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Časopis pro pěstování matematiky, rol, 102 (1977), Praha 

LATTICES OF TOLERANCES 

IVAN CHAJDA, Pferov, and BOHDAN ZELINKA, Liberec 

(Received January 17, 1975) 

In the paper [12] the concept of a tolerance is introduced. The tolerance relation 
(more briefly tolerance) is a reflexive and symmetric binary relation on a given set. 
Compatible tolerances are defined on algebras; they are a generalization of con­
gruences. The concept of the compatible tolerance was introduced first for graphs 
in [13], later it was defined for arbitrary algebraic structures in [14] and [15]. The 
papers [7], [9], [10], [13], [14], [15] concern the investigation of the existence of 
compatible tolerances on various algebras. Although the conditions of the existence 
of compatible relations on algebras were investigated in some papers, there are still 
very few results on the set of all compatible tolerances on a given algebra. Only in the 
paper [7] it was proved that the set of all compatible tolerances on a given algebra 
forms a lattice with respect to the set inclusion. The aim of this paper is to find 
further properties which characterize this lattice. 

1. LATTICE OPERATIONS IN LT(%) 

By the symbol 21 = <-4, &y we denote an algebra 21 with the support A and with 
the set 3F of fundamental operations. A tolerance on a non-empty set M is a reflexive 
and symmetric binary relation on M. A binary relation R on the set A is called com­
patible with 21 = <-A, ^ > , if for any n-ary operation / e $F9 where n is a positive 
integer, and for arbitrary elements al9..., an9 bl9..., bn of A fulfilling a{Rbi for 
i = 1 nwe hav^ f(al9..., an) R f(bl9..., bn). If R is moreover a tolerance on A9 

we say that it is a compatible tolerance on 21. By the symbol LT(2l) we denote the 
set of all compatible tblerances on 21. Evidently L T(2I) =# 0 for every 21, because 
the identity relation I (such that x I y o x = y) and the universal relation U (such 
that x U y for each x and each y) are compatible tolerances on 21. Further, each 
congruence on 21 is a compatible tolerance on 21. 

Theorem 1. Let 21 = <_4, &} be an algebra. Then LT(2l) is a complete lattice 
with the least element I and the greatest element U with respect to the set inclusion. 
The meet in LT(2I) is egual to the set intersection. 
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Proof follows immediately from Theorem 17 in [11]. 

It is evident (see [7]) that in general LT(3l) is not a sublattice of the lattice of all 
tolerances on the support A. The join in the lattice LT(3l) need not beequal to the 
set union, because the set union of some compatible tolerances on A need not be 
compatible with 31. Nevertheless, IJT7.= V Tr 

yeT ye-T 

In the sequel we shall use the concept of a polynomial on an algebra, as was 
defined by GRATZER [5]. If a polynomial p on an algebra 31 contains variables 
xl9..., xn and no other variables, then it is denoted by p(xl9..., xn). Let al9 ...,an 

be elements of A. If we substitute for each xt the element at (for / = 1, . . . , n) 
wherever xt occurs in the polynomial p(xl9..., xn)9 then we obtain an element of A 
which will be denoted by p(al9..., an). 

Theorem 2. Let 31 = <A, J^> be an algebra and let Ty e LT(3l)/0r each y from 
a subscript set T. Let Tbe a binary relation on A defined so that a Tb if and only 
if there exist elements yl9..., ym of T and elements al9..., am, bl9..., bm of A, 
where m is a positive integer, and there exists a polynomial p(xl9..., xm) on 31 
such that at Tyi btfor i = 1, ..., m and p(al9..., am) = a, p(bl9..., bm) = b. Then 

T= vrr 
Proof. Evidently Ty £ T for each yeT; it suffices to choose m = 1, a1 = a, 

W = b9 p(x^ = x^This implies the reflexivity of T. The symmetry of Tis evident 
from its definition, therefore Tis a tolerance on A. Now let cl9..., cn9 dl9..., dnbt 
elements of A such that ct Tdt for i = 1, . . . , n and let fe <F be an n-ary operation. 
Then there exist elements cil9../, cimr dil9..., dimt of A and elements yil9..., yim 

of T such that ctj TyiJ d{j for each i = 1, . . . , n and I = 1, . . . , mt (where mt is a posi­
tive integer dependent on i). Further, there exist polynomials pt(xl9..., xmi) of 31 
such that Ci = pi(cil9..., cimi)9 d{ = Pi(dil9...9 dimi) for i = 1, . . . , n. According to 
the definition of a polynomial, f(pu ..., pn) is again a polynomial on 31 and 

fipu • ••> *») = f(Pi{cu> • • •» c lmi), • • -5 A(C»I, ..., cnmn)) , 
f(dl9..., dB) = f(px(dll9..., d l m i) , . . . , pn(dnl,..., rfBWn)), 

therefore c{J TyiJ d{j implies f(cl9..., cn) Tf(dl9..., dn)9 which means that TeLT(3l). 
The tolerance Tis compatible with 31 and contains Ty for all yeT9 therefore V Ty £ 

yer 

c T. Let ae A9beA and a Tb. Then there exist elements al9..., an9 bl9..., bn of A 
and elements y^ ..., yn of T and a polynomial p(xl9,.., xn) on 31 so that at Tyi bt 

for i = l , . . . , n, jp(al9..., an) == a, p(bx , . . . , bn) = b. Then a{ ( U -Ty) bj and also a, 
yer 

( V ry) bt. But V Ty eLT(3l), therefore for each n-ary operation fe& we have 
yer yer 

/ (c i l f . . . , an) ( V Ty) / (&!, . . . , bn) and the compatibihty of V Ty implies 
yer yer 

a = p(al9..., an) (V Ty) p(bl9..., 6B) = b . 
yer 

As a and 6 were chosen arbitrarily, we have T £ V Ty and thus T~yTy. 
yer yer 
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2. TRANSITIVE HULLS OF TOLERANCES 

Now we shill study some interrelations between the lattice L T(9I) and congruences 
on the algebra 91. 

