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This paper deals with some results concerning the theory of bounded invariant
manifolds of dynamic systems which have been recently obtained.
First we will consider the linear system of differential equations

(1) % = A(f) x

with continuous and bounded on the whole axis R = ]— oo, co[ matrix of coef-
ficients A(f), X = dx/dt, x € R". We use the following notations: C°(R) is the space
of continuous (vector or matrix) functions F() bounded on the whole axis R: C'(R)
is the subspace in C°(R) of functions F(f) possessing continuous derivatives; Qi(A)
is the fundamental matrix of the system (1) with Q(A4) = I,, I, being the n-dimen-
sional unit matrix: <x, y> = Y x,y; is the scalar product in B", {x, x) = ||x||*: 4*is

i=1
the transposed matrix to 4.

Let there exist a quadratic form V(t, x) = <{S(f) x, x), S = S* € C'(R) such that
its derivative V along the solutions of the system (1) is negative definite,

(2) V(1 x) = K(S(1) + S(1) A(1) + 4*(1) S(1)) %, x> < —|x]*,

and det S(r) + 0, te R. Then the system (1) is exponentially dichotomous on the
whole axis R. There is a possibility that the determinant of the matrix S(f) vanishes
at some moments t = t,, ..., t,. It is proved that k < n, where n is the dimension
of the system (1). The condition of non-degeneracy of the matrix S(#) can be substi-
tuted by an equivalent condition that there exists an other symmetric matrix Sl(t) €
€ C!(R) satisfying the condition

©) (S4(t) = 84(t) A*(1) — A1) S4(1) x, x> < —[|x]* -

The following statement has been proved.

Theorem 1. The existence of an n-dimensional symmetric matrix Sy(t) e C'(R)
satisfying the condition (3) is a necessary and sufficient condition for the system

70



of equations x = A(t) x + f(t) to have a unique solution bounded on the whole
axis R for every vector function f(t) € C°(R).

Note that the determinant of the matrix S,(f) at some moments of time can vanish
and then the inhomogeneous system will have not one but a family of bounded on R
solutions.

Theorem 2. Let the matrix Sy(t) = Si(t) e C'(R) satisfying the condition (3)
exist and let its determinant vanish at some moments ty, ..., t,. Then the system
(1) is exponentially dichotomous on the semi-axes R, R and the dimension of
the subspace E of all solutions bounded on the whole axis R is given by the formula
dim E = n™(T,) — n™(T,), where T,, T, are fixed moments of time such that
T, <t;<T,,i=1,...,k; n™(T) is the number of negative eigenvalues of the
matrix S(T).

In the case of weak regularity of the system (1) on R the problem of its decomposi-
tion by means of Lyapunov Transform as well as the integral representation of solu-
tions bounded on R were studied. All these results were used for investigating linear
extensions of dynamic systems on a torus.

4y ¢ =a(p), x=A(p)x.

Such systems of differential equations appear when studying nonlinear multifrequency
oscillations. Here ¢ = (@4, ..., ¢,), X = (X, ..., X,): a(p), A(p) are continuous
vector — and matrix — functions, respectively, which are 2z-periodic with respect
to each variable ¢,.

a( ) is such that the Cauchy problem ¢|,—, = @,, ¢ = a(¢) has a unique solution
¢{¢,) continuously depending on ¢,. We use the following notations: C°(T,,) is the
space of continuous (vector or matrix) functions F(¢) which are 2r periodic with
respect to each variable ¢,, j = 1, ..., m, i.e., they are given on the m-dimensional
torus T,,, C'(T,,) is the subspace of functions F(¢) in C%(T;,) such that the function
F(¢/,)) is continuously differentiable with respect to ¢ for all te R, ¢o€ T,
dF(e[@))/dt|,=o = F(p) e CXT,,), QY(¢,) is a fundamental matrix of the system
% = A((Pt((po)) X.

Recall that the invariant torus of the perturbed system of equations ¢ = a(o),
X = A() x + C(¢), C(¢)e C*T,,) is defined by the equality x = u(¢) if u(p)e
€ C'(T,,) and the identity u(¢p) = A(¢) u(¢) + C(¢) is valid. Let us introduce one
of the main results.

