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LATTICES OF TOLERANCES

IvaN CHAIDA, Pferov, and BoHDAN ZELINKA, Liberec
(Received January 17, 1975)

In the paper [12] the concept of a tolerance is introduced. The tolerance relation
(more briefly tolerance) is a reflexive and symmetric binary relation on a given set.
Compatible tolerances are defined on algebras; they are a generalization of con-
gruences. The concept of the compatible tolerance was introduced first for graphs
in [13], later it was defined for arbitrary algebraic structures in [14] and [15]. The
papers [7], [9], [10], [13], [14], [15] concern the investigation of the existence of
compatible tolerances on various algebras. Although the conditions of the existence
of compatible relations on algebras were investigated in some papers, there are still
very few results on the set of all compatible tolerances on a given algebra. Only in the
paper [7] it was proved that the set of all compatible tolerances on a given algebra
forms a lattice with respect to the set inclusion. The aim of this paper is to find
further properties which characterize this lattice.

1. LATTICE OPERATIONS IN LT(%)

By the symbol U = (4, F) we denote an algebra A with the support 4 and with
the set # of fundamental operations. A tolerance on a non-empty set M is a reflexive
and symmetric binary relation on M. A binary relation R on the set A is called com-
patible with U = {4, F), if for any n-ary operation f € &, where n is a positive
integer, and for arbitrary elements aj,..., a,, by, ..., b, of A fulfilling a; R b; for
i =1,...,n we have f(ay, ..., a,) R f(by, ..., b,). If R is moreover a tolerance on 4,
we say that it is a compatible tolerance on U. By the symbol L T(¥) we denote the
set of all compatible tolerances on . Evidently LT(%) # @ for every U, because
the identity relation I (such that x I y <> x = y) and the universal relation U (such
that x U y for each x and each y) are compatible tolerances on . Further, each
congruence on ¥ is a compatible tolerance on 2. ’

Theorem 1. Let A = {4, F) be an algebra. Then LT() is a complete lattice
with the least element I and the greatest element U with respect to the set inclusion.
The meet in LT() is equal to the set intersection.
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Proof follows immediately from Theorem 17 in [11].

It is evident (see [7]) that in general L T(2) is not a sublattice of the lattice of all
tolerances on the support A. The join in the lattice L T() need not be-equal to the
set union, because the set union of some compatible tolerances on 4 need not be
compatible with . Nevertheless, U T, = V T,.

yel yell
In the sequel we shall use the concept of a polynomial on an algebra, as was
defined by GRATZER [5]. If a polynomial p on an algebra U contains variables
Xi, .+ X, and no other variables, then it is denoted by p(x,, ..., x,). Let a4, ..., a,
be elements of A. If we substitute for each x; the element a, (for i =1,...,n)
wherever x; occurs in the polynomial p(x;, ..., x,), then we obtain an element of A
which will be denoted by p(ay, ..., a,).

Theorem 2. Let A = {4, #) be an algebra and let T, e LT(N) for each y from
a subscript set I'. Let T be a binary relation on A defined so that a Tb if and only
if there exist elements yy, ...,V of I' and elements ay, ..., a,, by,..., b, of A,
where m is a positive integer, and there exists a polynomial p(xy, ..., X,,) on A
such that a; T, b; for i = 1,...,m and p(a,, ..., a,) = a, p(by, ..., b,) = b. Then
T=VT,

yel

Proof. Evidently T, = T for each y €T} it suffices to choose m = 1, a, = a,
by = b, p(x;) = x,.This implies the reflexivity of T. The symmetry of T is evident
from its definition, therefore T is a tolerance on A. Now let ¢y, ..., c,, dy, ..., d, be
elements of A such that ¢; Td;for i = 1,..., n and let f € # be an n-ary operation.
Then there exist elements ¢y, .., Cim» i, -.., i, Of A and elements Y1, - .5 Pim
of I such that ¢;; T, d;; foreach i = 1,...,nand j = 1, ..., m; (Where m, is a posi-
tive integer dependent on i). Further, there exist polynomials ) 26T Xp,) of A
such that ¢; = pi(Ciss -+ s Cimy)» 4 = Pldiss ..., dy,) for i = 1,..., n. According to
the definition of a polynomial, f(py, ..., P,.) is again a polynomial on 2 and

fess o5 €) = f(P1(C115 s Camy)s +evs Pa(Cats o5 c,,,,,,..)) R
f(du ceey d») = f(?l(dll’ LR ] dlmx); w0y pn(dnl’ ceey dnm,.)) ’
therefore ¢;; T,,, d;; implies f(cy, .-+ ¢,) Tf(dy, ..., d,), which means that Te LT(2).