Definition 1. Let Ty be a tolerance on a set M for each y e T9 where F is a subscript 
set. The least (with respect to the set inclusion) equivalence E on M such that Ty S E 
for each yeT will be called the transitive hull of the tolerances Ty for y e F 

Thus for |F| = 1 we obtain that the transitive hull of a tolerance T on M is the 
least equivalence E on M such that T s F. If Tis an equivalence, then T = E. 

The following three propositions are evidently true. 

Proposition 1. / / Rl9 ...,R„ are binary relations compatible with 91 (where n is 
a positive integer), then also RiR2 ... Rn is a binary relation compatible with 91. 

Proposition 2. / / {-Rjfe/ (where I 4= 0) is a system of binary relations compatible 
with 91, which is directed upwards with respect to the set inclusion, then also \J Rt 

is a relation compatible with 91. ieI 

Proposition 3. / / Tt e LT(9l)/0r each ifrom a non-empty subcsript set I, then the 
transitive hull C of the tolerances Tt is the relation \)ThTi2... Tin, where the union 
is taken over all positive integers n and all subscripts il9 i2,..., in from I. C is 
thus expressed as a union of a system of relations which is directed upwards. 

Now we shall present some theorems. 

Theorem 3. Let A be a set, let Ty be a tolerance on A for each y e F (where F 
is a subscript set). Let Cy be the transitive hull of Ty and let C be the transitive 
hull of all Cyfor yeT. Then C is the transitive hull of all Tyfor yeT. 

Proof follows from Propositions 1, 2, 3. 

Theorem 4. Let Ty e LT(9I)/or y e F and let C be the transitive hull of the toler­
ances Tyfor yeT. Then C is a congruence on 91. 

Proof. By Proposition 3 the relation C is the union of a system of products of 
elements of {T}y e r which is directed upwards. By Proposition 1 each of these products 
is compatible with 91, by Proposition 2 the union of this system is compatible with 91. 
Thus C is compatible with 91. As C is an equivalence on the support of 91, it is a con­
gruence on 91. 

Corollary 1. Let T y eLT(9 l ) /o r yeT and let C be the transitive hull of Tyfor 
yeT. Then CeLT(%) and V Ty c: C. 

yer 

Definition 2. Let Lbe a lattice. A mapping t of Linto itself is called a closure opera­
tion on L, if for any a e L, b e Lthe following three conditions are satisfied: 

(i) a £ t(a); 

(ii) t(t(a)) = t(a); 

(iii) t(a) v t(b) £ t(a v b). 
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Theorem 5. Let 21 = <A, #"> be an algebra, let LT(2l) be the lattice of all com­
patible tolerances on 21. For each TeLT(2l ) let t(T) be the transitive hull of T. 
Then t is a closure operation on L T(2I). 

Proof. The conditions (i) and (ii) follow from the definition of the transitive hull. 
Further, the same definition implies also the implication Tx £ T2 => t(Tt) c t(T2) 
and we have t(T') c t(T' v T"), t(T") s t(T' v T"), which means t(T') v f(T") c 
£ f(T' v T") for any T' G L T ( 4 T" e LT(2t), which means (iii). 

Now we shall add some remarks concerning graphs of tolerances. If Tis a tolerance 
on a set M, then the undirected graph G(T) whose vertex set is M and in which two 
vertices x, y are adjacent if and only if x Ty is called the graph of T. 

Theorem 6. L£t Tbe a tolerance on a set M, let G(T) be the graph of T. Let E be 
the transitive hull of T Then each equivalence class of E is the vertex set of a con­
nected component of G(T) and vice versa. 

This assertion is evident. 

Theorem 7. Let 21 = <A, #"> be an algebra. For each tolerance TeLT(2I) which 
is not a congruence choose a partition P(T) of A with these properties: 

(i) P(T) is a refinement of the partition of A into equivalence classes of the 
transitive hull C(T) of T; 

(ii) if Ku K2 are two distinct classes of P(T) which are subsets of the same 
equivalence class of C(T), then there exist elements kteKu k2eK2 such that 
K i 1 K2. 

Let E(T) be the equivalence on A whose equivalence classes form the partition 
P(T), let C be a congruence on 21 which contains all E(T) for all tolerances Te 
e LT(2l) which are not congruences. Then each tolerance compatible with the factor-
algebra 21/C is a congruence. 

