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LOCAL DETERMINACY OF SYMMETRIC PSEUDOPROCESSES 

JOZEF NAGY, EVA NOVÁKOVÁ, Praha 

(Received January 20, 1976) 

A number of various physical systems can be described by means of relations in 
the cartesian product P x T, where P is the set of all possible states of the system 
concerned and T is a set of time instants. This approach to the study of the behaviour 
of systems was used in [1] to [5], where a wide class of such relations is investigated 
in detail. The present paper is a direct continuation of [5] so that as far as the notation 
and the terminology is concerned, the reader is refered to [5]. To make the text of 
the paper as self-contained as possible, the basic notions and notation from [5] will 
be recalled in the first point of the next section. 

1. SYMMETRIC PSEUDOPROCESSES 

1.1. Notation. In what follows, P denotes an arbitrary set, R the set of all reals, 
R* = R u { + oo, — co} the extended real line with the ordering extended from R to R* 
in the natural way, T a subset of R. 

If X, Y are sets, then any subset of the cartesian product X x Y (in this order) 
is called a relation between X and Y. If X = Y, then a relation r c j f x l i s called 
a relation in X. The relation inverse to a relation r is denoted by r" 1. The identity 
relation in X is denoted by lx. If r c X x Y, s c Y x Z, then the composition of 
the relations r and s (in this order) is denoted by r Qs. If a pair (x, y) e X x Y 
belongs to a relation r cz X x Y, then we write either (x, y) e r or xry. Given 
r c X x Y, we set 

(1.1.1) DT = {ye Y\xry for some xeX}, 

(1.1.2) Jr = {x e X | xrx} if X = Y, 

(U.3) ry ={xeX\(x9y)eDr}, 

(1.1.4) rA = {x e X | (x, y) e Dt for some yeA}> 
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(1.1.5) xr ={yeY\(x,y)eDr}, 

(1.1.6) - Br = {j; e 71 (x, j>) € Dr for some xeB} , 

(1.1.7) r | A = rn(X x A), 

for each yeY, A cz Y,xeX,BczX. 
In the present paper we shall be concerned mainly with relations p, q in P x T, 

i.e. with subsets of (P x T) x (P x T). Each such relation q c (P x T) x (P x T) 
can be uniquely described by the two-parametric system of relations vqu in P with 
U,VET as follows: 

(1.1.8). (y, v)q(x, u) iff yvqux , x, y e P , u,veT. 

A relation p in P x T such that 

(I) upu c l p for each u e T 

and 

(R) vpu 4= 0 implies u ^ v for all u, v e T 

is called a right pseudoprocess in P over T. The set of all right pseudoprocesses in P 
over T i sdenoted by Ps(P, T). A right pseudoprocess p 6 Ps(P, T) is said to be a com­
positive right pseudoprocess, a transitive right pseudoprocess or a right process 
in P over T iff the condition 

(RC) ypM <= vpt o ,pM for all u = f ^ v in T, 

(RT) vpw ZD vpt o ,pa for all u = f = v in T 

or 

(RP) vpu = rp- o rpw for all u ^t = t; in T, 

is satisfied, respectively. The set of all compositive right pseudoprocesses, transitive 
right pseudoprocesses and right processes in P over T will be denoted by Psc(P, T), 
Pst(P, T) and P(P, T). A more detailed explanation of the theory of right pseudoproces­
ses may be found in [5]. 

1.2. Definition. Let P be an arbitrary set, T c R, q a relation in P x T. The relation q 
is called a symmetric pseudoprocess in P over T iff it satisfies the conditions 

(I) uqu cz l p for all we T, 

(S) ,q« = («q,)"1 for all u,veT. 

The set of all symmetric pseudoprocesses in P over T will be denoted by Ss(P, T). 
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1.3. Remark. The property (S) in 1.2 may be reformulated as 

(1.3.1) yvqux iff xuqvy for all x, y e P, u,veT. 

Hence, this property is equivalent with 

(1.3.2) q = q- 1 . 

Thus 

(1.3.3) vqu = uqv for all u, v e T. 

For a symmetric pseudoprocess q, the sets Dq and Iq from (1.1.1) and (1.1.2) may 
be characterized as follows: 

Dq = {(x, u)e P x 7 | ^ x 4= 0 for some v e 7} 

and 
Jq = {(*> M) e Dq | *«<!«*} • 

1.4. Construction. Let p e Ps(P, 7). It is not difficult to verify that the relation 
p u p " 1 in P x 7 fulfils the conditions of Definition 1.2 so that it is a symmetric 
pseudoprocess in P over 7. The symmetric pseudoprocess q in P over 7 defined by 

- i (1.4.1) q = p u p 

is said to be induced by the right pseudoprocess p in P over 7. 
Let us show that, given a symmetric pseudoprocess q e Ss(P, 7), there exists a right 

pseudoprocess p e Ps(P, 7) such that (1.4.1) holds. 

1.5. Definition. Let q e Ss(P, 7), q+ e Ps(P, 7). The right pseudoprocess q+ is said 
to be positively induced by the symmetric pseudoprocess q iff it satisfies the con­
dition 

(1.5.1) „q+« = *,<!« for all u ^ v in 7 . 

1.6. Remark. Since q+ is a right pseudoprocess, it holds 

(1.6.1) t,q+« = 0 for all u > v in 7 

so that we obtain from 1.5 and (1.3.1) that 

(1.6.2) Dq+ cz Dq . 