The tolerance T'is compatible with % and contains T, for all y eI, therefore V T, =
’ yell

c T.Letac A, b e A and a Tb. Then there exist elements a,, ..., a,, by, ..., b,of 4

and elements y,, ..., 7, of I and a polynomial p(x,, ..., x,) on U so that a; T,, b,

fori=1,...,n, p(ay,...,a,) = a, p(by, ..., b,) = b. Then a;, (U T;) b; and also g,
yel

(Vv T,) b, But VT, eLT(QI), therefore for each n-ary operation f€ # we have
yel' ’ yel o
f(ay, ... a,) (VFT,,) f(by, ..., b,) and the compatibility of \47‘, implies
- Y€ Y€
a = p(ay, ..., a,) (VrT,) p(by, ... b,)=b.
Y€E.
V T, and thus T=V T,

As a and b were chosen arbitrarily, we have T =
. yel - vel
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2. TRANSITIVE HULLS OF TOLERANCES

Now we shdll study some interrelations between the lattice L T(2) and congruences
on the algebra . -

Definition 1. Let T, be a tolerance on a set M for each y € I, where I is a subscript
set. The least (with respect to the set inclusion) equivalence E on M such that T, < E
for each y € I' will be called the transitive hull of the tolerances T, for y € I.

Thus for |F | = 1 we obtain that the transitive hull of a tolerance T on M is the
least equivalence E on M such that T < E. If Tis an equivalence, then T = E.

The following three propositions are evidently true.

Proposition 1. If Ry, ..., R, are binary relations compatible with 2 (where n is
a positive integer), then also RyR, ... R, is a binary relation compatible with .

Proposition 2. If {R;},.; (where I + 0) is a system of binary relations compatible
with A, which is directed upwards with respect to the set inclusion, then also \J R;
is a relation compatible with 2. el

Proposition 3. If T, € LT(¥) for each i from a non-empty subcsript set I, then the
transitive hull C of the tolerances T is the relation UT, T;, ... T;,, where the union
is taken over all positive integers n and all subscripts iy, iy, ..., i, from I. C is
thus expressed as a union of a system of relations which is directed upwards.

Now we shall present some theorems.

Theorem 3. Let A be a set, let T, be a tolerance on A for each y eI (where I'
is a subscript set). Let C, be the transitive hull of T, and let C be the transitive
hull of all C, for y € I'. Then C is the transitive hull of all T, for yeT.

Proof follows from Propositions 1, 2, 3.

Theorem 4. Let T, € LT(‘ZI) for y eI and let C be the transitive hull of the toler-
ances T, for y € I'. Then C is a congruence on U.

Proof. By Proposition 3 the-relation C is the union of a system of products of
elements of {T},.r which is directed upwards. By Proposition 1 each of these products
. is compatible with 2, by Proposition 2 the union of this system is compatible with 2.
Thus C is compatible with 2. As C is an equivalence on the support of %, it is a con-
gruence on 2.

Corollary 1. Let T, LT(Y) for ye I and let C be the transitive hull of T, for
yel. Then Ce LT(X) and V T, < C.

yel

Definition 2. Let Lbe a lattice. A mapping ¢ of Linto itself is called a closure opera-
tion on L, if for any a € L, b € Lthe following three conditions are satisfied:

(i) a = t(a);

(ii) #(a)) = Ka);
(iii) #(a) v #(b) = t(a v b).
12
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Theorem 5. Let W = (A, F) be an algebra, let LT() be the lattice of all com-
patible tolerances on A. For each Te LT(N) let {(T) be the transitive hull of T.
Then t is a closure operation on L T().

Proof. The conditions (i) and (ii) follow from the definition of the transitive hull.
Further, the same definition implies also the implication T, = T, = (T;) < (T3)
and we have ((T") = (T’ v T"), (T") = (T' v T"), which means #T") v {(T") =
€ (T" v T") for any T' € LT(A), T" € LT(), which means (iii).

Now we shall add some remarks concerning graphs of tolerances. If T'is a tolerance
on a set M, then the undirected graph G(T) whose vertex set is M and in which two
vertices x, y are adjacent if and only if x T y is called the graph of T.

Theorem 6. Let T be a tolerance on a set M, let G(T) be the graph of T. Let E be
the transitive hull of T. Then each equivalence class of E is the vertex set of a con-
nected component of G(T) and vice versa.

This assertion is evident.

Theorem 7. Let A = {A, F) be an algebra. For each tolerance T e LT(N) which
is not a congruence choose a partition P(T) of A with these properties:

(i) P(T) is a refinement of the partition of A into equivalence classes of the
transitive hull C(T) of T;

(ii) if Ky, K, are two distinct classes of P(T) which are subsets of the same
equivalence class of C(T), then there exist elements k; € K,, k, € K, such that
k, Tk,.

Let E(T) be the equivalence on A whose equivalence classes form the partition
P(T), let C be a congruence on W which contains all E(T) for all tolerances Te
€ LT(W) which are not congruences. Then each tolerance compatible with the factor-
algebra N[C is a congruence.

