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Abstract. The procedures for constructing a fuzzy number and a fuzzy-valued function
from a family of closed intervals and two families of real-valued functions, respectively,
are proposed in this paper. The constructive methodology follows from the form of the
well-known “Resolution Identity” (decomposition theorem) in fuzzy sets theory. The fuzzy-
valued measure is also proposed by introducing the notion of convergence for a sequence
of fuzzy numbers. Under this setting, we develop the fuzzy-valued integral of fuzzy-valued
function with respect to fuzzy-valued measure. Finally, we provide a Dominated Conver-
gence Theorem for fuzzy-valued integrals.
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1. Introduction

The concept of fuzzy integrals was first introduced by Sugeno [14]. After that,
many subsequent formulations for fuzzy integrals have also been developed. Sim

and Wang [11] gave a good review in the subject of fuzzy integrals. Some other
interesting approaches are the fuzzy measures assuming values in the set of all fuzzy

numbers by Klement [4] and Stojaković [12], the integration of fuzzy-valued functions
by Klement [5] and Puri & Ralescu [8], and the fuzzy integrals on product spaces

by Suárez-Díaz and Suárez-García [13]. In this paper, we are concerned with a more
general setting, the fuzzy-valued integrals of fuzzy-valued measurable functions with

respect to fuzzy-valued measures.
We propose a constructive methodology to obtain a fuzzy-valued function from

two families of real-valued functions based on a well-known “Resolution Identity”
in fuzzy sets theory. In order to propose the fuzzy-valued measures, we invoke the
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Hausdorff metric which was proposed by Puri and Ralescu [8] to come up with

the convergence of a sequence of fuzzy numbers. Under the settings of fuzzy-valued
measures and fuzzy-valued functions, we are able to discuss the integrations of fuzzy-
valued measurable functions with respect to fuzzy-valued measures.

In Sections 2 and 3, we first propose the methodology for constructing a fuzzy

number from a family of closed intervals, and then we extend the methodology to
construct a fuzzy-valued function from two families of real-valued functions. In

Section 4, we introduce the notion of limit for a sequence of fuzzy numbers by
invoking the Hausdorff metric in order to propose the fuzzy-valued measures. In

Section 5, we are concerned with the integration of fuzzy-valued measurable function
with respect to fuzzy-valued measure, where the fuzzy-valued measurable function

is constructed from two families of real-valued measurable functions. In the final
Section 6, we derive the main theorem, the Dominated Convergence Theorem for

fuzzy-valued integrals.

2. Construction of fuzzy numbers

Let U be a topological vector space. The fuzzy subset ã of U is defined by its
membership function ξã : U → [0, 1]. The α-level set of ã, denoted by ãα, is defined

by ãα = {x ∈ U : ξã(x) > α} for all 0 < α 6 1. The 0-level set ã0 is defined as
ã0 = cl({x ∈ U : ξã(x) > 0}). Let ã be a fuzzy subset of U . We say that ã is

normal if there exists an x ∈ U such that ξã(x) = 1, and that ã is convex if its
membership function ξã is quasi-concave, i.e., ξã(λx + (1−λ)y) > min{ξã(x), ξã(y)}
for all λ ∈ [0, 1].
We denote by F(U) the set of all fuzzy subsets ã of U with membership function ξã

satisfying the following conditions:

(i) ã is normal and convex.

(ii) ξã is upper semicontinuous, i.e., {x ∈ U : ξã(x) > α} is a closed subset of U for
all α ∈ (0, 1].

(iii) The 0-level set ã0 is a compact subset of U .

Throughout this paper, the universal set U is assumed as the real number system
�

which is endowed with the usual topology. The member ã in F(
�
) is then called a

fuzzy number. It is not hard to see that if ã is a fuzzy number then ãα is a closed

interval in
�
for α ∈ [0, 1]. In this case, we write ãα = [ãL

α, ãU
α ]. The following easy

consequence will be used frequently in this paper.