The inclusion in (1.6.2) cannot be in general replaced by the equality. However, if 
q e Ss(P, 7) is such that for each (x, u) e Dq there exists t e 7 fulfilling the conditions 
t *• u and ,qMx 4= 0, then equality 

(1.6.3) - V = D* 

holds. 
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1.7. Lemma. Let q, ~q e Ss(P, 7"). Then the following assertions hold: 

(i)q = q + u ( q + ) - 1 . 
(ii) q c ~q iff q+ c ~q + . 

1.8. Definition. Let p e Ps(P, T), q e Ss(P, T), p' e Ps(P, - T), q' e Ss(P, - T), where 
- T = {reR| - * e T } . 

The right pseudoprocess p' is said to be orientation-change produced from the 
right pseudoprocess p iff 

(1.8.1) vp'u = U p - , ) " 1 for all u£v in - T . 

The symmetric pseudoprocess q' is said to be orientation-change produced from 
the symmetric pseudoprocess q iff 

(V8.2) yq'tt = (_Mq-t,)~
1 for all u, v in - T . 

1.9. Definition. Let q e Ss(P, T), let q+ e Ps(P, T) be positively induced by q, and 
letq~ePs(P, -T). 

The right pseudoprocess q~ is said to be negatively induced by the symmetric 
pseudoprocess q iff q"" is orientation-change produced from q + . 

1.10. Remark. A right pseudoprocess q~ from the preceding definition can be 
described directly by the relations „q„ as follows. 

The equality 

(1.10.1) „q-. = (_„q + - . , )-1 = U q - , ) - 1 = -eq_, 

holds for all u S v in — T, hence 

(1.10.2) vqu = -v<\~-u for all v ^ u in T. 

Clearly 

(1.10.3) Dq- e Dq, = {(x, M) e P x ( - T) | (x, - M ) e Dq}, 
where the symmetric pseudoprocess q' is orientation-change produced from the 
symmetric pseudoprocess q. If for each (x, u) e £>q there exists t ^ u in T such that 
fqMx 4= 0, then the inclusion in (1.10.3) can be replaced by the equality. 

1.11. Lemma. Let q, ~qeSs(P, T) and let q'e Ss(P, -T) be orientation-change 
produced from q. Then the following assertions hold: 

(i)q' = q - u ( q - ) " 1 . 

(ii) q c ~q iff q" c ~q". 

Proof. The assertions follow from (1.8.2), 1.2 (ii), (1.10.1), (1.10.2) and from 
Lemmas 1.2 and 1.3 in [5]. 
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1.12. Corollary. Let q, ~q e Ss(P, T). Then the following three inclusions are 
equivalent: 

(0 q c ~<.-
(ii) q + c= ~q + ; 

(iii) q " c ~ q " . 

1.13. Definition. Let q e Ss(P, 7), s c P x 7. The relation s is called a solution of 
the symmetric pseudoprocess q iff the following three conditions are satisfied: 

(i) the domain Ds of s is an interval in 7; 

(ii) s is a map of Ds into P; 

(iii) s(v)vqus(u) holds for all u, v e Ds. 

The set of all solutions of q will be denoted by Sq. 

1.14. Theorem. Let q, ~q e Ss(P, 7), let q ' e Ss(P, — 7) be orientation-change 
produced from q and let q+ e Ps(P, 7) and q" e Ps(P, —7) be the right pseudo-
processes positively and negatively induced by q, respectively. Let s : 7 -* P and 

s ' : ^T-^ P be maps such that Ds is an interval in 7; Ds, = {t\ —teDs} and 
s'( — t) = s(t) for all te Ds. Then the following assertions hold: 

(i) s e 5q iff s x s c q. 

(ii) s e S q iff s'eSq,. 

(iii) Sq = Sq+. 

(iv) Sq, = 5 q - . 

(v) Sqn~q = Sq n 5~q. 

1.16. Definition. Let q G SS(P, 7). The maps 

(1.16.1) e+ : Dq->R*, e~ : Dq -> R* 

defined by 

(1.16.2) e+(x, u) = sup {t e 71 fqwx # 0} , 

(1A6.3) e~(x, u) -= inf {teT\ tqux 4= 0} 

are called the positive and the negative extent of existence of q, respectively. 

1.17. Remark. Let us recall that if q+ or q" is a right pseudoprocess positively or 
negatively induced by a symmetric pseudoprocess q, then the extents of existence e 
or e' of these pseudoprocesses are defined, according to Definition 2.3 in [5], by 

(1.17.1) e(x, u) = sup {t e T \ tq
+

ux 4= 0} , (x, u) e Dq+ 
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or 

(1.17.2) ^ e'(x, u) = sup {t e T | ^-^ + 0 j ; ^ „) g D^ 

If (x, u) e 2>q+, then (x, u) e Dq so that e+(x, u) as well as e(x, u) are defined and it 
is evident that the equality 

(1-17.3) e+(x9u) = e(x9u)9 (x9u)eDq+ 

holds. Analogously, if (x, -u)e Dq-, then (x, u)eDq so that both e'(x, -u) and 
e~(x, u) are defined and the equality 

(1.17.4) e~(x9u) = -e'(x, - w ) 

takes place. From (1.16.2) and (1.16.3) we obtain immediately the inequality 

(1.17.5) e-(x, u) = e+(x, u) for all (x, u) e Dq . 