Proof. Let T; be a tolerance compatible with ‘II/C. Let x be the natural homo-
morphism of A onto A/C. Let T, be a tolerance on A defined so that a T, b, if and
only if x(a) T, x(b). It is easy to prove that T, is a tolerance compatible with 2.
Suppose that T; is not a congruence. Then neither T, is a congruence. Thus the parti-
tion P(T,) was chosen in accordance with the assumptions of the theorem and there
exists an equivalence E(T) corresponding to it. We have E(T,) = C. Let x, y be
two elements of 4 for which x C(T,) y, where C(T,) is the transitive hull of T, but
not x T, y; as T, is not a congruence, such a pair of elements must exist. If x C y,
then x(x) = x(v) and x(x) Ty x(y), because T, is reflexive. But from the definition
of T, we have x T, y, which is a contradiction. If x and y are not in C, then neither x
nor y are in E(T},). But, as they are in C(T,), there exist elements x’, ' such that
x E(T,) %', yE(TZ)y x' Ty y'. As xE(Tz)x and E(T,) = C, we have x C x’ and
analogously y C y'. This means y(x) = x(x), x(¥) = x(¥'). But by the definition
of T,, from x' T, y' we have x(x") Ty x()’), which means x(x) T, x(») and this implies
x T, y, which is again a contradiction.

13



An admissible colouring of a graph G is a partition of the vertex set of G such that
no two distinct vertices of the same class of this partition are joined by an edge.
If it has the minimal possible number of classes (colours), it is called a minimal
admissible colouring of G. If Ky, K, are two distinct classes of a minimal admissible
colouring of a connected graph G, then there exists a vertex k, € K, and a vertex
k, € K, such that k, and k, are joined by an edge (otherwise we could substitute K,
and K, by their union and we should obtain in this way an admissible colouring
with a smaller number of classes). Thus we have a corollary.

Corollary 2. Let A = (A, #) be an algebra. For each tolerance T compatible
with W choose a partition P(T) such that the restriction of P(T) onto any equi-
valence class of C(T), where C(T) is the transitive hull of T, is a minimal admissible
colouring of the corresponding connected component of G(T). Let E(T) be the
equivalence on A whose equivalence classes form the partition P(T), let C be a con-
gruence on A which contains all E(T) for all tolerances Te LT() which are not
congruences. Then each tolerance compatible with the factor-algebra U[C is
a congruence.

We have still another corollary.

Corollary 3. Let W = (A, F) be an algebra. For each tolerance T compatible
with 9 which is not a congruence let E(T) be the least equivalence containing
C(T) — T, where C(T) is the transitive hull of T. Then each tolerance compatible
with the factor-algebra U|C is a congruence.

If T, and T, are two tolerances compatible with A with the same transitive hull,
then evidently also their join has the same transitive hull. For their meet this need
not hold. The subset of LT() consisting of all tolerances with the given transitive
hull is an upper subsemilattice of L T(2), but it may have more than one minimal
element.

If T, is a tolerance on A and Tis the least tolerance from L T() which contains To,
we say that T'is generated by T,.

Theorem 8. Let C be a congruence on an algebra A = (A, F), let S(C) be the
set of all tolerances from LT(2) whose transitive hull is C. Let T be a minimal
element from S(C). Then T is generated by a tolerance T, on A such that its graph
G(Ty) is a forest and the vertex set of each connected component of G(Tp) is an
equivalence class of C..

Proof. By Theorem 7 the vertex set of each connected component of G(T) is an
equivalence class of C. In each of these connected components we choose a spanning
tree; these spanning trees of all connected components of G(T) form a forest F.
Define a tolerance T, on A so that x Ty, y if and only if x = y or x and y are joined
by an edge in F. Then F = G(T,) and T, < T. Suppose that there exists T; = LT(¥)
such that T, = T; = T (therefore T, # T). Let C(T), C(Tp), C(T;) denote the
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transitive hulls of T, Tp, T; respectively. As T, < T, any connected component of T,
must be contained in a connected component of T; and thus C = C(T;) < C(Ty).
As T, = T, we obtain analogously C(Ty) = C(T) = C, thus C < C(Ty) < C and
C(T,) = C. But this is a contradiction with the minimality of T.

Theorem 9. Let A = (A, F) be an algebra, let C be a congruence of U. Let F(C)
be the filter of LT() consisting of all elements of LT(N) which are greater than
or equal to C. Let A[C be the factor-algebra of A by C. Then there exists a join-
homomorphism of F(C) onto LT(Y/C).