Proof. Let Tx be a tolerance compatible with 21/C. Let x be the natural homo-
morphism of 21 onto 21/C. Let T2 be a tolerance on A defined so that a T2 b9 if and 
only if x(a) Tt #(b). It is easy to prove that T2 is a tolerance compatible with 21. 
Suppose that Tx is not a congruence. Then neither T2 is a congruence. Thus the parti­
tion P(T2) was chosen in accordance with the assumptions of the theorem and there 
exists an equivalence E(T2) corresponding to it. We have E(T2) .= C. Let x, y be 
two elements of A for which x C(T2) y, where C(T2) is the transitive hull of T, but 
not x T2 y; as T2 is not a congruence, such a pair of elements must exist. If x C y, 
then x(x) = x(y) ai1d x(x) Tt x(y), because Tx is reflexive. But from the definition 
of T2 we have x T2 y, which is a contradiction. If x and y are not in C, then neither x 
nor y are in E(T2). But, as they are in C(T2), there exist elements x\ y' such that 
x E(T2) x\ y E(T2) y\ x' T2 y'. As x E(T2) x and E(T2) <= C, we have x C x' and 
analogously y C y'. This means x(x) = x{x% x(y) = x(y')- But by the definition 
of T2, from x' T2 y' we have x(x') Tx * ( / ) , which means x(x) Tt x(y) and this implies 
x T2 y, which is again a contradiction. 
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An admissible colouring of a graph G is a partition of the vertex set of G such that 
no two distinct vertices of the same class of this partition are joined by an edge. 
If it has the Ininimal possible number of classes (colours), it is called a minimal 
admissible colouring of G. If Kl9 K2 are two distinct classes of a minimal admissible 
colouring of a connected graph G, then there exists a vertex k± e Kt and a vertex 
k2 e K2 such that kt and k2 are joined by an edge (otherwise we could substitute K± 

and K2 by their union and we should obtain in this way an admissible colouring 
with a smaller number of classes). Thus we have a corollary. 

Corollary 2. Let 91 = </l, «̂ > be an algebra. For each tolerance T compatible 
with 91 choose a partition P(T) such that the restriction of P(T) onto any equi­
valence class of C(T)9 where C(T) is the transitive hull of T, is a minimal admissible 
colouring of the corresponding connected component of G(T). Let E(T) be the 
equivalence on A whose equivalence classes form the partition P(T), let C be a con­
gruence on 91 which contains all E(T) for all tolerances TeLT(9l) which are not 
congruences. Then each tolerance compatible with the factor-algebra 91/C is 
a congruence. 

We have still another corollary. 

Corollary 3. Let 91 = <A, #"> be an algebra. For each tolerance T compatible 
with 91 which is not a congruence let E(T) be the least equivalence containing 
C(T) — T, where C(T) is the transitive hull of T. Then each tolerance compatible 
with the factor-algebra 91/C is a congruence. 

If Tx and T2 are two tolerances compatible with 91 with the same transitive hull, 
then evidently also their join has the same transitive hull. For their meet this need 
not hold. The subset of L T(9l) consisting of all tolerances with the given transitive 
hull is an upper subsemilattice of L T(9l), but it may have more than one minimal 
element. 

If T0 is a tolerance on A and Tis the least tolerance from L T(9I) which contains T0, 
we say that Tis generated by T0. 

Theorem 8. Let C be a congruence on an algebra 91 = <_4, ^">, let S(C) be the 
set of all tolerances from LT(9l) whose transitive hull is C. Let T be a minimal 
element from S(C). Then Tis generated by a tolerance T0 on A such that its graph 
G(T0) is a forest and the vertex set of each connected component of G(T0) is an 
equivalence class of C 

Proof. By Theorem 7 the vertex set of each connected component of G(T) is an 
equivalence class of C. In each of these connected components we choose a spanning 
tree; these spanning trees of all connected components of G(T) form a forest F* 
Define a tolerance T0 on A so that x T0 y if and only if x = y or x and y are joined 
by an edge in F. Then F = G(T0) and T0 £ T Suppose that there exists Tt e LT(9l) 
such that T0^T± c T (therefore Tt 4= T). Let C(T), C(T0), C(Tt) denote the 
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transitive hulls of T, T0, Tt respectively. As T0 £ T, any connected component of T0 

must be contained in a connected component of Tx and thus C = C(T0) £ CfjTj). 
As Tx c T, we obtain analogously C(Tj) £ C(T) = C, thus C £ C(TX) £ C and 
C(T^) = C. But this is a contradiction with the minimality of T. 

Theorem 9. Let 91 = <A9 «̂ > be an algebra, let C be a congruence of 91. Let F(C) 
be the filter of LT(9l) consisting of all elements of LT(9I) which are greater than 
or equal to C. Let 9I/C be the factor-algebra of 91 by C. Then fhere exists a join-
homomorphism of F(C) onto LT(9l/C). 