1.18. Definition. Let q e Ss(P, T). 

The symmetric pseudoprocess q is said to have positive (negative, bilateral) local 
existence at a point (x, u) e Dq iff e+(x9 u) > u (e~(x, u) < u, e~(x, u) < u < 
< e+(x, u)). 

The symmetric pseudoprocess q is said to have positive (negative, bilateral) local 
existence iff it has positive (negative, bilateral) local existence at each point (x, u) e Dq. 

The symmetric pseudoprocess q is said to have positive (negative, bilateral) 
global existence at a point (x, u) e Dq iff e+\x, u) = sup T (e~(x, u) = inf T, 
e+(x, u) = sup T and e~(x9 u) = inf T). 

The symmetric pseudoprocess q is said to have positive (negative, bilateral) 
global existence iff it has positive (negative, bilateral) global existence at each point 
(x, u) e Dq. 

If q+ e Ps(P, T) is a right pseudoprocess positively induced by a symmetric pseudo-
process q, then q+ is said to have some of the properties described above iff q has the 
property. 

1.19. Definition. Let q e Ss(P, T). A point (x, u) elq is called a start point or an 
end point of the symmetric pseudoprocess q iff ,qwx = 0 holds for all t e T such that 
t < u or u < t9 respectively. 

1.20. Remark. Let a (right or symmetric) pseudoprocess r in P over T be given. 
In accordance with the notation introduced in [5], item 5.1, the symbol ¥x or $t 

will stand for the set of all start or end points of the pseudoprocess r, respectively. 
Let q e Ss(P, T), (x, u) e Dq. Then (x, u) e £fq or (x, u) e £q iff e (x9 u) = u or 

e+(x9 u) = u9 respectively. If (x, u) e $fq or (x, u) e Sq and s e Sq is such that s(u) = x, 
then u = min Da or u = max Da9 respectively. The converse of this assertion is not 
valid. 

228 



1.21. Lemma. Let q e Ss(P, T). Let q+ e Ps(P, T) or q"" e Ps(P, - T ) fee positively 
or negatively induced by q, respectively. Let (x, M) e / q . Then the following assertions 
hold. 

(i) ^ q = «$V, ' q = ^q+-
(ii) (x, M) e ^ q iff (x, -11) e * q . , (x, u) e Sq iff (x, - M ) e -9%-. 

P roof follows from 1.2 (ii), (1.5.1) and (1.10.2). 

1.22. Definition. Let q e Ss(P, T). The maps 

(1.22.1) d+ : 0 q -+ R* and d~ : Dq -> R* 

defined by 

(1.22.2) d+(x, M) = sup {w e R I card (,qax) ^ 1 for all t e T n <M, W>} , 

(1.22.3) d"(x, u) = inf {w e R | card (fqttx) ^ 1 for all f e T n <w, M>} 

are called the positive and the negative extent of unicity of the symmetric pseudo-
process q. 

1.23. Remark. Notice that + co may belong to the range of the function d+ and 
that d+' can assume this value also in the case of a bounded T. Similarly for d~ 
and — co. In general, it holds 

(1.23.1) - oo g d'(x9 u) = M = d+(x, M) = + oo . 

Let q + and q~ be the right pseudoprocesses positively and negatively induced 
by a symmetric pseudoprocess q, respectively. Then, according to Definition 2.5 
in [5] the extents of unicity d and d! of q+ and q~ are defined by 

(1.23.2) d(x, M) = sup {w e R | card (fq
+

Mx) <; 1 for all t e T n <M, W>} 

for all (x, « ) e D q + , 
and 

(1.23.3) d'(x, M) = sup {w e R I card (,q~ux) = 1 for all te(-T)n <M, W>} 

for all (x, M) e Dq- , 

respectively. Then for each (x, u) e Dq+ cz Dq both d(x, M) and d+(x, M) are defined 
and 

(1.23.4) d+(x9 u) = d(x, u) for all (x, M) e Z)q+ . 

Analogously, for each (x, — M) € Dq- it holds (x, M) e Z)q so that d'(x, — M) as well 
as d~(x, u) are defined and the equality 

(1.23.5) <T(x, M) = -d ' (x , - M ) for all (x, - M ) G .Dq-

takes place. 
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1.24. Definition. Let q e Ss(P, T). 

The symmetric pseudoprocess q is said to have positive (negative, bilateral) local 
unicity at ap<fint(x, u) e Dq iff d

+(x, u) > u (d'(x, u) < u, d'(x, u) < u < d+(x, u)). 

The symmetric pseudoprocess q is said to have positive (negative, bilateral) local 
unicity iff it has positive (negative, bilateral) local unicity at each point (x, u) e Dq. 

The symmetric pseudoprocess q is siad to have positive (negative, bilateral) 
global untcity at a point (x, u) e Dq iff d

+(x, u) = + co (d~(x, u) = - c o , d+(x, u) = 
= -d~(x, u) = +co). 

The symmetric pseudoprocess q is said to have positive (negative, bilateral) 
global unicity iff it has positive (negative, bilateral) global unicity at each point 
(x, u) ' Dq. 

If q* e Ps(P, T) is a right pseudoprocess positively induced by a symmetric pseudo-
process q, then q+ is said to have some of the properties described above iff q has the 
property. 

