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A NOTE IN INVERSE AND DUAL SEMIGROUPS 

C K . LAI AND K.P. SHUM, Shatin 

(Received November 10, 1986) 

In studying the structure of inverse semigroups, L. Markl [2] has proved the fol
lowing conditions on semigroups with 0 are equivalent: 

(i) S is an inverse semigroup and the union of a finite number of its 0-minimal left 
(right) ideals, 

(ii) S is the union of a finite number of its quasi-ideals, and all these quasi-ideals 
form a special complete system, 

(iii) S is an inverse semigroup and the union of a finite number of its 0-minimal 
quasi-ideals. 

(iv) S is an inverse semigroup with finitely many idempotents and every non-zero 
idempotent is primitive. 

However, it has been noticed by him that the following condition: 
(v) S is a 0-direct union of finitely many two-sided ideals which are completely 

0-simple inverse subsemigroups of S. 
is weaker than any one of the conditions (i) to (iv). 

In this note, we observe that if each summand in (v) satisfies min-r (that is, Mini
mum condition on right ideals), then the above conditions are in fact all equaivalent. 
We shall prove that any one of these conditions is a necessary and sufficiency con
dition for a semigroup to be semisimple and dual. Thus a characterization theorem 
for semisimple dual semigroup is obtained. Throughout the paper, every semigroup 
has 0 and contains more than one element. The reader is referred to O. Steinfeld [7] 
for all terminology and definitions not given here. 

Definition 1. Let A be a subset of a semigroup S. Denote 

r(A) = {x e S | Ax = 0} 

and 
£(A) = {xeS\xA = 0}. 

A semigroup S is called dual semigroup if £r(L) = L for every left ideal L in S and 
r£(R) = R for every right ideal R in 5. 



D e f i n i t i o n 2 . A semigroup S with min-r is said to be semisimple if the radical 

of S is zero. In other words, a semigroup S is semisimple if S satisfies the descending 

chain condition on its right ideals and contains no non-trivial nilpotent ideals. 

Unlike in ring theory, a semisimple semigroup need not be a dual semigroup. The 
following is an example. 

E x a m p l e 3 . Let S = {0,0,6,^0*} with Cayley table 

0 a b c d 

0 0 0 0 0 0 
a 0 a a a a 
b 0 a b a b 
c 0 a a c c 
d 0 a b c d 

Then 5 is a semisimple semigroup. Since {0 ,a , c} is a right ideal of S such tha t 

r£{0, a, c} = 5 , S is not a dual semigroup. 

L e m m a 4 . Let S be a dual semigroup. Then S satisfies min-r (min-i?; max-r ; 
max-£) if and only if S satisfies max-£(max-r; min-^; min-r). 

P r o o f (=>). Consider the ascending chain of left ideals of S: L\ C L2 C . . . . 

Then r ( L i ) D r(F2) Q . . . is a descending chain of right ideals of S. By min-r , 

this chain will be terminated, say, at the nth step. Thus, there exists a positive 

integer n such tha t r(Ln) = r(Lm) for all m ^ n. Apply the duality of 5 , we have 

Ln = £r(Ln) = £r(Lm) = Lm for all m}> n. This implies that S satisfies max-^. 

(<=). Follows dually as the "only i f part . • 

L e m m a 5. If a semigroup is a finite 0-direct union of0-minimal right (left) ideals 

of S, then S satisfies both min-r and max-r (min-^ and max-£). 

n 
P r o o f . By assumption, S = (J I2,, where each It, is a 0-minimal right ideal 

i= i 
k 

of S. Let R be an arbitrary non-zero right ideal of S. Then R C (J Rn%, {n, | i = 
i = l 

1 , 2 , . . . , * } C {1,2, . . . , n } . Clearly RHRni / {0} for all i = 1, 2, . .., k. Since 
each Rni is 0-minimal, so Rnt = Rf) Rni C I^ for all i = 1, 2, . . ., k. Therefore 

* k 
(J Rnt C R. Consequently R = (J Rni. This shows that every right ideal of S is 

i= i . . »=i 
also a finite 0-direct union of 0-minimal right ideals of S. This implies tha t S satisfies 
both min-r and max-r . • 

L e m m a 6. Let S be a dual semigroup with zero radical. Then the following 

conditions are equaivalent: 
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(i) E < oo. 
(ii) S satisfies max-r 

(Hi) S satisfies min-r 
(iv) S satisfies max-.? 
(v) S satisfies min-if. 