Proof. Let Te F(C), this means C £ T. Let x be the natural homomorphism of 91 
onto 9I/C. Define q>(T) as a tolerance on 9I/C such that x cp(T) y if and only if there 
exist elements x'9 y' of A such that x(x') = x, x(/) = y> *' -P/- The tolerance <p(T) 
is evidently compatible with 91/C. Now let T0 be a tolerance compatible with 91/C. 
Let Tx be a tolerance on A such that a Tx b if and only if x(a) T0 x(b). Again Tx is 
evidently compatible with 91. If c C d for some elements c, d of A, then x(c) = x(d), 
thus x(c) TA x(d) and this implies c Tx d; we have C £ Tt and thus Tt e F(C). 
Evidently p ^ ) = T0. We see that q> is a surjection. Now let TeF(C), f e f ( C ) . 
Let a (T v T') b. Then there exist elements al9 ..., an, bl9..., bn of A and a poly­
nomial p(xl9..., xw) of A such that P(als..., an) = a, ;>(&-,..., bn) = b and for 
each i = 1,..., n either af Tb;, or af T' bt. In the polynomial P(xl9..., xn) substitute 
each element c e A by the element /(c) and each operation / e #" by the operation 
on 91/C corresponding to / in the homomorphism xi w e obtain a polynomial 
p*(xl9..., O of 91/C. We have-p*(z(fli), • •., *(*„)) = x(fl), P*(x(*i). --.> *(*>„)) = 
= x(b) and for i = 1,..., n we have either x(*i) p(-T) *(&*) or x(<*i) <p(T') x(bt)-
Thus %(a) (q>(T) v <p(T')) /(b). We have proved cp(T v T') £ <p(T) v <p(T'). It 
remains to prove that q>(T) £ q>(T v T'), <p(T') £ cp(T v T'). If c <p(T) d for some 
elements c, d of 91/C, then there exist elements c', d! of .4 such that x(c') = c, x(d') = 
= d9 c' Td'. Then c' (T v T') d' and c = *(c') cp(T v T) x(d') = d, thus cp(T) £ 
£ <p(T v T'). Analogously <p(T') £ <p(T v T'). The relation <p(T v T') contains 
both (p(T) and <p(T') and is contained in <p(T) v <p(T'), therefore <p(T v T) = 
= <p(T) v <p(T') and <p is a join-homomorphism. 

We shall give an example showing that this theorem cannot be strengthened by 
substituting the word "join-homomorphism" by "homomorphism". 

Let 91 = (A9 J^> be a groupoid with the support A = {al9 al9 a3, b] and with 
a binary operation given by the following Cayley table: 

ö l Ű 2 Ö З b 

0 1 « 1 «з « 2 Я l 

« 2 « 3 a2 « i û>2 

« 3 a2 û i <*з flз 
b <*i « 2 a3 b 
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Let C be an equivalence on A whose classes are {ax, a2xa3}, {b}. It is evidently 
a congruence on 91. The set F(C) consists of the tolerance C, Tl9 T2, T3, U, where T{ 

for i = 1, 2, 3 is obtained from C by adding the pairs (ah b), (b, at), U is the universal 
relation on A. Evidently Tx A T2 = T- A T3 = T2 A T3 = C, Tt v T2 = 
= Tt v T3 = T2 v T3 = U. The factor-algebra 91/C consists only of two elements, 
therefore there are only two tolerances on it, the identity relation I0 and the universal 
relation U0. Suppose that there exists a homomorphism (p of F(C) onto LT(9I/C). 
If <p(C) = U0, then (p(T) = (p(T v C) = q>(T) v q>(C) = (p(T) v U0 = U0 for 
each TeF(C) and q> is not a surjection, which is a contradiction. Thus (p(C) = I0. 
Dually, if (p{U) = I0, then (p(T) = I0 for each T e F(C) and this is also a contradic­
tion. Thus (p(C) = I0, q>(U) = U0. From the elements (p(Tx), (p(T2), (p(T3) at least 
two must be equal, without loss of generality let (p(Tt) = (p(T2). Then U0 = (p(U) = 
= (p(Tx v T2) = (^(TO v q>(T2) = ^ (T^ = <p(Tt) A q>(T2) = ^ A T2) = <p(C) = 
= I0, which is a contradiction. 

Theorem 10. Let 91 = <A, J^> be a« algebra, let C be a congruence of 91. Let F(C) 
be the filter of LT(9I) consisting of all elements of LT(9I) w/nc/i are greater than 
or equal to C. Let 91/C be the factor-algebra of 91 by C. Then there exists a meet-
isomorphism ofLT(9I/C) into F(C). 

Proof. Let / be the natural homomorphism of 9t onto 91/C. Let TeLT(9l/C). 
By ^r('-") w e denote the binary relation on A defined so that x ^(T) y for x e A, 
y G A if and only if x(x) Tx(y)> We have \f/(T) e F(C); the proof is left to the reader. 
Now let F0(C) be the set of all i/^T) for TeLT(9l/C). Evidently each tolerance 
T0 eF(C) has the property that for any two congruence classes Kl9K2 of C the 
relation kx T0 fc2 holds either for each fcx eK t and each fc2 eK2, or for no kt eK1 

and no k2eK2; this property will be denoted by P. It is easy to prove that Tx = 
= ^(^(7\)), where (p is the homomorphism defined in the proof of Theorem 9; 
thus Tj e F0(C). Thus the subset of F(C) consisting of all tolerances with the proper­
ty P coincides with F0(C). The set F0(C) is closed under meet; if Tt e F0(C), T2 e 
G Fo(C) and Kl9 K2 are two congruence classes of C, then either kt Tx fc2, kx T2 k2 

for each kx eKx and each fc2 eK 2 , then fci (Tx A T2) fc2 for each fcx eKt and each 
fc2 eK 2 , or kx Ti k2 for some i from the numbers 1, 2 holds for no fct eK l 5 fc2 eK 2 , 
then fcx (T t A T2) fc2 holds for no kx eK2 and no fc2 eK 2 . We see that F0(C) is 
a lower subsemilattice of F(C). If TeLT(9l/C), then evidently (p($(T)) = T. Since 
we have ^(9(^0)) ^ To for each T0 G F0(C), we see that 1// is a bijective mapping 
and so is the restriction of (p onto F0(C); this restriction is equal to ij/'1. As q> is an 
order-preserving mapping, so is if/. As in F0(C) to any two elements their meet exists 
and is equal to their meet in LT(9I), xj/ must be a meet-isomorphism of LT(9I/C) 
onto F0(C), this means into F(C). 