Proof. Let Te F(C), this means C < T. Let x be the natural homomorphism of 2
onto A/C. Define ¢(T) as a tolerance on A/C such that x ¢(T) y if and only if there
exist elements x’, y’ of A such that x(x') = x, x(y') = y, x’ Ty". The tolerance ¢(T)
is evidently compatible with %/C. Now let T, be a tolerance compatible with /C.
Let T, be a tolerance on 4 such that a T, b if and only if x(a) T, x(b). Again T, is
evidently compatible with . If ¢ C d for some elements c, d of A, then x(c) = x(d),
thus x(c) Ty x(d) and this implies ¢ T; d; we have C = T; and thus T, € F(C).
Evidently ¢(T;) = T,. We see that ¢ is a surjection. Now let Te F(C), T' € F(C).
Let a (T v T') b. Then there exist elements a,, ..., @,; by, ..., b, of 4 and a poly-
nomial p(x,, ..., x,) of A such that p(a,,..., a,) = a, p(by,...,b,) = b and for
eachi = 1,..., neither a; Th;, or a; T' b;. In the polynomial p(xl, e x,,) substitute
each element c € A by the element x(c) and each operation f € & by the operation
on 'QI/C corresponding to f in the homomorphism yx; we obtain a polynomial
P*(X15 -+ X,) Of UJC. We have: p*(x(ay), ..., x(an)) = 2(a), p*(x(by)s ---» 2(bn)) =
= x(b) and for i =1,...,n we have either x(a;) o(T) x(b;) or x(a;) o(T") x(by).
Thus y(a) (¢(T) v o(T")) x(b). We have proved (T v T') < o(T) v o(T’). It
remains to prove that ¢(T) < (T v T'), o(T') € ¢(T v T'). If ¢ ¢(T) d for some
elements c, d of A/C, then there exist elements ¢’, d’ of 4 such that x(¢') = ¢, y(d') =
=d, ¢ Td'. Then ¢'(Tv T')d’ and ¢ = x(c) o(T v T') x(d') = d, thus ¢(T) =
€ ¢(T-v T'). Analogously ¢(T’') = ¢(T v T'). The relation ¢(T v T') contains
both ¢(T) and ¢(T’) and is- contained in ¢(T) v ¢(T’), therefore ¢(T v T') =
=¢(T) v ¢(T’) and ¢ is a join-homomorphism.

We shall give an example showing that this theorem cannot be strengthened by
substituting the word “join-homomorphism” by ‘“homomorphism”.

Let A = (A4, ) be a groupoid with the support A = {a, a,, a,, b} and with
a binary operation given by the following Cayley table:

a, a, a; b

a, | 6, az; a; a
G, | 63 a, a; a,
as | a, a, as a,
b a; a, a3 b
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Let C be an equivalence on A whose classes are {a,, a,, a;}, {b}. It is evidently
a congruence on A. The set F(C) consists of the tolerance C, T}, T,, Ty, U, where T;
fori = 1,2, 3is obtained from C by adding the pairs (a;, b), (b, a;), U is the universal
relation on A. Evidently Ty A T, =Ty A T3=T, ATy =C, T, v T,=
=Ty v T; =T, v T; = U. The factor-algebra ‘JI/C consists only of two elements,
therefore there are only two tolerances on it, the identity relation I, and the universal
relation U,. Suppose that there exists a homomorphism ¢ of F(C) onto LT(/C).
If ¢(C)=U,, then ¢(T)=@(Tv C)=¢(T)Vv ¢(C) = ¢(T) v Uy = U, for
each Te F(C) and ¢ is not a surjection, which is a contradiction. Thus ¢(C) = I,.
" Dually, if ¢(U) = I,, then ¢(T) = I, for each T'e F(C) and this is also a contradic-
tion. Thus ¢(C) = I, ¢(U) = U,. From the elements ¢(Ty), ¢(T,), ¢(T3) at least
two must be equal, without loss of generality let ¢(T;) = ¢(T3). Then U, = ¢(U) =
= ‘P(Tl v T,)=o¢(Ty) v o(Ty) = ‘P(Tl) = o(Ty) A (D(Tz) = o(T; A T,) = ?(C) =
= I,,, which is a contradiction.

Theorem 10. Let A = {A, F) be an algebra, let C be a congruence of W. Let F(C)
be the filter of LT() consisting of all elements of LT(A) which are greater than
or equal to C. Let A[C be the factor-algebra of N by C. Then there exists a meet-
isomorphism of L T(/C) into F(C).

Proof. Let x be the natural homomorphism of %A onto A/C. Let Te LT(A/C).
By y(T) we denote the binary relation on A defined so that x y(T)y for x € 4,
y € Aif and only if x(x) T x(v). We have y(T) € F(C); the proof is left to the reader.
Now let Fo(C) be the set of all y(T) for Te LT(A/C). Evidently each tolerance
Tp € F(C) has the property that for any two congruence classes Ky, K, of C the
relation k, Tj k, holds either for each k, € K, and each k, € K,, or for no k; €K,
and no k, € K,; this property will be denoted by P. It is easy to prove that T; =
= Y(¢(Ty)), where ¢ is the homomorphism defined in the proof of Theorem 9;
thus T, € Fo(C). Thus the subset of F(C) consisting of all tolerances with the proper-
ty P coincides with Fy(C). The set Fo(C) is closed under meet; if Ty € F(C), T, €
€ Fo(C) and K, K, are two congruence classes of C, then either ky T} ky, ky T» k;,
for each k; € K, and each k, € K,, then k, (Ty A T;) k, for each k, € K, and each
k, €K,, or ky T, k, for some i from the numbers 1, 2 holds for no k, € K,, k;, €K,
then k, (Ty A T) k, holds for no k, €K, and no k, e K,. We see that Fy(C) is
a lower subsemilattice of F(C). If Te LT(¥/C), then evidently @(¥(T)) = T. Since
we have ¥(¢(To)) = T, for each T, € Fo(C), we see that ¥ is a bijective mapping
and so is the restriction of ¢ onto F 0('C); this restriction is equal to ¥ ~1. As ¢ is an
order-preserving mapping, so is ¥. As in Fy(C) to any two elements their meet exists
and is equal to their meet in LT(), Y must be a meet-isomorphism of LT(¥/C)
onto Fo(C), this means into F(C).