Theorem 3. Let there exist an n-dimensional symmetric matrix S,(t) e C'(T,,)
satisfying the condition

(5) {(81(9) — Si(9) 4%(9) — A(9) Si(@)) x, x> = —[x[*.

Then for every vector-function C(¢) € C%(T,,) the system of equations ¢ = a(p),
X = A(@) x + C(@) has at least one invariant torus x = u(p). Moreover, if det S(¢)
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vanishes at some point @,, then the system (4) has nontrivial invariant tori and
each of them can be represented in the form

(©) x = u(g) = j " Hio) (4(0))* f(odo)) dr,

- 0

where f(¢) is any function in C°(T,,). Here H(¢) is a symmetric matrix function
in C'(T,,) satisfying the identity H(p(9)) = Q¢(¢) H(¢) (Q4(¢))* and the estimate
|26(¢) H(e) (5(@)| = Kexp{-y|t -]}

Let us take into account the fact that the equality (6) determines a certain opera-

tor M acting on functions f(¢) € C%(T,,). In this case there exists a matrix function
H(p) such that the operator M is projecting: M> = M.
As an example let us consider the system of three equations
@Y = 1 + hlsin(Pl + hzsinm(pz,
@2 = /2 + h3cos ¢y + hysinng,,
% = (hscos @y + hg sin 2<p2)x + ¢(@1, 02) -

The problem consists in finding the values of parameters h; i = 1, ..., 6 for which
this system has an invariant torus x = u(¢, ¢,) € C'(T;) for each function ¢{¢,, ¢,) €
€ C%(T,). Choosing the scalar function cos ¢, as S;(¢) we obtain the following suf-
ficient condition:

hihs > 0, min {|hy|,2|hs|} = 1 + |hy| + 2|k .

Possibilities of integral representations of invariant tori of perturbed systems were
studied. If turned out that under the conditions of Theorem 3 there exists an n-
dimensional matrix C(¢) € C'(T,,) such that the function

. o) = JE(0) Clode), =0,
(7) Go( s (P) {Q?(gp) (C((Pz((P)) ~1), t>0

satisfies the estimate
(8) |Go(z, @)]| = Kexp{—7y|t|}, K,y —const >0, 1eR.

This is sufficient for representing the invariant torus of the system ¢ = a(¢), x =
= A(p) x + C(p) by the equality

x = f Golt, @) Cd9)) dt .

The function (7) satisfying the estimate (8) is usually called the Green function of the
problem of invariant tori for the system (4).
Sometimes we need only that instead of estimate (8) the function (7) satisfy
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a weaker condition

0

9) j [Go(z, @)| dr £ K = const < o .
- 0

The problem is: can the estimate (8) be obtained from (9) even for an other function

Go(t, ¢)? Note that the assumption of existence of the matrix C(¢) € C%(T,,), guaran-

teeing uniform convergence and boundedness of the integral

j " 6o @) de,

- 0

implies existence of the matrix

Si(0) = 2 ( j " Gofr, 9) GX(x, ¢) de — J " Gt ) Gt 9) dr) ,

0

-

which satisfies the condition (5) of Theorem 3. Therefore there exists a matrix
C(¢) € C'(T,,) which, generally spéaking, differs from the previous one, such that the
estimate (8) is fulfilled. Note that the constants K,y in the estimate (8) can be
expressed in terms of matrices S(¢), (o).

It follows from (5) that small perturbations of the matrix A(¢) do not substantially
affect the existence of the Green function. If S;(¢) € C*(T,,), then the same conclusions
would hold for the vector-function a(¢), since in this case $;(¢) = (8S(¢)/09) a(¢).
In this connection the problem appears of an approximation of functions F(¢) e
e C'(T,,) by functions F(¢)e C(T,,) so that simultaneously its derivative F(¢) is
approximated: lim (|F(@) — F,(¢)| + |F(¢) — F.(e)|)) = 0. The affirmative solu-

n—oo

tion of this problem is known provided a(¢) e C'(T,,) and F(¢) € C;(T,,). Recently

the possibility of such an approximation has been proved provided lim ¢~ 'p(a ; 0) .
c—+0

. W(F ; o) = 0 where u(a ; o), u(F ; 6) — are moduli of continuity of the functions
a(¢), F(¢).