We shall give an example showing that i// need not be an isomorphism. 
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Let 21 = <A, &) be the semigroup with the support A = {^I, 2̂> bl9 b2, ci9 c2, 

dl9 d2}9 given by the following Cayley table: 

Яl a2 Ьi b2 
Cí c2 di dг 

Ű1 Яl a2 b2 
ь2 c2 c2 d2 

d2 

a2 a2 a2 ь2 
b2 c2 

c2 
d2 d2 

Ьi b2 Ь2 Ьi bг d2 d2 dг d2 

b2 ь2 ь2 ь2 ь2 
dг d2 d2 dг 

c l 
c
2 c2 

d2 d2 
Cl c2 

d2 d2 

C

2 
c
2 c2 d2 

d2 c2 
c2 d2 dг 

dx 
d2 

d2 d2 d2 d2 
d2 dг d2 

d2 d2 d2 
d2 d2 d2 

d2 
d2 d2 

Let C be the congruence on 21 whose classes are {al9a2}, {bl,b2}, {ci9 c2}9 

{dl9 d2}. Let Tx be the congruence on 21 whose classes are {tfi> al9 bi9 b2}9 {cl9 c2, 
di> d2}9 let T2 be the congruence on 21 whose classes are {a%9 al9 cl9 c2}, {bi9 b2, 
dl9 d2}. We have Tt eF0(C), T2eF0(C). Let T = T± v T2. Then a2 Td2, because 
a2 Tx b2, a2 T2 c2, thus a2 = a2a2 Tb2 c2 = d2, but the elements al9 dx are not in T. 
As a x C a2, d1 C'd29 this means that T= Tx v T2$ F0(C) and F0(C) is not closed 
under join, thus \j/ is not an isomorphism of L T(2l/C) onto F0(C). 

Theorem 11. Let 2X = (A9 &} be an algebra, let C be a congruence on 2l4 Let J(C) 
be the ideal of LT(2t) consisting of all elements of LT(2l) which are less or equal 
to C. Let there exist a subalgebra 2I0 of 21 whose support A0 is one of the congruence 
classes of C. Then there exists a join-homomorphism OfLT(2l0) into J(C). 

Proof. Let TeLT(2I 0 ) , let a(T) be the least compatible tolerance on 21 which 
contains T. Then a(T) £ C; as C obviously contains T, this means a(T) e J(C). 
Now if T e J(C) and T is the restriction of T onto A0, then evidently T" e LT(2l0) 
and a(T") £ T. Thus a is a mapping of L T(2I0) into J(C). Now let T^eL T(2I0), 
T2 G L T ( 2 I 0 ) . Then a ( T j v a(T2) is a tolerance from J(C) which contains both Tt 

and T2. As it contains Tx and T2 and is compatible with 21, it must contain also 
Tx v T2, which means a(Tx v T2) c a(Tx) v a(T2). But evidently a(Tx) s 
£ a(Tx v T2),a(T2) £ a(Tx v T2), thus a ( T j v a(T2) s a(Tx v T2)anda(T t v T2) 
= a(T t) v a(T2). We see that a is a join-homomorphism of LT(2l0) into J(C). 

Theorem 12. Let 21 = <A, /F> be an algebra, let C be a congruence on 2t. Let 
J(C) be the ideal ofLT(2I) consisting of all elements ofLT(2I) which are less than 
or equal to C. Let there exist a subalgebra 2l0 of 21 whose support A0 is one of the 
congruence classes of C. Then there exists a meet-homomorphism of J(C) into 
LT(%). 

17 



Proof. Let Te J(C), let p(T) be the restriction of T onto .A0. Then evidently 
j8(T)eLT(9I0) and <x(P(T)) £ T, where a is the join-homomorphism from the 
proof of Theorem 12. Let LQ be the set of all elements of LT(9I0) which are images 
of elements of J(C) in the mapping /?. Evidently an element TeLT(9I0) is in L0 

if and only if the restriction of <x(T) onto A0 is equal to T. Let Tt e L0, T2 e L0 and 
consider T± A T2. 

For each Te J(C) the relation /?(T) is the intersection of T with the universal 
relation U0 on A0. Therefore fi(Tx A T2) = T±nT2nU0 = (Tx n U0) n (T2 n 
n U0) = j5(T2) A /?(T2). Thus the mapping /? is a meet-homomorphism of J(C) 
onto L0, this means into L T(9I0). 

3. COMPACTNESS ON THE LATTICE LT(50 

Definition 3. An element c of a complete lattice L is called compact, if for each 
subset M of L such that c ^ V * there exists a finite subset N of M such that c :g 

xeM 

^ V *• A lattice Lis called compactly generated, if each element of the lattice Lis 
xeJV 

a join of compact elements. 
This definition is from [11], p. 65, § 25. 

Definition 4. Let 91 = C4, ^"> be an algebra, a e A, b e A. By the symbol Tab we 
denote the least (with respect to the lattice ordering) tolerance from LT(9l) for 
which a Tab b holds. 

The correctness of this definition follows from Theorem 5. 

Theorem 13. The tolerance Tab is a compact element of the lattice LT(9l) for 
each aeA,beA9 where A is the support of the algebra 91. 