We shall give an example showing that { need not be an isomorphism.
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Let A = {4, F) be the semigroup with the support 4 = {ay, ay, by, by, ¢y, €2,
d,, d,}, given by the following Cayley table:

a, a, by b, ¢, ¢, dy d,

d,|d, dy d, d, d, d, d, d,

Let C be the congruence on U whose classes are {a, az} {by, by}, {c1, €2}
{d,, d;}. Let T, be the congruence on 2 whose classes are {d1> Gz, by, by}, {¢1, €2
dy, d,}, let T, be the congruence on A whose classes are {a1, a2, €1, C2}, {b1, by,
dy, d,}. We have Ty € Fo(C), T, € Fo(C). Let T= T, v T,. Then a, T'd,, because
a, Ty by, a, T, ¢y, thus a, = a,a, Th, ¢, = d,, but the elements a,, d; are notin T
As a, Ca,, dy C'd,, this means that T= T, v T, ¢ Fo(C) and F(C) is not closed
under join, thus y is not an isomorphism of LT(/C) onto F o(C).

Theorem 11. Let A = {A, ) be an algebra, let C be a congruence on U, Let J(C)
be the ideal of LT() consisting of all elements of LT(A) which are less or equal
to C. Let there exist a subalgebra U, of A whose support A, is one of the congruence
classes of C. Then there exists a join-homomorphism of LT(¥,) into J(C).

Proof. Let Te LT(,), let o(T) be the least compatible tolerance on A which
contains T. Then oT) < C; as C obviously contains 7, this means «(T) € J(C).
Now if T" € J(C) and T” is the restriction of T’ onto Ay, then evidently T” € L T(,)
and «(T") = T'. Thus « is a mapping of L T(2,) into J(C). Now let Ty € L T(,),
T, € LT(,). Then oT;) v «(T3) is a tolerance from J(C) which contains both T
and T;,. As it contains Ty and T, and is compatible with U, it must contain also
T, v T,, which means «(T; v T) € «(T;) v «(T,). But evidently ofT;) S
STy v o), (T3) € Ty v Ty), thuso(Ty) v &(Ty) S Ty v Tp)and (T v T5)
= o(T;) v «(T;). We see that « is a join-homomorphism of L T(%,)into J(C).

Theorem 12, Let W = {A, ¥ ) be an algebra, let C be a congruence on . Let
J(C) be the ideal of LT() consisting of all elements of LT() which are less than
or equal to C. Let there exist a subalgebra U, of WA whose support A, is one of the

congruence classes of C. Then there exists a meet-homomorphism of J(C) into
L T(2,).
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Proof. Let Te J(C), let B(T) be the restriction of T onto A,. Then evidently
B(T) e LT(N,) and «(B(T)) = T, where « is the join-homomorphism from the
proof of Theorem 12. Let L, be the set of all elements of L T(%,) which are images
of elements of J(C) in the mapping B. Evidently an element Te LT(¥,) is in Lo
if and only if the restriction of «(T) onto A4, is equal to T. Let T; € Ly, T, € L, and
consider T} A T.

For each Te J(C) the relation B(T) is the intersection of T with the universal
relation Uy on A,. Therefore f(T; A T) = T, n T, n Uy = (T n Up) n (T, 0
N Uyp) = B(Ty) A B(T;). Thus the mapping B is a meet-homomorphism of J(C)
onto Ly, this means into L T(,).

3. COMPACTNESS ON THE LATTICE LT(%)

Definition 3. An element ¢ of a complete lattice Lis called compact, if for each

subset M of Lsuch that ¢ £V x there exists a finite subset N of M such that ¢ <
xeM

< V x. A lattice Lis called compactly generated, if each element of the lattice Lis

xeN
a join of compact elements. -

This definition is from [11], p. 65, § 25.

Definition 4. Let A = (A4, ) be an algebra, a € 4, b € A. By the symbol T, we
denote the least (with respect to the lattice ordering) tolerance from LT(¥) for
which a T, b holds.

The correctness of this definition follows from Theorem 5.

Theorem 13. The tolerance T, is a compact element of the lattice LT(%) for
eacha€ A, b € A, where A is the support of the algebra .

