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Časopis pro pěstování matematiky, roč. 98 (1973), Praha 

ON THE GENERALIZED LINEAR ORDINARY 
DIFFERENTIAL EQUATION 

STEFAN SCHWABIK, MILAN TVRD*, Praha 

(Received October 19, 1971) 

We consider the generalized linear ordinary differential equation 

(i) ^ - D W O » + / ( 0 ] 
d t 

on the closed interval [a, 6], where — oo < a < b < +oo and A and fare matrix 
functions of bounded variation on [a, b] of the type n x n and n x 1, respectively. 
An n-vector function x defined on [a, b\ is said to be a solution to the equation (l) 
on the interval [a, fc] if there exists the Perron-Stieltjes integral 

>j\dA(sУ]x(s) 

and 

(2) x(t) = x(a) + P [\dA(s)~] x(s) + f(t) - f(a) for all t e [a, b\ . 

The equation (1) is a special type of generalized ordinary differential equations 
introduced by J. KURZWEIL in [3]. Although the general nonlinear case has been 
studied hitherto by several authors ([4] —[9], [11]), relatively small attention was 
paid to the linear case. Only in [9] the equation (1) with A and f left continuous on 
(a, b] was studied. 

To the equation (1) the differentio-Stieltjes-integral equation 

(3) x(t) = x(a) + Y j\dA(s)] x(s) + f(t) - f(a) , 

where Y j a stands for the a-Young integral, is related. (The definition and basic 
properties of the ex-Young integral can be found e.g. in the book of T. HILDEBRANDT 

[1].) For the equation (3) fundamental results (existence and uniqueness of a solution 
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in the class of bounded functions, fundamental matrix solution to the corresponding 
homogeneous equation, variation of constants formula) were obtained by T. H. 
Hildebrandt in [2]. 

In [10] (cf. Theorem 3,2) the following assertion on the relation between the 
<r-Young and the Perron-Stieltjes integrals is proved. 

Let g have bounded variation on [a, b] and let / be bounded on [a, b]. Then the 
existence of the a-Young integral 

rj/(0-*(0 
implies the existence of the Perron-Stieltjes integral 

• j / (0 <fo(0 
and both integrals are equal to one another. Let us mention that the assumption on 
the boundedness of / can be weakened. Nevertheless some boundedness conditions 
on / are necessary and substantial for the existence of P j*f Ag (cf. Example 2,1 in 
[io]). 

It follows that x being a solution to (3) on [a, b], it is certainly a solution to (1) 
on [a, b]. Moreover, it is clear that all functions bounded and fulfilling (2) on [a, b] 
are solutions to (3), as well. Hence for the generalized linear ordinary differential 
equation (1) we can adopt all the results of T. H. Hildebrandt from [2]. The assertions 
on the uniqueness has to be understood as "unique in the space of functions bounded 
on [a, b\\ of course. 

In this paper we prove that under the assumptions assuring the existence of a solu
tion to (3) the equation (1) admits only solutions of bounded variation on [a, b]. In 
other words, the equations (l) and (3) are equivalent. 

The open interval a < t < b is denoted by (a, b) and the half-closed intervals 
a < t _g b and a g t < b are denoted by (a, b] and [a, £>), respectively. I denotes 
the identity n x w-matrix. Given a matrix M = (MitJ)itj its norm ||M|| is defined by 

||M|| = max Y^M, J . 
i J 

Given a matrix function F of bounded variation on [a, b\ and t e (a, b), we design 

A+F(t) = F(t +) - F(t), A~F(t) = F(t) - F(t-); A+F(a) = F(a+) - F(a), 

A~F(b) = F(b) - F(b-) 

and varj F means the total variation of F on [a, b] defined by 

varSF = suPE| | i ? (0)-F( t J - 1 ) l» 
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where the least upper bound is taken with respect to all divisions {a = t0 < tt < ... 
... < tm = b} of [a, b]. Hereafter all integrals are considered as Perron-Stieltjes ones. 

The following assertion follows readily from (2) and from properties of the Perron-
Stieltjes integral as a special kind of the Kurzweil integral ([3], Theorem 1, 3, 6). 

Proposition 1. Let x be a solution of (1) on [a, b]. Then all the limits x(a+), 
x(b—)9 x(t+)9 x(t—) (t e (a, b)) exist and it holds 

x(t+) = [I + A+A(t)]x(t) + A+f(t) for all te[a,b) 
and 

x(t~) = [I - A~A(t)] x(t) + A~f(t) for all t e (a, b] . 

The second proposition can be easily obtained from §7 in [2]. 

Proposition 2. Let 

(4) det [/ - A'A(t)] * 0 for all t e (a, b] . 