1.25. Lemma. Let q e Ss(P, T). Then the following assertions hold: 

(i) If(x, u) e Dq is a start or an end point of q, then d~(x, u) = — co or d+(x, u) = 
= +oo, respectively. 

(ii) If(x, u) e Dq and u < d+(x, u) < + co or — co < d~(x, u) < u, then d+(x, u) < 
< e+(x, u) or e~(x, u) < d~(x, u), respectively. 

1.26. Lemma. Let q, ~q e Ss(P, T), q c. ~q. Let e+, e~, d+, d~ and 2+, 2~, d+, cl~ 
be the corresponding extents of existence and unicity of q and ~q, respectively. 
Then the following assertions hold: 

(i) If (x, u) e Dq, then 

(1.26.1) e+(x, u) = 2+(x, u) , e~(x, u) = e~(x, u) , 

(1.26.2) ii+(x, u) = d+(x, u) , d~(x, u) ^ 3'(x9 u) . 

(ii) If(x, u) € D~q is a start point or an end point of ~q, then it is a start point or 
an end point of q, respectively. 

(iii) / / q has positive, negative, bilateral local or global existence at a point 
(x, u) e Dq, then ~q has the same property. 

(iv) If ~q has positive, negative, bilateral local or global unicity at a point (x, u) e 
€ D„q, then q has the same property. 

1.27. Definition. Let q e Ss(P, T). The symmetric pseudoprocess q is said to be 
solution complete iff for each pair ((y, v), (x, u))e q there exists s e S q such that 
s(u) = x, s(v) = y. 

230 



1.28. Theorem. Let q e Ss(P, T). Then the symmetric pseudoprocess q is solution 
complete iff the right pseudoprocess q+ positively induced by q is solution complete. 

Proof follows directly from 1.7 (i), 1.14 (iii) and 1.27. 

2. SYMMETRIC PROCESSES 

2.1. Definition. Let q e Ss(P, T) and let q+ e Ps(P, T) be positively induced by q. 

The symmetric pseudoprocess q is said to be compositive or transitive iff the right 
pseudoprocess q+ is compositive or transitive, respectively. 

The symmetric pseudoprocess q is called a symmetric process in P over T iff it is 
compositive and transitive. 

The sets of all compositive symmetric pseudoprocesses, of all transitive symmetric 
pseudoprocesses and of all symmetric processes in P over T will be denoted by 
Ssc(P, T), Sst(P, T) and S(P, T), respectively. 

2.2. Lemma. Let q e Ss(P, T), let q+ e Ps(P, T) be positively induced by q and let 
q~ePs(P, — T) be negatively induced by q. Then the following assertions are 
equivalent: 

(i)qeSsc(P,T). 

(ii) q+ePsc(P,T). 

(iii) q-ePsc(P, - T ) . 

0V) v<\u c v<\t o Au for all u ^ t ^ v in T. 

(v) vqu <=• v<\t ° Au for all v g t ^ u in T. 

(v0 v^u c v<\t ° Au for all u,v,teT, t between u, v. 

Proof follows from 2A, (1.10.2), (RC) in 1.1, (1.5.1) and (1.10.4). 

2.3. Lemma. Let q e Ss(P, T), let q+ e Ps(P, T) be positively induced by q and to 
q~" e Ps(P, — T) be negatively induced by q. Then the following assertions are 
equivalent: 

(i)qeSst(P,T). 

(ii) q+ e Pst(P, T). 

( i i i )q-ePs t (P , - T ) . 

(iv) „q, o ,q„ <= pq„ for all u £ t ^ v in T. 

(v) „q» o ,qB <= „q„ for all v g. t £ u in T. 

(vi) „q, o ,q„ <= 1)q„ for fljj M, t>, f e T, f between u, v. 
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2.4. Lemma. Let q e Ss(P, T). Then the following assertions are equivalent: 

( i )q 6 S(P ,T) . 

(ii) v^u = v<\t © fTu /0 r a// u,v,teT, t between u, v. 

2.5. Lemma. I/ q e Ssc(P, T), then 

Z)q+ = Dq = Iq , 

Dq- = { ( X , W ) G P X ( - T ) | ( X , -u)eDq}. 

2.6. Lemma. Let q e Ss(P, T) and let I be an arbitrary set. Then the following 
assertions hold: 

(i) If sz Sq, J an interval in T, then s\j e Sq. 

(ii) If s{ e Sqfor iel are such that Dnst is an interval in T, then nst e Sq. 

(iii) / / q is transitive and if steSq with iel are such that DSi n DSJ + 0 and 

st u Sj is a map for all i, j e I, then st e Sq. 

2.7. Lemma. Let q e Sst(P, T), (x, u) e Dq. Then the following assertions hold: 

(i) If v, w e T, v between u, w, zwqvy, yvqux, then also zwqux. 

(ii) Let (y, v) e Dq be such that yvqux. If v = e~(x, u) or v = e+(x, u), then (y, v) 
is a start point or an end point of q, respectively. 

2.8. Lemma. Let q e Ssc(P, T), (x, u) e Dq, u,v,weTn (d~(x,u), d+(x, w)>, 
v between u, w. If yvqux, zwqux, then also zwqvy. 

2.9. Theorem. Let q e Ssc(P, T) have global unicity and let s :T -» P. Then seSq 

iff the following two conditions are satisfied: 

(i) Ds is an interval in T; 

(ii) there exists ue Ds such that s(v)vqus(u) holds for all v e Ds. 