Proof. Let TyeLT(9I) for yeT9 where T is a subscript set and Tab £ V T r 
yeT 

Then aTabb implies a(\/Ty)b. By Theorem 2 there exist elements al9..., an9 
yer 

bl9..., bn of A9 elements yl9..., yn of T and a polynomial jp(xt,..., xn) on 91 such 
that p(al9..., an) = a, p(t l f ...9bn) = b and â  Ty. fcf for i = 1,..., n. Therefore 

n 

also a ( V Tyi) b. As Tflb is the least tolerance in LT(9I) fulfilling a Tab b9 we have 
n 

Tab = V Tyi. 
i » i 

Instead of a Tb we shall sometimes write (a, b) e T. 

Theorem 14. Let TeLT(9l)/or an algebra 91 = <A 

Proof. Let TeLT(9t), let ceA9 deA9 cTd. By Theorem 14 we have Tcde 

Theorem 14. Let Te LT(9l)/or an a/^ebra 91 = <A9 ^ > . Tften T = V Tab, 
(a,b)eT 
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eLT(2l) and thus cTcdd9 which implies c( V Tab) d; this means T = V Tab. 
(a,b)eT (a,b)sT 

Conversely, let c( V Tab) d; then by Theorem 2 there exist elements cl9..., c„, 
(fl,fr)eT 

dl9..., drt of A and tolerances Tf e {Tab; (a9 b) e T} for i = 1,..., n so that ĉ  Tf d, 
and there exists a polynomial p(xl9..., *„) of the algebra 21 so that p(cl9..., cn) = c, 
p(dl9..., dn) = d. As T( e {Tab; (a, b) e T}, there exist elements a(i)9 b\i) of A such 
that a(i) Tb(i) and Tf = Taii)b(i). Evidently Tab = T for each aeA, beA9 aTb9 

therefore cf TJ d, implies ct Tdt. The compatibility of T and Definition 1 imply 
c = p(c l f . . . , cn) Tp(dl9..., dn) = d, therefore V Tab = T, which completes the 
proof. (**»6r 

Corollary 4. The lattice LT(2l) for eucry algebra 21 = CA, ̂ > is compactly 
generated. 

For an arbitrary TeLT(2I), Theorem 54 from [11] implies that the equality T = 
= V Tab holds. By Theorem 14 each tolerance Tab is a compact element of LT(2l), 

(a,b)eT 

which implies the assertion. 

Remark. This corollary is a generalization of an analogous theorem for lattices 
of congruences (see [3], Theorem 6). 

4. ATOMICITY OF THE LATTICE LT(%) 

In [1] the following concept is introduced: 

Definition 5. A lattice L is relatively atomic, if each interval of this lattice is an 
atomic sublattice of L. 

In [1] it is proved that the lattice K(2l) of all congruences on an algebra 21 = 
= <̂ 4, IF} is relatively atomic (Theorem 67). The proof of this property is based 
on the fact that each congruence on 21 determines a partition of A9 which does not 
hold for tolerances in general. But for an idempotent algebra 21, an analogous as­
sertion holds on classes on A which need not be pairwise disjoint (thus they need not 
form a partition). 

The following theorem shows that this property is sufficient for the validity of an 
analogous theorem for LT(2l), if also the lattice of subalgebras of 21 is relatively 
atomic. 

Let 21 = <̂ 4, «̂ r> be an algebra. By ^(21) we denote the set of all subalgebras of 
the algebra 21. If 0 W 4= 0, denote ^(21) = ^(21), in the opposite case denote 

2Pe0-(8O 

^(21) = 0»(2l) u {0}. Then we define the ordering on 5̂ (21) in the following way: 
If 0 e ^(21), then 0 = 21' for each 21' e ^(21). For each 21' e ^(21) and 21" e S?(S&) 
we have 21' g 21" if and only if 21' is a subalgebra of 2T. In [2] it is proved that 
-9̂ (21) is a complete lattice with the least and the greatest element with respect to the 
ordering g . 
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An algebra 91 =-= (A9 &} will be called idempotent, if for each element ae A 
and each w-ary operation / e $F we havef(a,..., a) = a. 

Theorem 15. Let 91 be an idempotent algebra such that £?(*&) is a relatively 
atomic lattice. Then LT(9l) is a relatively atomic (thus also atomic) lattice. 

Proof. Let Tt e LT(9I), T2 e LT(9I), Tt c T2, Tt #= T2. For the sake of simplicity 
of this proof we shall not distinguish an algebra from its support. According to Theo­
rems 3 and 4 in [10] there exists a system {9Iy, y e T} of subalgebras of the algebra 91 
such that U 9Iy = 91 and x Tx y if and only if there exists y e F such that x e 9Iy, 

y e 9t r This system has the property that iff is an n-ary operation on 91 and yl9..., yn 

are elements of F, then there exists y0 e F such that x( e 9ly, for i = 1,..., n implies 
f(xl9..., xn) e9Iyo. Analogously there exists a system {9lM, pieM} of subalgebras 
of 91 such that U 91̂  = 91 and x T2 y if and only if there exists \i e M such that 

x e 91 ,̂ y e 9IM. This system has a quite analogous property to the above mentioned 
property of {9ly, y eF}. As Tt a T2, to each y eT there exists \i eM such that 9Iy 