Then given an arbitrary n-vector c, there exists at least one solution x of (1) 
on [a, b] with x(a) = c. This solution is of bounded variation on [a, b] and given 
an arbitrary t0 e [a, b] and an arbitrary function x bounded on [a, t0] fulfilling 
(2) on [a, t0] and such that x(a) = c, it holds x(t)= x(t) on [a, t0]. 

Remark 1. Let us notice that the assumption (4) is substantial for the existence of 
a solution to (1). In fact, if n = 2, [a, b] = [0, l],/(f) = 0 on [a, b] and 

A(t) = 0 for 0 = t < i , 

40 = (o?) for i s5*Sl , 

then for an arbitrary solution x of (1) on [0, 1] we have by Proposition 1 

x(t) = x(0) for 0 < t < i, 

x(i-) - x(0) = [J - A'A(t)] x(i) = (J J) *(*) = (Xl^}) . 

and consequently to a given n-vector c a solution x of (1) on [0, 1] with x(0) = c 
exists iff c2 = 0. 

Remark 2. It is easy to see that any solution xof (1) on [a, b] which is bounded 
on [a, b] is of bounded variation on [a, b]. 

Theorem 1. Let (4) hold. Then given an arbitrary n-vector c, there exist a unique 
solution x of (I) on [a, b] such that x(a) = c. 
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Proof. The only fact to prove is that given an arbitrary solution x of (1) on [a, ft] 
with x(a) = c (which generally could be unbounded on [a, ft]), it holds x(t) = x(t) 
on [a, ft], where x is the solution of (1) on [a, ft] from Proposition 2. 

Denoting y(t) = x(t) — x(t) for t e [a, ft], we get y(a) = 0 and 

(5) y(t) = ľ[cU(s)] y(s) for ř e [a, tí] 

Since by Proposition 1 y(a+) = 0, there exists a <50 > 0 such that y is bounded on 
[a, a + <50] and thus by Proposition 2 y(t) = 0 on [a, a + 5 0 ], Let t0 be the least 
upper bound of the set of all t e [a, ft] with the property y(?) = 0 for all T G [a, t]. 
Clearly y(t) = 0 on [a, t0) and therefore 

y(t0) = [I - A-A^)]-1 y(t0~) = 0 

owing to (4) and Proposition 1. Let t0 < ft, then Proposition 1 yields 

Xto+) = [I + A+A(to)]X'o) = 0-

Consequently there exists a 8 > 0 such that y is bounded on [a, t0 + 5]. Applying 
again Proposition 2 we get j(t) = 0 on [a, t0 + 5], which contradicts the definition 
of t0. Hence t0 = ft and y(*) = 0 on [a, ft]. 

Theorem 1 establishes the equivalence between the generalized linear ordinary 
differential equation (1) and the differentio-Stieltjes-integral equation (2). For the 
further investigations of generalized linear ordinary differential equations it is con
venient to gi\Q here a survey of fundamental theorems for these equations. All the 
proofs follow from the results of [2] by the similar reasoning as Theorem 1. 

Theorem 2. Let (4) hold. There there exists just one n x n-matrix function U(t, s) 
defined for a g s ^ t g ft and such that 

(6) U(t, s) = / + J [dA(aj] U(cr, s) for all s e [a, ft] , te [s, ft] . 

The function U has the following properties, 

(i) There exists K < co such that 

veLrf
aU(t, .) = K , var*U(.,s) = K for all t,se[a, ft] 

and 
| | U ( r , s ) | | ^ K for a// t,s.e[a,ft], r g s . 

(ii) U(t + , s) = [/ + A+A(*)] U(r, s) if a ^ s £ t < b , 

U(t-, s) = [/ - A-A(f)] U(t, s) if a = s < r = ft , 

U(f, s) = U(t, s+ ) [/ + A+A(s)] if a ^ s < t ^ b , 

U(t, s) = U(t, s-) [I - A~A(s)] if a < s S t ^ b . 
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(iii) Given t,s,re [a, b] such that s g r ^ t, it holds 

U(t, s) = U(t, r) U(r, s) and U(t, t) = I. 

(iv) Given an arbitrary n-vector c, the unique solution x of (1) on [a, b] with 
x(a) = c is given by 

x(t) = U(U a) c + f(t) - f(a) + [ W ( ' > *)] (A*) - /(")) > te[a,b]. 

(v) Let a ^ s > * ̂  fe. Then the matrix U(t, s) possesses an inverse U~x(t, s) iff 

det [I + A+A(x)] + 0 foraJ/ T G [S, f] . 