Proof follows easily from Definition 1.13 and Lemma 2.8. 

2.10. Theorem. Let q e Ss(P, T). If q is solution complete, then it is compositive. 

Proof. According to Theorem 1.28 the right pseudoprocess q+ is solution complete 
so that it is compositive (see Theorem 3.8 in [5]). Now apply Definition 2.1. 

2.11. Definition. Let q e Ss(P, T), (x, u)e Dq, s c P x T. The relation s is called 
a characteristic solution of q through the point (x, u) iff it satisfies the following two 
conditions: 

(i) Dt = {v e T | card (tqux) = 1 for all teT, t between u, v}; 

(ii) s(v)vqux holds for all VGDS. 
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2.12. Lemma. Let q e Ssc(P, T) have bilateral local unicity at a point (x, u) e Dq 

and let s be the characteristic solution of q through (x, u). Then se Sq with 

„ • r +/ \ 7+/ \-> / e + ( i « ) if d+(x, u) = + 0 0 , 
sup D. = mm {.•(,, „), ̂  . )} - ( ^ B» . f ^ ^ < + ^ 

M D, - ma* {.-(», „), d-(,, .)) - ( •-('• »> * f_f' » > - - » • 
\ a (x, u) if a (x, u) > — co . 

2.13. Remark. In Definition 3.10 in [5], each right pseudoprocess p in P over T 
is associated with the maximal compositive right pseudoprocess Ap in P over T 
contained in p, the so called lower modification of p. The construction of the lower 
modification of a right pseudoprocess described in item 3.12 in [5] is applicable to 
symmetric pseudoprocesses as well. However, this is not necessary, because, as will 
be shown, the maximal compositive symmetric pseudoprocess contained in a given 
symmetric pseudoprocess q, which will be called again the lower modification of q, 
can be constructed directly from the lower modifications of the pertinent right 
pseudoprocesses q+ and q"\ 

2.14. Theorem. Let q e Ss(P, T), let q + e Ps(P, T) be positively induced by q, 
let q~ e Ps(P, T) be negatively induced by q, let Aq+ be the lower modification 
of q+ and let Aq~ be orientation-change produced from Aq + . Then Aq"* is the 
lower modification of q". 

Proof. According to Definition 1.8, Aq" e Ps(P, — T). First we shall prove that 
Aq~ is compositive. 

The right pseudoprocess Aq+ being the lower modification of q+ is compositive, i.e. 

(2.14.1) / q +
f l = > / q + ro r

A q +
l l for all u ^ t ^ v in T. 

Hence 

(2.14.2) G V , , ) - 1 - a f / q V i V . ) - 1 for all u£t£v in T. 

According to (1.10.1) it is 

(2.14.3) (0
Aq+«)_ 1 = - t t

A q - - „ 

so that 

(2.14.4) GAq +
 r o r

A q +
a ) - 1 = G A q +

K ) - 1 o ( i ;
A q +

 r)-1 = W - t o -t
A<\~-v 

holds for all u <; t <* v in T. Substituting from (2.14.3) and (2.14.4) into (2.14.2) 
we obtain 

- . / q " - * c - M
A q~- r o -*Aq~-„ for all -t? ^ - t ^ - w in - T . 

Thus Aq~ is compositive. 
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Now we shall prove that Aq~ is the maximal compositive right pseudoprocess 
in P over — T contained in q~. 

Let p e Psc(P„ -T) be such that Aq~ c p e q~. Then 

(2.14.5) v
Aq~u <= vpu cz vq~u for all u S v in - T . 

Denote by p' the right pseudoprocess in P over T which is orientation-change produced 
from p. From (2.14.5) and (1.10.1) one obtains 

( -VV-*)" 1 cz _up'„v cz _uq
 + _v for all - v ^ -w in T, 

which can be written equivalently as 

V c z p ' c z q + . 

Since Aq+ and p' are compositive, it is necessarily Aq+ = p', hence Aq~ = p. 
We have proved that Aq~ is the lower modification of q". 

2.15. Theorem. Let q e Ss(P, T), let q+ e Ps(P, T) be positively induced by q and 
let Aq+ be the lower modification of q + . Then the symmetric pseudoprocess 

(2.15.1) Aq = A q + u ( A q + ) " 1 

is the maximal compositive symmetric pseudoprocess in P over T contained in q. 

Proof. Since Aq+ is compositive, Aq is compositive as well. 
Let ~q e Ssc(P, T) be such that Aq cz ~q cz q. Then 

(Aq+ u (V) - 1 ) <= rq + u (V) - 1 ) <= (q+ u (q+)^) . 

Hence, according to 1.12, one obtains A q + c z ~ q + c z q + . Since Aq+ is the lower 
modification of q+ and ~q+ is compositive, k is necessarily Aq+ = ~q+, hence 
Aq = ~q follows by virtue of Lemma 1.12. 

2.16. Definition. Let q e Ss(P, T). The symmetric compositive pseudoprocess A q 
in P over T defined by 

(2.16.1) Aq = A q + u ( A q + ) ~ 1 

is called the lower modification of the symmetric pseudoprocess q. 

2.17. Remark. One may verify easily that 

ö л q = Ðдq+ c Ð q + c Dq. 

