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BOOLEAN SEMIRINGS 

I. CHAJDA, M. K0TRLE, Olomouc 

(Received January 13, 1993) 

By a semiring we mean an algebra A = (A;+,-,0) with two associative binary 
operations +, • where + is, moreover, commutative, and with a miliary operation 0 
satisfying the distributive laws, i.e. 

a-(b-\-c)=a'b-\-a-c and (b-{-c)-a = b'a-\-c-a 

and 0 • a = 0 for each a € A. 

A semiring A = (A; +, •, 0) is called commutative if the operation • is commutative. 
An element 1 E A is called a weak unit if (a • b) • 1 = a • 6 for each a, b E A. If 1 is a 
distinguished weak unit of a semiring A, then A is called a unitary semiring. 

For a semiring A = (A ;+,- ,0), denote by S(A) = {a + b;a E A,b E B} the so 
called skeleton of A. It is immediately clear that 0 E 5(A) since 

0 + 0 = 0 -a + 0 -a = 0-(a + a) = 0 for each a E A. 

A semiring A = (A; +, •, 0) is skeletal if (S(A), +) is a group with the unit 0. 
Hence, if a semiring A = (A; +, •, 0) is skeletal then (5(A); +, •, 0) is the ring which 

is a subsemiring of A. 

Let A = (A; +, •, 0) be a semiring. If there exists the least integer n > 0 such that 
a + . . . + a = 0 (n arguments on the left hand side) for each a E A, it is called the 
characteristic of A; we denote it by char A. 

An element a of a semiring A is called an idempotent if a • a = a. 

Definition 1. By a Boolean semiring we mean a unitary skeletal semiring A = 
(A; +, •, 0) whose weak unit 1 is an idempotent of A and which satisfies the following 
two conditions for each a, b E A: 

(1) a • a = a + 0; 
(2) a -b + 0 = a-b . 

763 



Lemma 1. Let A = (A; +, -,0) be a Boolean semiring. Then: 

(a) 1 + 0 = 1; 
(b) (a • a) • b = a • b for each a, b € A; 
(c) a • a = a • 1 for each a G A; 
(d) ifce A is an idempotent then c • 1 = c. 

P r o o f , (a) Since 1 is an idempotent of A, we have 1 + 0 = 1 1 + 0 = 1 1 = 1 
by (2) of Definition 1. 

(b) By (1), (2) and the distributivity laws, we obtain (a • a) • b = (a + 0) • b = 

a b + 0-b = a b + 0 = a-b . 
(c) By (1) and (2) we immediately infer a-a = (a-a)- l = (a + 0) • 1 = a • 1 + 0 • 1 = 

a- 1 + 0 = a- 1. 
(d) If c G A is an idempotent, then (c) implies c = c-c = c - l . D 

Theorem 1. Every Boolean semiring A is commutative, char A = 2 and S(A) is 

equal to the set of all idempotents of A. 

P r o o f . (i) Let a € A. Then a + a G S(A), thus a + a = ( a + a) + 0 = 
(a-{- a) • (a-\- a) = a • a + a • a + a • a + a • a = (a + 0) + (a + 0) + (a + 0) + (a + 0) = 
(a + a) + (a + a) + 0 = (a-\- a) -{- (a-\- a). Since S(A) is a group, we have 0 = a + a 
which proves char A = 2. 

(ii) If a, b G A then a-\-b e S(A) whence a + b = (a + b) + 0 = (a + b) • (a + b) = 
a - a + a-b + b-a + b-b=(a + 0) + a-b + b«a + (b + 0) = a + b + a-b + b-a. Since 
S(A) is a group, we have 0 = a • b + b • a, thus by (2) 

b-a = b-a + 0 = 0 + b-a = a-b + b-a + 6-a = a-b + 0 = a -6 

in spite of char A = 2. Hence A is commutative. 
(iii) Let a G S(A). Then a = b + cfor some b, c G A Hence a-a = (b + c)-(b + c) = 

b-b + b-c + c-b + c - c = ( b + 0) + 6-c + b-c+(c + 0) = (b + c ) + 0 = b + c = a, thus 
a is an idempotent of A. 