Proof. Let T,e LT(%) for yeT, where I' is a subscript set and T,, S V T,.
yel
Then a T, b implies a (V T,) b. By Theorem 2 there exist elements ay, ..., a,,
yel .

by, ..., by of A4, elements y,, ..., 7, of I' and a polynomial p(x, ..., x,) on U such
that p(ay, ..., a,) = a, p(by,...,b,) = b and a; T, b, for i = 1,..., n. Therefore

also a (V T,,) b. As T, is the least tolerance in LT() fulfilling a T,; b, we have
t=1 ‘
n
T;Jb E'V1 Tw‘
Instead of a T b we shall sometimes write (a, b) € T.

Theorem 14, Let Te LT() for an algebra A = (A, F). Then T= V T,

(a,b)eT
Proof. Let Te LT(Y), let cc 4, de€ A, ¢ Td. By Theorem 14 we have T, e
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e LT(A) and thus ¢ T,,d, which implies ¢( V T,,)d; this means T< V T,
(a,b)eT (a,b)eT

Conversely, let c( V T,,,,) d; then by Theorem 2 there exist elements cy, ..., c,,
(a,b)eT

dy, ..., d, of A and tolerances T; € {T,;(a, b)e T} for i = 1,...,n so that ¢; T; d;
and there exists a polynomial p(xy, ..., x,) of the algebra % so that p(cy, ..., ¢,) = ¢,
p(dy, ..., d,) = d. As T;€{T,; (a, b) € T}, there exist elements a(i), b\i) of 4 such
that a(i) Th(i) and T; = T, Evidently T,, = T for each a€ 4, be 4, a Th,
therefore ¢; T; d; implies ¢; T'd;. The compatibility of T and Definition 1 imply
¢ = p(cys s €) Tp(dy, ..., d,) = d, therefore V T, = T, which completes the
proof. (@)l

Corollary 4. The lattice LT(¥) for every algebra N = {A, F) is compactly
generated.
For an arbitrary Te LT(¥), Theorem 54 from [11] implies that the equality T =

= V T, holds. By Theorem 14 each tolerance T,, is a compact element of LT(),
(a,b)eT

which implies the assertion.

Remark. This corollary is a generalization of an analogous theorem for lattices
of congruences (see [3], Theorem 6).

4. ATOMICITY OF THE LATTICE LT(%)

In [1] the following concept is introduced:

Definition 5. A lattice Lis relatively atomic, if each interval of this lattice is an
atomic sublattice of L.

In [1] it is proved that the lattice K() of all congruences on an algebra % =
= A, F) is relatively atomic (Theorem 67). The proof of this property is based
on the fact that each congruence on U determines a partition of 4, which does not
hold for tolerances in general. But for an idempotent algebra U, an analogous as-
sertion holds on classes on 4 which need not be pairwise disjoint (thus they need not
form a partition). '

The following theorem shows that this property is sufficient for the validity of an
analogous theorem for LT(2), if also the lattice of subalgebras of U is relatively
atomic.

Let A = (4, #) be an algebra. By Z(U) we denote the set of all subalgebras of

the algebra 2. If ) A’ + @, denote F(A) = #(A), in the opposite case denote
Wea(3)

S (A) = A(A) U {0}. Then we define the ordering on F(U) in the following way:
If 0 € #(N), then P < A’ for each A’ € F(A). For each A € F(A) and A" € F(A)
we have W' < A’ if and only if A’ is a subalgebra of A”. In [2] it is proved that
&(A) is a complete lattice with the least and the greatest element with respect to the
ordering <.
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An algebra A = (4, F) will be called idempotent, if for each element a € 4
and each n-ary operation f € # we have f(aq, ..., a) = a.

Theorem 15. Let A be an idempotent algebra such that .9’(91) is a relatively
atomic lattice. Then LT() is a relatively atomic (thus also atomic) lattice.

Proof. Let T, e LT(Y), T, € LT(A), Ty = T,, T, + T5. For the sake of simplicity
of this proof we shall not distinguish an algebra from its support. According to Theo-
rems 3 and 4 in [10] there exists a system {2,, y € I'} of subalgebras of the algebra U

such that U A, = A and x T y if and only if there exists y € I' such that x € 2,
yel

y € A, This system has the property that if f is an n-ary operation on 2 and y,,..., y,
are elements of I', then there exists y, € I' such that x; € A, for i = 1, ..., n implies
f(x4, ... x,) € A,,. Analogously there exists a system {2, u e M} of subalgebras
of A such that U A, = A and x T, y if and only if there exists u € M such that