If, in addition, Da = Iq, then 

Dлą = Dлq+ = Ðą+ = Dq 
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2.18. Theorem. Let qt e Ss(P, T)for f = 1, 2 and let q+ be the right pseudoprocess 
positively induced by q,-. Then qt n q2 e 55(1°, T) and its /0wer modification is the 
compositive symmetric pseudoprocess q t A q2 m P over T defined by 

(2.18.1) qi A q2 = (q+ A q2+) U (q+ A q j ) " 1 , 

where q+ A q+ denotes the lower modification of the right pseudoprocess q+ n q2 . 

Proof. According to the assertion (i) of Lemma 1.7 it is 

qi = qi+ u ( q ^ ) ' 1 , q2 = q2
+ u (q^)" 1 

so that 
qi n q2 = (q+ n q2+) u (q+ n q^)" 1 . 

Hence and from 1.7 (i) one obtains 

(2.18.2) (q. n q2)+ = q+ n q2
+ . 

Since the lower modification of q+ n q+ is q+ A q+ , the equality (2.18.1) follows 
now directly from (2.18.2) and (2.16.1). 

2.19. Theorem. Let q e Ss(P, T), Zef Aq be its lower modification. Then SAq = Sq. 

Proof. Applying Theorem 6.14 to the equalities 

q = q + u ( q + ) - 1 , *q = A q + u ( A q + ) ^ 

we obtain Sq = Sq+, SAq = SAq+. Theorem 3.14 in [5] yields SAq+ = Sq+. Thus 
SAq = Sq. 

2.20. Corollary. Ler ql5 q2 e Ss(P, T). Then Sq iAq2 = Sq inq2 . 

3. LOCAL BEHAVIOUR OF SYMMETRIC PSEUDOPROCESSES 

3.1. In Section 5 of the paper [5] we have investigated the local behaviour of right 
pseudoprocesses. Let us recall the basic notions and notation which will be used in 
the sequel. 

Given a (right or symmetric) pseudoprocess r in P over T, the symbol Lr will denote 
the set 

(3.1.1) Lr = {(s9u)eSt xT\ueD.}. 

Let p e Ps(P, T), (x, u) e Dp. Then p is said to have r ight (or left) local exis tence 
o f s o l u t i o n s a t t h e p o i n t ( x , «) iff the following conditions are fulfilled: 

(r)(x9u)$£p(or(x9u)t<?p); 

(ii) There exist e > 0 and se Sp such that 

<w, u + 8> n T c Ds (or <u — e, u) n T e Z)s) . 
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A pseudoprocess p is said to have bilateral local existence of solutions at 
the point (x, u) iff it has right local existence of solutions at the point (x, u) if 
(x, u) e Dp — Sp and left local existence of solutions at the point (x, u) if (x, u) e 
e Dp — Sfp. A pseudoprocess p is said to have right or left or bilateral local 
existence of solutions iff it has the property at each point (x, u)e Dp. 

Let p, ~pe Ps(P, T). Then ~p is said to determine the local behaviour of p 
(which is shortly written as ~ p -< p) iff ~ p c p and there exists a map 

(3.1.2) fc : Lp -• R 

such that fc(s, u) > u for u < sup Ds, k(s, u) = u for u = max D$ and 

(3-1.3) . s|<«,fc(s.«)> e S~p . 

A pseudoprocess ~p is said to determine the bilateral local behaviour of p 
(which is shortly written as ~ p =̂  p) iff ~ p c p and there exist maps 

(3.1.4) klfk2:Lp->R 

such that 

kt(s, u) < u for inf Ds < u , kt(s, u) = u for min Ds = u , 

ki(s> w) > w for sup Ds> u , fc2(s, u) = u for max Ds = u 

and 

(3-1.5) S|<fct(s,U),fc2(s,M)> e ^~P " 

Now, let q e Ss(P, T) and q+ e Ps(P, T) be positively induced by q. According to 
Theorem 1.14 (iii) it holds 5q = 5q+. This enables us to define the corresponding 
notions related to the local existence of solutions and to the local behaviour of 
pseudoprocesses for symmetric pseudoprocesses in a natural way as follows. 

3.2. Definition. Let q e Ss(P, T), let q+ e Ps(P, T) be positively induced by q and let 
(x, u) e Dq. The symmetric pseudoprocess q is said to have right or left or bilateral 
local existence of solutions at the point (x, u) iff the right pseudoprocess q+ has right 
or left or bilateral local existence of solutions at the point (x, u), respectively. 

The symmetric pseudoprocess q is said to have right or left or bilateral local 
existence of solutions iff it has the property at each point (x, u) e Dq. 

3.3. Definition. Let q e Ss(P, T), p, ~p, q+ e Ps(P, T), ~p, q" e Ps(P, - T), where q + 

is positively and q"" negatively induced by q. The right pseudoprocess ~p, ~p or p 
is said to determine the negative local behaviour, the positive local behaviour or 
the local behaviour of the symmetric pseudoprocess q (which is shortly written as 
*P =i q> ~P •< q or p -< q) iff ~p -< q~, ~p <q+, or p -< q + . 
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Let q, ~q e Ss(P, T). The symmetric pseudoprocess ~q is said to determine the 
local behaviour of the symmetric pseudoprocess q (shortly written as ~q =< q) iff 
~q+ =< q, where ~q+ is the right pseudoprocess positively induced by ~q. 

3.4. Remark. If q, ~q e Ss(P, T), ~q =< q, then D~q c Dq. If, in addition, Dq = Iq, 
then D~q = Dq. This equality holds in particular if q e Ssc(P, T). 