Proposition 2.1. Let ã be a fuzzy number. Then ãβ ⊆ ãα for α < β, i.e., ãL
α 6 ãL

β

and ãU
α > ãU

β for α < β.
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Let ã be a fuzzy number. Then ã is called a nonnegative fuzzy number if ξã(x) = 0
for all x < 0, and called a nonpositive fuzzy number if ξã(x) = 0 for all x > 0. We
say that ã is a crisp number with value m if its membership function is given by

ξã(r) =

{
1 if r = m,

0 otherwise.

We also use the notation 1̃{m} to represent the crisp number with value m. It is
easy to see that (1̃{m})L

α = (1̃{m})U
α = m for all α ∈ [0, 1]. In other words, each real

number m can be regarded as a crisp number 1̃{m}.
Let “⊕” be an addition between two fuzzy numbers ã and b̃. The membership

function of ã⊕ b̃ is defined by

ξã⊕b̃(z) = sup
x+y=z

min{ξã(x), ξb̃(y)}

using the extension principle in Zadeh [16]. Applying the results in Klir and Yuan [3,

Chapter 4], we can show the following useful result for further discussions.

Proposition 2.2. Let ã and b̃ be two fuzzy numbers. Then ã⊕ b̃ is also a fuzzy

number. Furthermore, we have

(ã⊕ b̃)α = [ãL
α + b̃L

α, ãU
α + b̃U

α ].

Let ã be a fuzzy number. We define the membership functions of ã+ and ã− as

ξã+(r) =





ξã(r) if r > 0,

1 if r = 0 and ξã(r) < 1 for all r > 0,

ξã(0) if r = 0 and there exists an r > 0 such that ξã(r) = 1,

0 otherwise

and

ξã−(r) =





ξã(r) if r < 0,

1 if r = 0 and ξã(r) < 1 for all r < 0,

ξã(0) if r = 0 and there exists an r < 0 such that ξã(r) = 1,

0 otherwise.

From Proposition 2.2, it is not hard to see that

(1) ã = ã+ ⊕ ã−.

We call ã+ and ã− the positive part and negative part of ã, respectively.
We rephrase the following well-known results for motivating the construction of a

fuzzy number from a family of closed intervals.
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Proposition 2.3.
(i) (Zadeh [16]) (Resolution Identity) Let Ã be a fuzzy set with membership func-

tion ξÃ and Ãα be the α-level set of Ã for α ∈ [0, 1]. Then the membership
function ξÃ can be expressed as

ξÃ(x) = sup
α∈[0,1]

α · 1Ãα
(x),

where 1Ãα
is the characteristic function of set Ãα (note that the α-level set Ãα

is a usual set).

(ii) (Negoita and Ralescu [6]) Let A be a set and {Aα : α ∈ [0, 1]} be a family of
subsets of A such that the following conditions are satisfied:

(a) A0 = A;

(b) Aβ ⊆ Aα for α < β;

(c) Aα =
∞⋂

n=1
Aαn for αn ↑ α.

Then the function ξ : A → [0, 1] defined by

ξ(x) = sup
α∈[0,1]

α · 1Aα(x)

has the property that

Aα = {x ∈ A : ξ(x) > α} for all α ∈ [0, 1].

Let {Aα = [lα, uα] : α ∈ [0, 1]} be a family of closed intervals in � . Then we can
induce a fuzzy subset ã of

�
with membership function defined by

ξã(r) = sup
α∈[0,1]

α · 1Aα(r)

via the form of Resolution Identity in Proposition 2.3. Note that, in general, this
fuzzy subset ã of

�
is not necessarily a fuzzy number. We say that {Aα} is de-

creasing with respect to α if Aβ ⊆ Aα for α < β. Let us further regard lα and uα

as the functions of α and assume that lα and uα are left-continuous with respect

to α. Therefore if {Aα} is decreasing with respect to α, thus we see that {Aα} is
continuously decreasing with respect to α, since lα and uα are left-continuous with

respect to α. It also says that Aα =
∞⋂

n=1
Aαn for αn ↑ α. Using routine arguments,

we can show the following interesting result.
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Proposition 2.4. Let {Aα = [lα, uα] : α ∈ [0, 1]} be a family of closed intervals.
Suppose that the following conditions are satisfied:

(i) A1 6= ∅;
(ii) {Aα} is decreasing with respect to α;

(iii) lα and uα are left-continuous with respect to α.