neM
x €U, yeA,. This system has a quite analogous property to the above mentioned
property of {,,yeTI'}. As T; = T, to each y €I there exists u € M such that 2,
is a subalgebra of A,. As T; + T, there exists at least one algebra A, for y; eI’
and at least one algebra 2, for #; € M such that 2, is a proper subalgebra of 2, .
As () is relatively atomic, there exists a subalgebra B of the algebra A which
covers A, in the interval (21, 2, > of the lattice (). Now let us choose a system
of algebras Z = {W,,ye I — {yo}} v {B}. This system is a covering of the algebra A
by subalgebras, therefore it induces a tolerance T, (this means x T, y if and only if
cither x € B, y € B, or there exists y € I' — {y,} such that x € A, y e A,). Evi-
dently T, covers T; in the interval {Tj, T,) in the lattice of all tolerances on 2.
If T, is a tolerance compatible with 2, then T, € LT() and T, covers T, also in the
interval (T, T,) of the lattice LT(). If T, is not campatible with 2, then let €
be the set of all tolerances T from LT() for which T, = T = T, holds. Evidently
% + 0, because T; € 4. As LT() is a complete lattice, T" = A Tis again a tolerance

. Te¥
compatible with % and T, < T, therefore T; # T, implies T; % T’ and there does
not exist any compatible tolerance between T; and T'. Therefore T' covers T in the
lattice L T(¥). We have proved that L T() is relatively atomic. -

5. DISTRIBUTIVITY OF THE LATTICE LT(2)

In the paper [4] it is proved that the lattice 2#'(£) of all congruences on a lattice £
is distributive and even that J'(f) is infinitely meet-distributive. For LT() an
analogous assertion can be established in the case when £ is distributive. In this
item we shall not distinguish an algebra from its support, as is usual in the lattice
theory.
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Lemma 1. Let & be a lattice, let p(xl, cees x,,) be a lattice polynomial. Then for
each a € 8 the equality p(a, ..., a) = a holds.
This follows from Lemma 6 in [6], page 33.

Lemma 2. Let £ be a distributive lattice, let p(x,, ..., x,) be a lattice polynomial.
Then for arbitrary elements a, a,, ..., a, of £ the following equalities hold:
ay,....a,) Aa=p(a Aa,..,a,Aa),
p(ay,...a,) va=pla, va..a,va).
This follows from Lemma 8 in [6], page 44.

Theorem 16. Let & be a distributive lattice. Then LT(SZ) is distributive and
infinitely meet-distributive.

Proof. By Theorem 28 in [11] it is sufficient to prove that LT(£) is infinitely
meet-distributive. In every lattice the so-called distributive inequalities (see [1])
hold, by Theorem 1 the lattice LT(£) is complete, therefore the inclusion

TAVT,2V(TAT,)
yel yell
holds for arbitrary T, and T from LT(£). We shall prove the converse inclusion. Let
ae® bef and a(T AV T,)b. Then by Theorem 1 we have a Th, a(V T,) b
yel yell

and by Theorem 2 there exist elements ay, ..., a,, by, ..., b, of £, elements y,, - T
of I' and a lattice polynomial p(x;, ..., x,) such that p(a,, ..., a,) = a, p(by, ..., b,) =
=band a; T, b;fori = 1,..., n. Consider the elements y;, z; such that

(1) yi=((anb)va)na(avbd),

zi=((@Ab)vbd)a(avb).
Evidently

)] anb<y;Savb, anbsz;Savb
for i = 1, ..., n. Further Te LT(8), thus
(3) aTb=aAbTavh.

This follows for example from Theorem 1 in [9]. From the quoted theorem and from
(3) we obtain .

(4) y:Tz;

fori = 1,...,n. By Lemma 1 we have p(yy, ---s ¥») = (P(a, -2, @) A p(b, ..., b)) v .
v play, ..., a,)) A (p(a, ..., a) v p(b, ..., b)) which is equal (by Lemma 1) to

(%) pyy-mv)=(@rb)va)r(@avb)=a.
Analogously we can prove - ‘

(6) p(zl,..., Z,,) =b.
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The compatibility of the relations T, and (1) implies (by Lemma 2)
@) nt,z

fori = 1,..., n, because a; T,, b;. From (4) and (7) it follows that y; (V (T A T,)) z;
yel ’
and the property V (T A T,) € LT(£) implies also
yel

a=p(ye -0 V) (VF(T A T)) p(zy,..»2)=b.
: "
Therefore we have
TAVT,sV(TAT),

yel vel
which completes the proof.

6. TOLERANCES ON A SET

Let A be a non-empty set. In the paper [11] it is proved that the set of all equiva-
lences on A is a complete relatively complemented semimodular atomic lattice. Let
7 (A) denote the set of all tolerances on the set A and let us investigate the structural
properties of 7(A4). The following theorem shows that the structure of the lattice
T (A) is much simpler than that of the lattice of all equivalences on A. This is a dif-
ference in comparison with the case of the lattices L T(2) and () of an algebra .

Theorem 17. Let A be a non-empty set. Then T (A) is a complete atomic Boolean
algebra, the operation A is equal to the set intersection, the operation Vv is equal
to the set union.