Since Definitions 3.2 and 3.3 are immediate generalizations of Definitions 5.2, 5.3, 
5.5 and 5.6 from [5], it is natural that many results valid for right pseudoprocesses 
remain valid as well when formulated for symmetric pseudoprocesses. Some results 
of this kind are given in what follows. 

Similarly as in [5] many assertions concerning the relations •< and =̂  may be 
formulated simultaneously. It will be done using the symbol < . In these assertions 
the symbol < has to be replaced either by -< or by = .̂ 

3.5. Lemma. Let q e Ss(P, T), pePs(P, T), ~pePs(P, - T ) . Then the following 
assertions hold: 

(i) If p < q, then Sp c Sq, Dp cz Dq, £p = £qn Dp. 

(ii) If ~ p ^ q , then S~p c Sq-. 

(iii) If p ^ q, then <fp = Sq n Dp, 9>p = &>q n Dp. 

(iv) If p -< q and p has right or left local existence of solutions at each point, 
then Dp = Dq, £p = Sq\ if, in addition, p =< q, then also S?p = S?q. 

3.6. Lemma. Let q, ~q, ~q e Ss(P, T). If q ~=^ ~q, ~q =̂  q, then ~q =< q. 

3.7. Lemma. Let p, ~ p e Ps(P, T), q e Ss(P, T), ~p c p c q. If ~p < q, then 
p < q. 

3.8. Lemma. Let p e Ps(P, T), q, ~q € Ss(P, T), p c ~q c q. If p < q, then p < ~q. 

3.9. Lemma. Let p e Ps(P, T), q e Ss(P, T). Then p < q iff A p < q, where A p is 
the lower modification of p. 

3.10. Lemma. Let p, ~p e Ps(P, T), q e Ss(P, T). Then the following assertions are 
equivalent. 

(i) p < q, ~p < q. 

(ii) p n ~p < q. 

(iii) p A ~p < q. 

3.11. Lemma. Let q, ~q, ~q e Ss(P, T). If ~q =< q, then ~q n q~ -< q n ~q. 
Especially, if ~q =< q, ~q =< q, /A^ ~q n ~q =< ~q, ~q n ~q =<~q. 
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3.12. Lemma. Let q G Ssc(P, T), ~q, ~q e Ss(P, T), q < ~q, q =< ~q. Then q+ c 
c ~ q + A *q + , q - c ~q" A ~q~, q c ~q A ~q. 

3.13. Theorem. Let q € Ss(P, T), p G Ps(P, 7) and let p' e Ps(P, - T) be orientation 

change produced from p. Then the following assertions hold: 

(i) p ' ^ q i f f p c q and there exists a map h~ : Lq-+ R such that 

h~(s, u) < u for inf Ds < u , h~(s, u) = u for min Ds = u 

and 

(3.13.1) s(t) tpv s(v) for all h~(s, u) = v = t = M in D s . 

(ii) p -< q iff p c q and fftere exists a map ft + : Lq -> R SMC/Z that 

ft+(s, M) > M for M < sup £>s, ft+(s, M) = M for M = max Ds 

and 

(3.13.2) s(r) tpv s(v) for all u = v = * = ft+(s, M) in D s . 

(iii) p =̂  q iff p cz q and fftere exisf maps ft+, ft"" : Lq -> R such fftaf 

ft+(s, M) > M for M < sup Ds, ft+(s, M) = M for M = max Ds, 

ft"(s, M) < M for inf £>s < u , ft"(s, M) = u for u = min Ds 

and 

(3.13.3) s(f) -p. s(v) for all h~(s, u) = v = t = ft+(s, M) in D s . 

Proof. Before proving the assertion (i) let us recall that (1.8.1) and (1.10.1) yield 
p' c q~ iff p <z q+ and according to 1.14 (ii), s e Sq = Sq+ iff there exists s' G 5 q -
such that s'(t) = s(- f ) for all -te Ds. 

Suppose p' ^ q, i.e. p' -< q" and prove that (3.13.1) is fulfilled. Take (s, M) G Lq 

arbitrary. According to the assumption there exists a real h'(s', — M) such that 

(3.13.4) s'(-v) .vpLts'(-t) for all - M = - * = - t ; = h'(s', - M ) in Ds. 

Hence, setting h~(s, u) = — ft'(s', — M) and using (1.8.1), one easily obtains (3.13.1). 
Suppose now that the condition (3.13.1) is fulfilled and prove that p' -< q". The 

condition (3.13.1) can be written in the form 

(3.13.5) s(-t) „tp„v s(-v) for all h~(s, u) ^ -i> ^ - f ^ u with t;, f G DM. , 

i.e. 

s'(t>) „p; sf(t) for all - M ^ ^ t / < -f t"(s , M) with v, teD$,. 
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Setting ft'(s', w) = — ft~(s, — w) we conclude that for each (s', w)eLq- there exists 
a real ft'(s', w) such that 

*'(') tPv s'(v) for all u ^v ^t S h'(s', u) in IV . 

Thus p' -< q"\ 
The assertions (ii) and (iii) follow immediately from Definition 3.3. 

3.14. Theorem. Let q, ~q e Ss(P, T). Then the following three assertions are 
equivalent: 

(0 ~q ^ q; 

(ii) ~ q + < q + ; 

(iii) ~q~ =< q". 