is a subalgebra of 9lM. As Tt =t= T2, there exists at least one algebra 9Iyi for yx e T 
and at least one algebra 91^ for \i1eM such that 9lyi is a proper subalgebra of 91^. 
As ^(91) is relatively atomic, there exists a subalgebra 23 of the algebra 91 which 
covers Ayi in the interval <9lyi, 9Î .> of the lattice ^(91). Now let us choose a system 
of algebras 2£ = {9Iy, y e f - {y0}} v {93}. This system is a covering of the algebra 91 
by subalgebras, therefore it induces a tolerance T0 (this means x T0 y if and only if 
either x e 93, >> e 93, or there exists y e F — {y0} such that x e 9Iy, >> e 9Iy). Evi­
dently T0 covers Tx in the interval <Tl9 T2> in the lattice of all tolerances on 91. 
If T0 is a tolerance compatible with 91, then T0 e LT(9l) and T0 covers Tx also in the 
interval <Tl9 T2> of the lattice LT(9I). If T0 is not compatible with 91, then let # 
be the set of all tolerances Tfrom LT(9I) for which T0 ^ T ^ T2 holds. Evidently 
^ 4= 0, because T2 e <£. As LT(9l) is a complete lattice, T' = A -Tis again a tolerance 

compatible with 91 and T0 = T', therefore Tx # T2 implies Tx 4= T' and there does 
not exist any compatible tolerance between Tx and T. Therefore T covers Tx in the 
lattice LT(9I). We have proved that LT(9I) is relatively atomic. 

5. DISTR1BUTIV1TY OF THE LATTICE LT(2l) 

In the paper [4] it is proved that the lattice Jf (£) of all congruences on a lattice 2 
is distributive and even that Jf(fl) is infinitely meet-distributive. For LT(2) an 
analogous assertion can be established in the case when 2 is distributive. In this 
item we shall not distinguish an algebra from its support, as is usual in the lattice 
theory. 
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Lemma 1. Let 2 be a lattice, let p(xl9..., xn) be a lattice polynomial. Then for 
each a e 2 the equality p(a,..., a) = a holds. 

This follows from Lemma 6 in [6], page 33. 

Lemma 2. Let 2 be a distributive lattice, let p(xx,..., xn) be a lattice polynomial. 
Then for arbitrary elements a, al9..., an of 2 the following equalities hold: 

p(al9..., an) A a = p(a1 A a,... , an A a ) , 

P(a1?..., an) v a = P(ax v a,..., a„ v a) . 

This follows from Lemma 8 in [6], page 44. 

Theorem 16. Let 2 be a distributive lattice. Then LT(2) is distributive and 
infinitely meet-distributive. 

Proof. By Theorem 28 in [11] it is sufficient to prove that LT(2) is infinitely 
meet-distributive. In every lattice the so-called distributive inequalities (see [1]) 
hold, by Theorem 1 the lattice LT(2) is complete, therefore the inclusion 

T A V Ty 2 V (T A Ty) 

holds for arbitrary Ty and Tfrom LT(2). We shall prove the converse inclusion. Let 
a e 29 b e 2 and a (T A V Ty) b. Then by Theorem 1 we have a Tb9 a ( V Ty) b 

yer yer 

and by Theorem 2 there exist elements al9..., an9 bl9..., bn of 2, elements yl9 ..., yn 

of T and a lattice polynomial p(xl9 ...,x„) such that p(ax,..., an) = a, p(bl9..., bn) = 
= b and at Tyi bt for i = 1, . . . , n. Consider the elements yh zt such that 

(1) yt = ((a -A 6) v a.) A (a v b), 

Zj = ((a A b) v b£) A (a v b) . 
Evidently 

(2) flAHj/j^avi), a A H Z J ^ A V ! ) 

for i = l , . . . , n. Further TeLT(2)9 thus 

(3) aTb=>a A bTa v b. 

This follows for example from Theorem 1 in [9]. From the quoted theorem and from 
(3) we obtain 

(4) yt Tzt 

for i = 1, . . . , n. By Lemma 1 we have p(yl9 ...,* y„) = ((p(a,.:., a) A p(b9..., ft)) v 
v p(al9..., aw)) A (p(a,..., a) v p(fc,..., b)) which is equal (by Lemma 1) to 

(5) p(yl9..., yn) = ((a A fc) v a) A (a v b) = a . 

Analogously we can prove 

(6) p(z1 , . . . ,z„) = b. 
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The compatibility of the relations Ty and (1) implies (by Lemma 2) 

(?) ^ y t Tyi z% 

for i = 1,..., n, because a4 Tyi bt. From (4) and (7) it follows that yt ( V (T A Ty)) z, 
yer 

and the property V ( T A Tr) e LT(fi) implies also 
yer 

a = pOi,.... yn) ( V (T A T?)) p(z1(..., z.) = 6 . 

Therefore we have 
T A v r y £ V ( T A T7), 

yer yeT 

which completes *the proof. 

6. TOLERANCES ON A SET 

Let Abea non-empty set. In the paper [11] it is proved that the set of all equiva­
lences on A is a complete relatively complemented semimodular atomic lattice. Let 
&~(A) denote the set of all tolerances on the set A and let us investigate the structural 
properties of &~(A). The following theorem shows that the structure of the lattice 
&~(A) is much simpler than that of the lattice of all equivalences on A. This is a dif­
ference in comparison with the case of the lattices L T(2l) and Jf (21) of an algebra 21. 

Theorem 17. Let A be a non-empty set. Then ^(A) is a complete atomic Boolean 
algebra, the operation A is equal to the set intersection, the operation v is equal 
to the set union. 

