1}\right) \Delta y_{n_{1}}}{a_{n} f_{1}\left(y_{n_{1}+1}\right)}-\frac{1}{a_{n}} \sum_{s=n_{1}}^{n-1}\left(q_{s}-\mu p_{s}\right)
$$

and another summation yields

$$
\begin{equation*}
\sum_{s=n_{1}}^{n} \frac{h\left(y_{s+1}\right)}{f_{1}\left(y_{s+1}\right)} \Delta y_{s} \leqslant \sum_{s=n_{1}}^{n}\left[\frac{M}{a_{s}}-\frac{1}{a_{s}} \sum_{t=n_{1}}^{s-1}\left(q_{t}-\mu p_{t}\right)\right] \tag{22}
\end{equation*}
$$

which contradicts (21) since the left hand side of (22) is nonnegative.
If $\Delta y_{n}<0$ for $n \geqslant n_{1}$, we have from (22)

$$
\int_{y_{n_{1}}}^{y_{n+1}} \frac{h(x)}{f_{1}(x)} \mathrm{d} x \leqslant \sum_{s=n_{1}}^{n} \frac{h\left(y_{s+1}\right)}{f_{1}\left(y_{s+1}\right)} \Delta y_{s} \leqslant \sum_{s=n_{1}}^{n}\left[\frac{M}{a_{s}}-\frac{1}{a_{s}} \sum_{t=n_{1}}^{s-1}\left(q_{t}-\mu p_{t}\right)\right]
$$

or

$$
\int_{y_{n+1}}^{y_{n_{1}}} \frac{h(x)}{f_{1}(x)} \mathrm{d} x \geqslant-\sum_{s=n_{1}}^{n}\left[\frac{M}{a_{s}}-\frac{1}{a_{s}} \sum_{t=n_{1}}^{s-1}\left(q_{t}-\mu p_{t}\right)\right]
$$

which contradicts condition (20). This completes the proof of the theorem.
Remark. Theorem 4 generalizes Theorem 4 given in [9]. For the equation

$$
\begin{gather*}
\Delta\left(n(n+1) y_{n+1}^{2} \Delta y_{n}\right)+\left[4(n+1)^{2}+(n+2) y_{n+1}^{2}\right] y_{n+1}^{1 / 3} \tag{2}\\
=\frac{2(n+2) y_{n}^{11 / 5}}{1+y_{n}^{2}}, \quad n \geqslant 1
\end{gather*}
$$

Let us put $f_{1}(u)=u^{1 / 3}, f_{2}(u)=u^{1 / 5}$. Then

$$
\frac{Q\left(n, y_{n+1}\right)}{f_{1}\left(y_{n+1}\right)} \geqslant 4(n+1)^{2}, \quad \frac{P\left(n, y_{n+1}, \Delta y_{n}\right)}{f_{2}\left(y_{n+1}\right)} \geqslant 2(n+2)
$$

and we see that all the hypotheses of Theorem 4 are satisfied. Hence equation (E_{2}) is oscillatory. Again the oscillation of the equation is not deducible from any of the previously known oscillation criteria.

Theorem 5. If conditions (2)-(8) and (14) hold, and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{s=n_{0}}^{n}\left(q_{s}-\mu p_{s}\right)=\infty \quad \text { for all large } n_{0} \tag{23}
\end{equation*}
$$

is satisfied, then all solutions of equation (1) are oscillatory.
Proof. Suppose that $y_{n}>0$ for $n \geqslant n_{1} \geqslant n_{0} \in \mathbb{N}$, the proof for the case $y_{n}<0$, $n \geqslant n_{1}$ is similar and will be omitted. Since (14) holds, we see from the proof of Theorem 2 that $\left\{\Delta y_{n}\right\}$ cannot change sign for arbitrarily large n. If $\Delta y_{n} \geqslant 0$ for $n \geqslant n_{2}$ for some $n_{2} \geqslant n_{1}$, then from (16) and (23) we have

$$
\liminf _{n \rightarrow \infty} \frac{a_{n} h\left(y_{n+1}\right) \Delta y_{n}}{f_{1}\left(y_{n+1}\right)}=-\infty
$$

which is a contradiction. Thus $\Delta y_{n}<0$ for large n and we proceed as in the proof of Theorem 2.

Next we discuss the oscillatory behavior of equation (1) subject to the condition

$$
\begin{equation*}
\frac{g_{1}(u, v)}{h(u)} \geqslant \lambda>0 \quad \text { for } \quad u, v \neq 0 \tag{24}
\end{equation*}
$$

Theorem 6. Suppose that conditions (2)-(8), (14) and (24) hold. Assume there exists a positive non-decreasing sequence $\left\{\beta_{n}\right\}$ such that
(25) $\limsup _{n \rightarrow \infty} \frac{1}{(n)^{(\alpha)}} \sum_{s=n_{0}}^{n-1}(n-s)^{(\alpha)} \beta_{s}\left[\left(q_{s}-\mu p_{s}\right)-\frac{a_{s}}{4 \lambda}\left(\frac{\alpha}{(n-s+\alpha-1)}-\frac{\Delta \beta_{s}}{\beta_{s}}\right)^{2}\right]=\infty$
for a positive integer $\alpha \geqslant 1$, where $(n)^{(\alpha)}=n(n-1) \ldots(n-\alpha+1)$ is the usual factorial notation. Then all solutions of equation (1) are oscillatory.