Proof follows easily from Theorem 1.14 and Definition 3.3. 

3.15. Theorem. Let q e Ss(P, T), ~qeSst(P, T). If ~q+ -< q, ~q~ ^ q, then 
~ q < q . 

Proof. According to 1.12 the inclusion ~q c q is equivalent to any one of the 
inclusions ~q+ cz q+ and ~q"~ cz q~. 

To each (s, w) e Lq we can assign reals ft+(s, w) and ft~(s, w) as in Theorem 3.13 
such that 

(3.15.1) s(t) f~qy s(v) for all w ^ v <: t ^ ft+(s, w) in T 

and 

(3.15.2) s(t) t~qv s(v) for all h'(s, u) ^ v %t^u in T. 

Especially, 

s(t) ,~qM s(w), s(w) u~<\v s(v) for all ft"(s, u) £ v £ u £ t £ ft+(s, w) in T. 

Since ~q is transitive, it holds also 

(3.15.3) s(t) ,~qu s(v) for all ft"(s, w) ^ u = w g f = ft+(s, w) in T. 

Finally, (rq*)"1 = v~qt so that s(v) „~qf s(t) holds iff s(t) t~qv$(v). This together 
with (3.15.1), (3.15.2) and (3.15.3) yields 

<*)rq*<t>) for all t?,rGDsn<ft-(s,w),ft+(s,w)>, 

which was to be proved. 
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3.16. Definition. Let q, ~qeSs(P, T). The symmetric pseudoprocesses q and ~q 
are said to be negatively locally equivalent or positively locally equivalent or 
locally equivalent (which is shortly written a sq^^~qorq -<>*- ~qorq=^^~q) 
iff there exists p e Ps(P, - T) or ~p e Ps(P, T) or ~p e Ps(P, T) such that p ^ q and 
p ^ ~q or ~p -< q and ~p-<~qor*p=^q and wp =̂  ~q, respectively. 

3.17. Lemma. Let q, ~q e Ss(P, T). Then the following assertions hold: 

0) q £h ~q iff q" <> ~q~. 
(ii) q <> ~q iff q + <> ~q + . 

(iii) q ^ > ~ q iff q + ^ ^ ~q + . 

3.18; Lemma. Let q, ~q e Ss(P, T). Then the following three assertions are 
equivalent: 

(0 q £h ~q; 
(ii) q J n ~ q " -< q~, q~ n ~q " -< ~q~: 

(iii) q " A ~q~ -< q " , q " A ~q _ -< ~q " . 

3.19. Lemma. Let q, ~q e Ss(P, T). Then the following three assertions are 
equivalent: 

0) q -<>• ~q; 

(ii) q + n ~ q + < q + , q+ n ~q+ -< ~q + ; 

(iii) q+ A ~q+ -< q+, q+ A ~q+ < ~q+. 

3.20. Lemma. Let q, ~q e Ss(P, T). Then the following three assertions are 
equivalent: 

(0q^>~q; 
(ii) q + n ~ q + - < q + , q + n ~q + * ~q + ; 

(iii) q + A ~q + =< q + , q+ A ~q + =< ~q + . 

3.21. Theorem. The positive local equivalence, the negative local equivalence 
and the local equivalence of symmetric pseudoprocesses in P over T are equivalence 
relations in the set Ss(P, T). 

Proof. See 3.17 and Theorem 5.15 in [5]. 

3.22. Theorem. Let q, ~q e Ss(P, T) have right local existence of solutions. Then 
q •<>- ~q iff the following conditions are fulfilled: 

(i) Dq = D~q, <£q = S~q; 
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(ii) there exists a map 

r+:Lą-+R 

such that 

r+(s, u) > u for u < sup Ds, r+(s, u) = u for u = max Ds 

and 

S|<«,r + (s,«)> e S~q • 

P r o o f follows from (1.6.3), 1.21, 1A4 (hi), 3.17 (ii) and Theorem 5.16 in [5]. 

3.23. Theorem. Let q, ~qeSs(P, T) have left local existence of solutions. Then 
9 =1.= 9 iff the following conditions are fulfilled: 

(i) Dq = D~q, ^ q = «^~q; 

(ii) there exists a map 

r" : Lq - R 
such that 

r~(s, u) < u for inf Ds < u , r"(s, u) = u for min Ds = u 

and 
S|<r-(s,«),«> 6 ^ - q * 

P r o o f is similar to that of Theorem 5.16 in [5]. 

3.24. Theorem. Let q, ~qeSs(P, T) have bilateral local existence of solutions. 
Then q = ^ ^ ~q iff the following conditions are fulfilled: 

(i) Dq = D~q, <?q = <f ~q, ^ = ^ ~ q ; 

(ii) there exist maps 
r+,r~ :Lq^R 

such that 

r+(s, u) > u for sup Ds> u , r+(s, u) = u for max Ds = u , 

r~(s, u) < u for inf Ds < u , r~(s, u) = u for min Ds = u 
and 

S |<r-(s,«),r+(s,tt)>e S~q • 

P r o o f follows from (1.6.3), 1.21, 1A4, 3.17 and Theorem 5.21 in [5]. 

3.25. Theorem. Let T be a closed subset of R and let q, ~q e S(P, T) be solution 
complete processes. Then q -=^̂ s ~q iff q = ~q. 

P r o o f follows from 3.17 (iii) and Theorem 5.21 in [5]. 
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