Proof. It is evident that if T, € 7(A4) for each y from a subscript set I', then

N T, and U T, are again tolerances on A4; thus v is equal to the set union and A
yel yel

is equal to the set intersection. Further, the identity relation I (or the universal
relation U) is the least (or greatest, respectively) element of J(A4). The lattice 7(4)
is a sublattice of the lattice of all binary relations on the set A4, i.e. of the lattice
P(A x A)of all subsets of the Cartesian product 4 x A. But Z(4 x A)is a complete
Boolean algebra, the distributivity is a hereditary property, therefore J(4) is a com-
plete distributive lattice with both the least and the greatest element. Let a, b be two
distinct elements of A. By T,, we denote the tolerance on A4 such that x Ty if and
only if x = y,or x =a, y = b, or x = b, y = a. The tolerances T, for all pairs
of distinct elements a, b of A are evidently atoms of J (A). If a tolerance on A4 is
different. from the identity relation, there exist at least two distinct elements a, b
of A which are in this tolerance and thus this tolerance contains the atom T, of 7(4).
Therefore J(A) is atomic. It remains to prove the complementarity. Let Te J(A).
Then T=1uU S, where S is a symmetric irreflexive binary relation. Evidently
U =1 v Sy, where Sy is the relation of inequality (this means that a Sy b if and
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onlyifac 4, be 4, a + b). Denote S’ = S, — S. Evidently S’ is again a symmetric
irreflexive relation and thus T' = I U S’ is a tolerance on A. Then

TaT =(IuS)n(IusS)=Iu(SnS)=Iul=I,
TuT =(IuS)u(IusS)=IuSuS =IuS;=U.

This means that T’ is a complement to 7, which completes the proof.

In [10] a t-covering of a set M was defined as a covering M = {M,,yeT'} of M
by subsets for which the following conditions hold:
() if yoeI, I'y = T, then

M,csUM,=NM,cM,,
yelo velo

(ii) if N = M and N is contained in no set from I, then N contains a two-element
subset with the same property.

In [10] it was proved that there is a one-to-one correspondence between tolerances
on M and t-coverings of M such that if a 7-covering MM corresponds to a tolerance T,
then M, consists of the maximal subsets of M with the property that any two
elements of such a subset are in the relation T. If Tis an equivalence, then M is the
partition of M into equivalence classes of T. ‘

Now let M be a t-covering of a set M, let P be a partition of M. The partition P
will be called the partition hull of IR, if B is the least partition of M such that each
set of M is contained in a certain class of P.

If two sets of M have a non-empty intersection, then they must be contained in
the same class of PB(W), where P(M) is the partition hull of M; otherwise P(WN)
would contain two distinct classes having a non-empty intersection, which is im-
possible. If M, ..., M, are sets of M such that M; " M, + 0fori=1,...,n —1,
then M; and M;,, are contained in the same class of iB(iUI); as to each set of M
exactly one class of P(M) containing it can exist, all sets My, ..., M, are contained
in the same class of P(M). Thus we may consider a tolerance 4~ on M such that
(M, M’)e A if and only if M n M’ #+ 0. Let 6(4") be the transitive hull of A"
Then the union of all sets belonging to a class of ‘6(./1” ) must be contained in a class
of PB(M). On the other hand, these unions form a partition of M with the property
that each set of M is contained in a certain class of this partition. Thus P(M)is a parti-
tion, each of whose classes is the union of all sets belonging to a certain equivalence
class of €(A").

Theorem 18. Let T be a tolerance on a set M, let C(T) be its transitive hull.
Let M, be the t-covering of M corresponding to T, let B be the partition of M into
the equivalence classes of C(T). Then B is the partition hull of M.

Proof. Let a € M, b € M, a C(T) b. This means that there exist elements x;, ..., X,
of M such that x; = a, x, = b, x; Tx;,.,for i =1, ..., n. Then for each i from the
numbers 1, ...,n — 1 there exists a set M; € M, such that x; € M;, x;., € M;. We
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have x;+q € My, Xi41 € Myyyq, thus My 0 M, -+ 0, which means (M;, M;,,) € A,
where " is the tolerance on My defined above, fori = 1, ..., n — 1. This means that
(My, M,) € 4(4") and the sets M, M, _, are contained in the same class of the parti-
tion hull of M. A§ a = x; e My, b = x, € M,_,, the elements a, b are in the same
class of the partition hull of M. As a and b were chosen arbitrarily, each equivalence
class of C(T) is contained in a class of the partition hull of M. Now let c e M,
d €M and let c and d be contained in the same class of the partition hull of M.
Then there exist sets My, ..., M, of My suchthatce M, de M, and Min Mj,y + 0
fori =1,...,,n — 1. For each i from the numbers 1, ..., n — 1 we choose an element
yieEM;nMi,,. We have ¢cTy,, y,Td and y; Ty;4+, for i = 1,...,n — 1. Thus
¢ C(T) d. As ¢ and d were chosen arbitrarily, each class of the partition hull of My
is contained in an equivalence class of C(T). The assertion is proved.
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