Conversely, let a be an idempotent of A. Then, by (1), we obtain a = a • a = 

a + 0eS(A). D 

The meaning of a Boolean semiring for g-algebras is the same as that of Boolean 
rings for Boolean algebras, see e.g. [1]. Recall that an algebra A = (A; V, A,' ,0,1) of 
the type (2, 2,1,0,0) is a q-algebra, see [2], [3] (or the algebra of quasiordered logic in 
the terminology of [3]), if the following axioms are satisfied: 

associativity: a\/ (b\/ c) = (a\/ b)\/ c a A (b A c) = (a A b) A c 
commutativity: aV b = b\/ a a A b = b A a 
weak absorption: a V ( b A a ) = a V a aA(bVa) = a A a 
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weak idempotence: aV(bVb) = aVb aA(bAb)=aAb 

equalization: aV a = a A a 

distributivity: a V (b A c) = (a V b) A (a V c) 

complementation: a V a' = 1 and a A a' = 0 

0 - 1 axioms: a V 1 = 1 and a A 0 = 0. 

Evidently, every Boolean algebra is a a-algebra but not vice versa, see [3]. An 

example of a g-algebra A which is not a Boolean algebra is in Fig. 1. 

(0, a, 6, 1 are idempotents of A and the 

operations V, A, ' are given in the tables) 

V 0 X a У z b ] V 

0 0 0 a a a b ] L 1 

X 0 0 a a a b ] L 1 

a a a a a a 1 ] L 1 

У a a a a a 1 ] L 1 

z a a a a a 1 ] L 1 

b b b 1 1 1 b ] L 1 

1 1 1 1 1 1 1 ] L 1 

г 1 1 1 1 1 1 ] L 1 

Л 0 X a У z b 1 V 

0 0 0 0 0 0 0 0 0 

X 0 0 0 0 0 0 0 0 

a 0 0 a a a 0 a a 

У 0 0 a a a 0 a a 

z 0 0 a a a 0 a a 

b 0 0 0 0 0 b b b 

1 0 0 a a a b 1 1 

V 0 0 a a a b 1 1 

0 x a y 1 
1 1 b b b a 0 0 

Fig. 1. 

T h e o r e m 2. Let A = (A; V, A,' , 0,1) be a q-algebra. Putx + y = (xAy')V(x'Ay) 

and x • y = .v A y. Then (A; +, •, 0) is a Boolean semiring (where 1 is the weak unit). 

P r o o f . Commutativity and associativity of +, • is a direct consequence of these 

properties for V and A. Also the distributivity laws can be proved quite analogously 

as for Boolean rings [1]. Clearly 0 • a = 0 A a = 0. Let us prove the remaining axioms 

of Book an semirings. By weak idempotence, we infer (a • b) • (a • b) = (a • a) • (b • b) = 

(aAa)A(bAb) = (aAa)Ab = aAb = a-b, thus a-bis an idempotent of (A; -f, •, 0) for each 

a, b E A. Since a-b = aAb is an idempotent, we have (a-b)-l = (aAb)Al = aAb = a-b, 

thus 1 is a weak unit and (A; +, -,0) is ;. unitary semiring. 
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It is easy to see that if x, y E S(-4), i.e. x = a + b and y = c + d for some a, 
b, c, a7 from A, then also x + y E S(-4). Moreover, x + 0 = (x A 0') V (x' A 0) = 

( i A l ) V (x' AO) = (x Al) VO. 
Since xAl is an idempotent of (A; V, A,', 0,1) (see e.g. [3], [4]), we have x+0 = xAl. 

Since x = a + b, it is also an idempotent of the g-algebra whence x A 1 = x (see [3]), 
thus x + 0 = x. 