P r o o f . It was proved by St. Schwarz [3] that S is a 0-direct union of eS for 
all e2 = e E S, that is, S = (J eS. It can by seen that each eS is a 0-minimal 

e£E 

right ideal of S. In virtue of Schwarz's theorem and Lemma 5, we obtain (i) implies 
(ii) to (v). In view of Lemma 4, it remains to prove (ii) => (i) and (vi) => (i). For 
(ii) => (i), we suppose that the set E is not finite. Then there exists a countable 

n 
set of idempotents {e» | i £ N} C S. Write Sn = (J e tS. If Sn = Sn+i, then 

i = i 
n n + l 
(J e,-S = (J e,-S 3 e n+iS. This implies that e n +iS DekS ^ {0} for some fc, which 

»=i 1=1 
contradicts that the union of e,S's are 0-directed. Thus Sn ^ S n+i . However, this 
result contradicts max-r. Consequently E must be a finite set. Thus (ii) => (i). 
Similarly, (iv) => (i). D 

T h e o r e m 7. The following conditions on a semigroups with 0 are equivalent: 
(i) S is a semisimple dual semigroup, 

(ii) S is a 0-direct union of finitely many two-sided ideals which are 0-simple dual 
subsemigroups of S with min-r. 

(Hi) S is a 0-direct union of finitely many two-sided ideals which are completely 
0-simple inverse subsemigroups of S with min-r. 

(iv) S is a regular semigroup with finitely many orthogonal idempotents. 
(v) S is an inverse semigroup with finitely many idempotents and every non-zero 

idempotent of S is primitive, 
(vi) S is an inverse semigroup and can be expressed as the union of a finite number 

of its quasi-ideals, and these quasi-ideals form a special complete system, 
(vii) S is an inverse semigroup and can be expressed as the union of a finite number 

of its 0-minimal left (right) ideals, 
(viii) S is an inverse semigroup and can be expressed as the union of a finite nunber 

of its 0-minimal quasi-ideals. 

P r o o f . In virtue of the characterization theorem for dual semigroups with zero 
radicals due to O. Steinfeld in [6] and Lemma 6, we have (i) <-> (iv) <=> (v). By 
Corollary 10.13 in [7], conditions (v) to (viii) are all equivalent. It remains to show 
that (i) <=> (ii) «=> (iii). By the Corollary stated in [5], we obtain that (ii) «=> (iii). For 
(i) <=> (ii), we let S be a semisimple dual semigroup. By Schwarz's decomposition 
theorem in [4], S is a 0-direct union of two-sided ideals {/,- | i £ T] which are 0-
simple dual subsemigroups of S. Since every 0-simple dual semigroup contains at 



least one non-zero idempotent [5], so E = (J (E C\ I,). As E < oo, by Lemma 6, T 
t e r 

and F* fl I,- are finite sets for all i. Hence all I,-'s satisfy min-r by Lemma 6. Thus 

(i) => (ii). Conversely, let 5 be a 0-direct union of finitely many two-sided ideals 

{Ii, I2,..., In} which are 0-simple dual subsemigroups of S with min-r. Then by 

the converse of Schwarz's decomposition theorem proved in [1], S must be a dual 

semigroup with zero radical . Moreover, for i = 1, 2, . . . , n, EC) I,- is a finite set since 
n 

each I,- is a semisimple dual subsemigroup of S. Thus E = (J (E fl I,) is a finite 
«=i 

set. By Lemma 6, S is a semisimple dual semigroup. T h u s (ii) => (i). Our proof is 
completed. • 
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