If in addition to the condition (5) we require the existence of an n-dimensional
matrix S(¢) = S*(¢) € C'(T,,) satisfying the estimate.

(10) {(S(9) + S(0) A(9) + 4%(#) S(@)) x, x> = —||x|*,

then the matrices S,((p), S((p) are non-degenerate and the exponential dichotomy
of the system x = A(¢,(p,)) x on R is uniform with respect to @,. In this case the
Green function (7) is unique and the matrix C(¢) e C'(T,,) is a projecting matrix,
C*(¢) = C(9), satisfying the identity

(11) C(od @) = Qi) C(p) 2%9) .

In this connection we ha\}e the problem of existence of an analogue of the identity
(11) for the matrix function C(¢) in the case when the Green function (7) is not unique.
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Theorem 4. Let the condition (5) be valid with a matrix S,(¢) = ST(¢) € C'(T,,)
degenerate at some points ¢. Then there exist unique n-dimensional matrices C((p),
C(p) € C'(T,,), C*(¢) = C(o) satisfying the identities

Clodo)) = 24(9) C(0) 2%0) + 2(0) C(0) j " (@) () do,

Cled9) = Qi(9) Clo) (Q(0)*, teR,

and estimates
|25(0) Clo)]| = Kexp {—t}, t>0;
|25(¢) (C(@) — L) < Kexp{yt}, t<0;
|25(0) C(o)| < Kexp{—3lt]},  teR,

with positive constants K,y independent of t and ¢. Moreover, rank C((po) =
= dim E(¢,), where E(¢,) is the space of bounded on R solutions of the system
X = A(pd9o)) x.

Other problems concern decompositions of the system (4). Supposing that the
linear system % = A(¢,(¢,)) x is exponentially dichotomous on R uniformly in ¢,
we ensure separability of two sets of solutions of this system. It is known that when
each ¢, is fixed there exists a Lyapunov change of variables x = T,,,O(t) y which
transforms the system x = A(¢, (o)) x to the corresponding decomposed form
y = A"(t; @o) 1, y2 = A™(t; o) y2. The problem arises whether it is possible to
choose the matrix T, () in the form T(p/¢,)) where T(¢) € C(T,,), i.e., whether
there exists a matrix T(¢) e C'(T,,) such that

(12) T~ () Alp) T(9) — T~ (o) T(¢) = diag {4™(¢), 47(9)} ,

where the matrices A*, A~ correspond to the e-dichotomy of the system % =
= A(¢{®,)) x. This problem has a negative answer. In spite of this fact it has been
proved that when supposing that the matrix S(¢) satisfying the condition (10) can
be represented in the decomposed form

(13) S(p) = Q*(¢) diag {S,(9), —S2(9)} Q(0),

where Q(¢) € C'(T,,), <{S{®)n:n:> = B||n:|> then there exists a matrix T(¢)e
€ C'(T,,) ensuring the decomposition (12). On the other hand, it has been proved
that a non-degenerate matrix T(¢)e C'(T,,) reducing the projecting matrix C(¢)
to the Jordan form T~'(¢) C(¢) T(¢) = diag {I,,0} ensures the decomposition
(12). Hence we have the problem of the interconnection of the projecting matrix
C(¢) € C'(T,,) with the non-degenerate symmetric matrix S(¢) e C(T,,). The study
of this problem has led to the conclusion that each non-degenerate symmetric matrix
S(¢) € C'(T,,) satisfying the condition (10) is connected with the projecting matrix
C(¢) up to a constant factor by the inequality

(14) (S(e) C(0) + C*(9) S(¢) — S(¢)) x, x> = [x[*.
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It turned out that the additional supposition (13) concerning the matrix S(¢) implies
solvability of the system of algebraic equations C(¢) x = 0, C(¢) x = x, i.e., the
possibility of reducing the matrix C(¢) to the Jordan form. Note that the inequality
(14) can be considered as an independent one, not connected with the system (4).
Besides, for every projecting matrix C*(¢) = C{¢) e C%T,,)/C(T,,)| there exists
a set of matrices S(¢) e C%(T,,)/C'(T,,)| satisfying the condition (14), in particular,
S(¢) = 2(C(p) + C*(¢) — I,). If we suppose that it is possible to reduce the projec-
ting matrix C(¢) e C%(T,,) to the Jordan form, then each matrix S(¢) satisfying (14)
is reduced to the diagonal form.