Proof. Suppose that $y_{n}>0$ for $n \geqslant n_{1} \geqslant n_{0} \in \mathbb{N}$; the proof for the case $y_{n}<0, n \geqslant n_{1}$ is similar and will be omitted. Since (14) holds as before we see from the proof of Theorem 2 that $\left\{\Delta y_{n}\right\}$ cannot change sign for arbitrarily large n. Let $\Delta y_{n} \geqslant 0$ for $n \geqslant n_{2}$ for some integer $n_{2} \geqslant n_{1}$.

Define

$$
z_{n}=\frac{v_{n} \beta_{n}}{f_{1}\left(y_{n}\right)} \quad \text { where } \quad v_{n}=a_{n} h\left(y_{n+1}\right) \Delta y_{n}
$$

Then for $n \geqslant n_{2}$ we have

$$
\begin{equation*}
\Delta z_{n} \leqslant-\beta_{n}\left(q_{n}-\mu p_{n}\right)+\frac{\Delta \beta_{n} v_{n+1}}{f_{1}\left(y_{n+1}\right)}-\frac{\beta_{n} v_{n} g_{1}\left(y_{n}, y_{n+1}\right) \Delta y_{n}}{f_{1}\left(y_{n}\right) f_{1}\left(y_{n+1}\right)}, \quad n \geqslant n_{2} . \tag{26}
\end{equation*}
$$

Using the inequalities $v_{n+1} \leqslant v_{n}$ and $f_{1}\left(y_{n}\right) \leqslant f_{1}\left(y_{n+1}\right)$ we obtain from (26)

$$
\Delta z_{n} \leqslant-\beta_{n}\left(q_{n}-\mu p_{n}\right)+\frac{\Delta \beta_{n}}{\beta_{n+1}} z_{n+1}-\frac{\lambda \beta_{n}}{\beta_{n+1}^{2} a_{n}} z_{n+1}^{2} .
$$

Since

$$
\sum_{s=n_{2}}^{n-1}(n-s)^{(\alpha)} \Delta z_{s}=-\left(n-n_{2}\right)^{(\alpha)} z_{n_{2}}+\alpha \sum_{s=n_{2}}^{n-1}(n-s)^{(\alpha-1)} z_{s+1}
$$

we get

$$
\begin{aligned}
\frac{1}{(n)^{(\alpha)}} & \sum_{s=n_{2}}^{n-1}(n-s)^{(\alpha)} \beta_{s}\left(q_{s}-\mu p_{s}\right) \\
\leqslant & \frac{\left(n-n_{2}\right)^{(\alpha)} z_{n_{2}}}{(n)^{(\alpha)}}-\frac{\alpha}{(n)^{(\alpha)}} \sum_{s=n_{2}}^{n-1}(n-s)^{(\alpha-1)} z_{s+1} \\
& +\frac{1}{(n)^{(\alpha)}} \sum_{s-n_{2}}^{n-1} \frac{\Delta \beta_{s}}{\beta_{s+1}} z_{s+1}(n-s)^{(\alpha)}-\frac{1}{(n)^{(\alpha)}} \sum_{s=n_{2}}^{n-1} \frac{(n-s)^{(\alpha)} \lambda \beta_{s}}{a_{s} \beta_{s+1}^{2}} z_{s+1}^{2} \\
\leqslant & \frac{\left(n-n_{2}\right)^{(\alpha)} z_{n_{2}}}{(n)^{(\alpha)}}-\frac{1}{(n)^{(\alpha)}} \sum_{s=n_{2}}^{n-1} \frac{(n-s)^{(\alpha)} \lambda \beta_{s}}{a_{s} \beta_{s+1}^{2}} \\
& \times\left[z_{s+1}^{2}+\frac{a_{s} \beta_{s+1}}{\lambda}\left(\frac{\alpha}{n-s+\alpha-1}-\frac{\Delta \beta_{s}}{\beta_{s}}\right) z_{s+1}\right] \\
\leqslant & \frac{\left(n-n_{2}\right)^{(\alpha)} z_{n_{2}}}{(n)^{(\alpha)}}+\frac{1}{(n)^{(\alpha)}} \sum_{s=n_{2}}^{n-1} \frac{(n-s)^{(\alpha)} a_{s} \beta_{s}}{4 \lambda}\left(\frac{\alpha}{n-s+\alpha-1}-\frac{\Delta \beta_{s}}{\beta_{s}}\right)^{2}
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{1}{(n)^{(\alpha)}} \sum_{s=n_{2}}^{n-1}(n-s)^{(\alpha)} \beta_{s}\left[\left(q_{s}-\mu p_{s}\right)-\frac{a_{s}}{4 \lambda}\left(\frac{\alpha}{n-s+\alpha-1}-\frac{\Delta \beta_{s}}{\beta_{s}}\right)^{2}\right] \\
& \quad \leqslant \frac{\left(n-n_{2}\right)^{(\alpha)} z_{n_{2}}}{(n)^{(\alpha)}} \rightarrow z_{n_{2}} \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