Proof. It is evident that if Tye$~(A) for each y from a subscript set F, then 
f) Ty and U Ty are again tolerances on A; thus v is equal to the set union and A 

yeT yer 

is equal to the set intersection. Further, the identity relation I (or the universal 
relation U) is the least (or greatest, respectively) element of 3~(A). The lattice 3~(A) 
is a sublattice of the lattice of all binary relations on the set A, i.e. of the lattice 
&{A x A) of all subsets of the Cartesian product A x A. But &(A x A) is a complete 
Boolean algebra, the distributivity is a hereditary property, therefore &~(A) is a com­
plete distributive lattice with both the least and the greatest element. Let a, b be two 
distinct elements of A. By Tab we denote the tolerance on A such that x Ty if and 
only if x = y, or x = a, y = fe, or x = b9 y = a. The tolerances Tab for all pairs 
of distinct elements a, b of A are evidently atoms of ^(A). If a tolerance on A is 
different from the identity relation, there exist at least two distinct elements a, b 
of A which are in this tolerance and thus this tolerance contains the atom Ta0 of &~(A). 
Therefore ^(A) is atomic. It remains to prove the complementarity. Let Te&~(A). 
Then T = / u S , where S is a symmetric irreflexive binary relation. Evidently 
17 = I u Sv, where Sv is the relation of inequality (this means that a Sv b if and 
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only if a e A, b e A, a =# b). Denote S' = Sv - S. Evidently S' is again a symmetric 
irreflexive relation and thus T" = I u S' is a tolerance on _4. Then 

r n r = ( / u S ) n ( / u S ' ) = / u ( S n S ' ) = / u / = / , 

r u f = ( / u S ) u ( / u S ' ) = / u S u S ' = / u S p = [/. 

This means that T' is a complement to T, which completes the proof. 
In [10] a T-covering of a set M was defined as a covering 9M = (My, y e F} of M 

by subsets for which the following conditions hold: 
(i) if y0eT, T0^r, then 

M y o c U M y = > n M y c Myo, 
yeTo yeTo 

(ii) i f JVcM and IV is contained in no set from 9M, then N contains a two-element 
subset with the same property. 

In [10] it was proved that there is a one-to-one correspondence between tolerances 
on M and T-coverings of M such that if a T-covering S0tr corresponds to a tolerance T9 

then 90lr consists of the maximal subsets of M with the property that any two 
elements of such a subset are in the relation T. If Tis an equivalence, then 3Dtr is the 
partition of M into equivalence classes of T. 

Now let 9Ji be a T-covering of a set M, let 5̂ be a partition of M. The partition 3̂ 
will be called the partition hull of SOt, if ty is the least partition of M such that each 
set of 9ER is contained in a certain class of ^3. 

If two sets of SR have a non-empty intersection, then they must be contained in 
the same class of ^P(9Jl), where P̂(9CR) is the partition hull of S01; otherwise P̂(SDl) 
would contain two distinct classes having a non-empty intersection, which is im­
possible. If Ml9..., Mn are sets of SDl such that Mtc\Mi+1 4= 0 for i = 1,..., n — 1, 
then Mt and Mi+1 are contained in the same class of P̂(SW); as to each set of 9M 
exactly one class of P̂(9M) containing it can exist, all sets Ml9...,Mn are contained 
in the same class of P̂(SDl). Thus we may consider a tolerance Jf on SDt such that 
(M, M') e JT if and only if M n M' * 0. Let ^(^f) be the transitive hull of JT. 
Then the union of all sets belonging to a class of <^(Jr) must be contained in a class 
of P̂(SDl). On the other hand, these unions form a partition of M with the property 
that each set of 501 is contained in a certain class of this partition. Thus 3̂(SDl) is a parti­
tion, each of whose classes is the union of all sets belonging to a certain equivalence 
class of <g(JT). 

Theorem 18. Let T be a tolerance on a set M, let C(T) be its transitive hull. 
Let 9Dlr be the t-covering of M corresponding to T, let ty be the partition of M into 
the equivalence classes of C(T). Then ty is the partition, hull of 9Mr. 

Proof. Let aeM,bsM,a C(T) b. This means that there exist elements x l f . . . , xn 

of M such that xx = a, xn = b, xt Txi+1fot i = 1,..., n. Then for each i from the 
numbers 1,..., n — 1 there exists a set MjeSDl-r such that xtsMi9 xi+1 eMt. We 
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have xi+1 eMi9 xi+1 eMi+l9 thus Mt n M i + 1 # 0, which means (Mf, M i + 1 ) e JT9 

where -yf" is the tolerance on 9Wr defined above, for i = 1,..., n - 1. This means that 
(M1 ? Mn) e <#(JV) and the sets Ml9 Mn-X are contained in the same class of the parti­
tion hull of 9Wr. A§ a = xte Ml9 b = xn e Mn_l9 the elements a, b are in the same 
class of the partition hull of 9Jtr. As a and b were chosen arbitrarily, each equivalence 
class of C(T) is contained in a class of the partition hull of 9KT. Now let ceM9 

deM and let c and d be contained in the same class of the partition hull of S0tr. 
Then there exist sets Mi,..., Mn of 9Kr such that c e Mi, d e Mn and Mj n Mj + x 4= 0 
for i == 1,..., n — 1. For each i from the numbers 1,..., n — 1 we choose an element 
yieM'ir\ Mi+1. We have c Tyl9 yn Td and yt Tyi+1 for i = 1,..., w - 1. Thus 
c C(T) d. As c and d were chosen arbitrarily, each class of the partition hull of $Rr 

is contained in an equivalence class of C(T). The assertion is proved. 
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