The last assertion can be proved similarly as Theorem 4,3 of [9], 

R e m a r k 3. Let (4) hold. Further, let us assume that det [I + A+A(t)] * 0 for 
all te [a, fe). By Theorem 2 (v) it is reasonable to define U(t, s) = U_1(s, t) for 
t,se [a, fe], t < s. It is easy to verify that then U(t, s) fulfils (6) for all t, se [a, fe]. 
Moreover, U(t, s) = U(t, r) U(r, s) for all t, s,re [a, fe]. In particular, U(t, s) = 
= U(t, a) U(a, s) for all t,se [a, fe]. It follows immediately that the Vitali two-
dimensional variation of U on [a, fe] x [a, b] is finite (cf. [1], pp. 106—107). Even 
the following assertion is true. 

Proposition 3. Let us put 

fj(t \ __ Ju(r» s) for x 6 ta ' bl a n d s e [a> r] ' u"> s) ~ j j y ^ ,) = j for te[a,b] and se[t, fe] . 

Then the VifaJi two-dimensicnal variation of U on [a, fe] x [a, fe] is finite. 

Proof. Let a = {a = t0 < tt < . . . < tm = fe} be an arbitrary division of [a, fe]. 
Let us put for j,k = 1, 2 , . . . , m 

AA,.jkL? = 0(fy, **) - U(0_1? tk) - t)(tj, tk_t) + tt(tj-u r,_i). 

Then 

AA;,k0 = U(tj, tj)- U(tj-19 tj-t) - U(tj, tj) + U(r,._i, tj-t) = 0 for fc = j + 1 , 

AA,,,̂  = 7 - ^ , 0 . 0 
and 

m m m j - 1 m 

w(U; ff) = H |AAMU]| - 1 ( 1 ||AA,,kU||) + £ |/ - t % *y-0l • 
.=-1 k=-l i-=l *=1 j=-l 

Applying the assertions (i) and (iii) of Theorem 2 and (6) we get 

»(ff; «0 - 1 z W * <;-.) - I] Mh-u h) - U(t,_„ r4_o]I + 
.7 = 1 * = 1 
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+ III '-*%0-i)l l *t(1 +^var^-U(0.1,.))jry [d^^U^O-t) 
1=1 1=1 IIJ O-i 

^ (1 + K2) K(var* A) < oo . 

This completes the proof. 

Remark 4. Let us assume 

det [I + A+A(*)] 4= 0 for all t e [a, b) 

instead of (4). Then the assertion of Proposition 2 has to be modified as follows. 

Given an arbitrary n-vector c there exists at least one solution x of (1) on [a, b] 
such that x(b) -= c. If t0 e [a, b] and x is an arbitrary solution of (1) on [f0, b] 
which is bounded on [t0, b], then x(t) = x(f) on [t0, fc]. 

The formulation and the proof of the statements analogous to Theorems 1 and 2 
and Proposition 3 is evident. (The corresponding fundamental matrix solution V(t, s) 
is defined for a < t < s < b and fulfils the relation 

V(t, s) = I - Г[<M(>)] V{a, s) .) 

References 

[1] Hildebrandt T H., Intioduction to the Theo.y of Integration, Academic Press, New York 
and London, 1963. 

[2] Hildebrandt T. H, On systems of linear differentio-Stieltjes-integral equations, ïllinois J. 
Math. 3, 1959, 352-373. 

[3] Kurzweil J.t Generalized ordinary differential equations and continuous dependence on 
a parameter, Czech. Math. J. 7 (82), 1957, 418—449. 

[4] Kurzweil J., Generalized ordinary differential equations, Czech. Math. J. 8 (83), 1958, 
360-389. 

[5] Kurzweгl J., Unicity of solutions of generalized differential equations, Czech. Math. J. 8 (83), 
1958, 508-509. 

[6] Schwabik Št., Stetige Abhängigkeit von einem Parameter und invariante für verallgemeinerte 
Differentialgleichungen, Czech. Math. J. I9 (94), 1969, 398—427. 

[7] Schwabik Št., Verallgemeineгte gewöhnliche Differentialgleichungen; Systeme mit lmpulsen 
auf Flächen, Czech. Math. J. 20 (95), 1970, 468-490 and 2I (96), 1971, 198-212. 

[8] Schwabik Št., Bemerkungen zułStabilitätsfragen für veiallgemeinerte D;fferentialgleichun-
gen, Čas. pčst. mat. 96, 1971, 57—66. 

[9] Schwabik Št., Verallgemeinerte lineare Diffeientialgleichungssysteme, Čas. pest. mәt. 96, 
1971, 183-211. 

[10] Schwabik Št., On the relation between Young's and Кuгzweiľs concepts of Stieltjes integral, 
Čas. p st. mat., to appear. 

[11] Vrkoč L, Note to the unicity of generalized diffeгential equations, Czech. Math. J. 8 (83), 
1958, 510-511. 

Authors* address: 115 67 Praha 1, Žitná 25, ČSSR (Matematický ústav ČSAV v Praze). 

211 


		webmaster@dml.cz
	2012-05-12T05:16:06+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