which contradicts (25). If $\Delta y_{n}<0$ for large n, we proceed as in the proof of Theorem 2. This completes the proof of the theorem.

Corollary 7. If condition (25) is replaced by

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} \frac{1}{(n)^{(\alpha)}} \sum_{s=n_{0}}^{n-1}(n-s)^{(\alpha)} \beta_{s}\left(q_{s}-\mu p_{s}\right)=\infty \\
\limsup _{n \rightarrow \infty} \frac{1}{(n)^{(\alpha)}} \sum_{s=n_{0}}^{n-1} \frac{(n-s)^{(\alpha)} \beta_{s} a_{s}}{(n-s+\alpha-1)^{2}}\left[\alpha-(n-s+\alpha-1)\left(\frac{\Delta \beta_{s}}{\beta_{s}}\right)\right]^{2}<\infty
\end{gathered}
$$

for a positive integer $\alpha \geqslant 1$, then all solutions of equation (1) are oscillatory.
Remark. Theorem 6 and Corollary 7 extend Theorem 5 and Corollary 6 of [11], respectively. As an example, the difference equation

$$
\begin{equation*}
\Delta\left(n\left(1+y_{n+1}^{2}\right) \Delta y_{n}\right)+(5 n+2)\left(y_{n+1}+y_{n+1}^{3}\right)=\frac{4 n y_{n+1}^{3}}{1+y_{n+1}^{2}} \tag{3}
\end{equation*}
$$

satisfies the conditions of Corollary 7. Hence all solutions of $\left(\mathrm{E}_{3}\right)$ are oscillatory. Here we put $f_{1}(u)=u+u^{3}, f_{2}(u)=u^{3}$ and observe that

$$
\frac{Q\left(n, y_{n+1}\right)}{f_{1}\left(y_{n+1}\right)}=(5 n+2) \quad \text { and } \quad \frac{P\left(n, y_{n+1}, \Delta y_{n}\right)}{f_{2}\left(y_{n+1}\right)} \leqslant 4 n .
$$

References

[1] R.P. Agarwal: Difference Equations and Inequalities. Marcel Dekker, New York, 1992.
[2] S.R. Grace and B.S. Lalli: Oscillation theorems for certain second order perturbed nonlinear differential equations. J. Math. Anal. Appl. 77 (1980), 205-214.
[3] J.R. Graef, S.M. Rankin and P.W. Spikes: Oscillation theorems for perturbed nonlinear differential equations. J. Math. Anal. Appl. 65 (1978), 375-390.
[4] J.W. Hooker and W.T. Patula: A second order nonlinear difference equation: Oscillation and asymptotic behavior. J. Math. Anal. Appl. 91 (1983), 9-29.
[5] M.R.S. Kulenovic and M. Budincevic: Asymptotic analysis of nonlinear second order difference equation. An. Stin. Univ. Iasi 30 (1984), 39-52.
[6] J. Popenda: Oscillation and nonoscillation theorems for second order difference equations. J. Math. Anal. Appl. 123 (1987), 34-38.
[7] B. Szmanda: Nonoscillation, oscillation and growth of solutions of nonlinear difference equations of second order. J. Math. Anal. Appl. 109 (1985), 22-30.
[8] B. Szmanda: Oscillation theorems for nonlinear second order difference equations. J. Math. Anal. Appl. 79 (1981), 90-95.
[9] E. Thandapani: Oscillation theorems for perturbed nonlinear second order difference equations. J. Computers and Mathematics, . To appear.
[10] E. Thandapani: Oscillatory behavior of solutions of second order nonlinear difference equations. J. Math. Phy. Sci. 25 (1991), 457-464.
[11] E. Thandapani: Oscillation theorems for second order damped nonlinear difference equations. Czech J. Math. To appear.
[12] E. Thandapani: Oscillation criteria for certain second order difference equations. ZAA 11 (1992), 425-429.
[13] E. Thandapani and S. Pandian: On the oscillatory behavior of solutions of second order nonlinear difference equations. ZAA 13 (1994), 347-358.
[14] C.C. Yeh: Oscillation criteria for second order nonlinear perturbed differential equations. J. Math. Anal. Appl. 138 (1989), 157-165.

Authors' address: Department of Mathematics, Madras University P.G. Centre Salem636 011, Tamil Nadu, India.