Further, x + x = (x A x') V (x A x') = 0 V 0 = 0, thus (S(A); +) is a group with 
the unit 0, i.e. the semiring (A; +, -,0) is also skeletal. 

By 0-1 axioms and equalization, the weak unit 1 is an idempotent of (A; +, -,0). 
Prove (1) and (2) of Definition 1. Let a E A. By [3], a + 0 is an idempotent of the 
g-algebra, thus a + 0 = (a + 0)A(a + 0) = (a + 0)-(a + 0) = a-a + O-a + a-0 + 0-0 = aa. 

If a, b E A then a • b + 0 = (a • b A 1) V ((a • b)' A 0) = a • b A 1. Since a • b = a A b is an 
idempotent of the g-algebra, we have a A b A l = aAb , thus a • b + 0 = a • b, which 
proves that (A; +, -,0) is a Boolean semiring. • 

Theorem 3. Let A = (A;+,-,0) be a Boolean semiring with the weak unit 1. 
Introduce a V b = a + b+(a-b).aAb = a-b . a' = 1 + a. Then (A; V, A/ , 0,1) is a 
q-algebra. 

P r o o f . Commutativity of V, A and associativity of A follow directly from the 
commutativity and associativity of +, •. Prove associativity of V: 

aV(b\/c) = a+(b+c+b-c) + a-(b+c+b'c) = a+b+a-b+c+C'(a+b+a-b) = (aVb)Vc. 

Weak absorption: 

a V ( b A a ) =a + b-a + a-(b-a) =a + b-a + (a-a)'b = a + b'a + b'a. 

Since char A = 2, we obtain aV (b A a) = a + 0 = a -a = a V a by (1) of Definition 1. 

Further, by (1), (2) of Definition 1 and by (b) of Lemma 1: 

a A ( b V a ) = a • (b + a + b- a) =a'b + a-a + ab'a = a'b + a'b + a'a 

= 0 + a-a = a-a = aAa. 

Weak idempotence: 

a V (bW b) = a + b + b + b - b + a - (b + b + b • b) = a + b - b + a - (b - b) 

= a + (b + 0) + a-b = a + b + a-b = aVb , 

a A (b A b) = a • (b • b) = a • b = a A b. 
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Distributivity: 

(a V b) A (a V c) = (a + b + a • b) • (a + c + a • c) 

= a-a + a-c+(a-a)-c + ba + b-c + b-a-c+a-b-a + b-a-c 

+ a- b • a + a • b • c+ (a • b) • (a- c) 

= a- a + b • c + a- b- c= (a + 0) + b-c + a-b-c 

= a + b-c + a-b-c = aV(bAc). 

Equalization: 
a\/ a = a + a + a- a = a • a = a Aa. 

Complementation: 

a V a / = a + ( l + a) + a(l + a) = l + a - l + a - a = l + a - a + a - a = l 

(by using (c) of Lemma 1), 

a A a' = a • (1 + a) =al + a-a = aa + aa = 0. 

0-1 axioms: 
a A 0 = 0 A a = 0-a = 0, 

aVl = a + l + a-1. Since a + 1 G S(A), we have a + 1 = (a + l)-(a + l) by Theorem 1, 

and, by (c) of Lemma 1, we infer a + 1 = (a + 1) • (a + 1) = (a + 1) • 1. Thus 

a V l = (a + l ) - l + a - l = a - l + l - l + a - l = l - l = l A l = l 

since 1 is an idempotent of the g-algebra, see [3]. • 

Let A be a g-algebra. Denote by 38(A) the Boolean semiring derived from A by 
Theorem 2. Let B be a Boolean semiring. Denote by srf(B) the q-algebra obtained 
from B by Theorem 3. The proof of the following statement is straightforward and 
hence omitted: 

Theorem 4. For any Boolean semiring B, 8&(srf(B)) is isomorphic to B. For 
any q-algebra A, srf(&(A)) is isomorphic to A. 
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