The problem of a possibility of a smooth decomposition of the system (4) into more
than two subsystems was studied via quadratic forms. In this direction, the following
statements have been proved:

Theorem 5. Let there exist two n-dimensional non-degenerate matrices S((p),
S(¢) € C'(T,,) such that the matrix S(¢) satisfies the conditions (10), (13) where S
is an r-dimensional matrix, and S(¢) satisfies the inequality

. A5(0) + S(0) Al9) + A%(0) S(9) + 2 M0) S(9)) x, x> = ¢|x|*,
e =const >0,

with a certain positive scalar function A(¢)e C%(T,,) and admits a representation
S(¢) = 0*(p) diag {S1(¢), —S1(@)} Q(¢), O(¢) € C'(T,,) with positive definite blocks
Sie¢), i = 1,2, S, being an F-dimensional matrix, ¥ < r. Then the inequality
r — ¥ < n— m where m is the number of variables ¢ ensures the existence of
a non-degenerate matrix L{(¢) € C'(T,,) such that

(15) L™ Y(¢) A(¢) L{p) — L™(¢) L(¢) = diag {B,(#), Bx(#), Bs(9)} ,

where the matrices By, B;, By have the types 7 x F, (r — F) x (r — F), (n — r) x
x (n — r), respectively.

Theorem 6. Let all the conditions of Theorem 5 except the inequality r — F <
< n — m be fulfilled and let the matrices S(¢), S(¢) have the block-diagonal
form S(p) = diag {Si(¢), —S,(0)}, S(¢) = diag {5,(¢), —S2(¢)} where S(¢),
S,(¢) are r-dimensional, S{(¢), S;(¢), S,(¢) — are positive definite and the matrix
S1(9) has F positive eigenvalues and r — F negative ones.

Then a non-degenerate matrix L(¢)e C'(T,,) ensuring the decomposition (15)
exists if and only if there exists an r-dimensional matrix Q(¢)e C'(T,) satisfying
the equality Q*(¢) S;(¢) () = diag {I,,1,_;}.

Let us present one of the main results concerning the system of differential equa-
tions Y = a(y), x = A(y) x with continuous and bounded in the whole space R™
functions a(y), A(¥). Analogously as before, the uniqueness of solution ¥ (i) of
the Cauchy problem l//|,=0 = Yo, ¥ = a(l//) is assumed.
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Theorem 7. For each Y, € R™ fixed let there exist an n-dimensional symmetric
matrix function S, € C'(R) satisfying the conditions

1) <Syo(8) = Suo(t) A*(Wo)) — AW(Wo)) Syo1) X, x> = — x|,

2) [|Syo(?)|| £ const < o for all Yo € R™, t e R.
Then: (i) If det S, (t) + O for all te R, Y, € R™, then for each vector-function
f(¥) € C°(R™) continuous and bounded on R™ the system of equations
(16) Vo=a(y), x=A\)x+f(¥)

has a unique invariant manifold x = u(y) = [*, Go(z. ¥) f(Y(¥)) dr.

(if) If there exist to€ R, Yo € R™ such that det S, (t,) = O then the system of
equations (16) has a family of bounded invariant manifolds and they are repre-
sented by the formula

x = uy) = [

o/ — 0

H(W) (25(0))* g(w:(¥)) de + j i

Go(r, ¥) f(¥Y)) dr,

where g(Y) is an arbitrary function in the space C°(R™), Go(t, ¥) is the Green
function. In this case for every n-dimensional symmetric definite matrix B{y) €
€ C°(R™) there exist unique n-dimensional matrices C\yy), H{y) € C°(R™), H* = H,
satisfying the identities and estimates

Q0(p) COW) ) = C) + H(Y) f " (@50)* B) 26(p) do .

H(y(¥)) = @(¥) HY) (25(¥)* ;
l25(w) CW)| < Kexp{—3t}, t=0;
[Q6(W) (C(¥) — L)|| < Kexp{yt}, t<0;
|26(¥) HY)| < Kexp{—»|t|}, teR, K,y =const>0.
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