Then {Aα} induces a fuzzy number ã with ãα = Aα.

Conversely, we also have the following results.

Proposition 2.5.

(i) Let Aα = {x ∈ � : ξ(x) > α}. Then
∞⋂

n=1
Aαn = Aα for αn ↑ α.

(ii) If ã is a fuzzy number then ãL
αn

↑ ãL
α and ãU

αn
↓ ãU

α for αn ↑ α, i.e., ãL
α and ãU

α

are left-continuous with respect to α.

Let A = [aL, aU ] and B = [bL, bU ] be two closed intervals in
�
. Then the addition

of two closed intervals is denoted and given by

A⊕int B ≡ {z ∈ � : z = x + y for x ∈ A and y ∈ B} = [aL + bL, aU + bU ].

Let A = [l, u] be a closed interval in
�
. If l > 0 then A is called a nonnegative closed

interval, and if u 6 0 then A is called a nonpositive closed interval. If l 6 0 and
u > 0 then we let A+ = [0, u] and A− = [l, 0]. We call A+ the positive part of A and
A− the negative part of A. It is obvious that A = A+ ⊕int A−.

Let the family of closed intervals {Aα = [lα, uα] : α ∈ [0, 1]} be decreasing with
respect to α and A1 6= ∅. Then we have Aα = A+

α ⊕int A−α for α ∈ [0, 1]. Now {Aα},
{A+

α} and {A−α } can induce three respective fuzzy sets ã, b̃ and c̃ with membership
functions defined by

ξã(r) = sup
α∈[0,1]

α · 1Aα(r),

ξb̃(r) =





sup
α∈[0,1]

α · 1A+
α
(r) if r > 0,

1 if r = 0 and A+
1 = ∅,

sup
α∈[0,1]

α · 1A+
α
(0) if r = 0 and A+

1 6= ∅,

0 if r < 0
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and

ξc̃(r) =





sup
α∈[0,1]

α · 1A−
α
(r) if r < 0,

1 if r = 0 and A−1 = ∅,
sup

α∈[0,1]

α · 1A−
α
(0) if r = 0 and A−1 6= ∅,

0 if r > 0.

Now, for r > 0, r ∈ Aα if and only if r ∈ A+
α . Thus ξã+(r) = ξã(r) = ξb̃(r). From

the definition of the membership function of ã+, it is easy to see that ξã+(0) = ξb̃(0).
We conclude that ã+ = b̃. Similarly, we can conclude that ã− = c̃. This shows the
following result.

Proposition 2.6. Let the family of closed intervals {Aα = [lα, uα] : α ∈ [0, 1]} be
decreasing with respect to α and satisfy the conditions in Proposition 2.4. Let ã be

a fuzzy number induced by {Aα}. Then ã+ is a fuzzy number induced by {A+
α} and

ã− is a fuzzy number induced by {A−α }, where ã = ã+ ⊕ ã− and Aα = A+
α ⊕int A−α

for α ∈ [0, 1].

Proposition 2.7. Let the family of closed intervals {Aα = [lα, uα] : α ∈ [0, 1]}
and {Āα = [l̄α, ūα] : α ∈ [0, 1]} be decreasing with respect to α and satisfy the condi-

tions in Proposition 2.4. Suppose that {Aα} and {Āα} induce two fuzzy numbers ã

and b̃, respectively, and that {Aα ⊕int Āα : α ∈ [0, 1]} induces a fuzzy number c̃.

Then c̃ = ã⊕ b̃.

���������
. Let c̃1 be induced by {Âα ≡ Aα⊕int Āα} and c̃2 = ã⊕ b̃. By definition,

the membership functions of c̃1 and c̃2 are given by

ξc̃1(r) = sup
α∈[0,1]

α · 1Âα
(r)

and

ξc̃2(r) = sup
r=r1+r2

min
{

sup
α∈[0,1]

α · 1Aα(r1), sup
α∈[0,1]

α · 1Āα
(r2)

}
.

It is not hard to show that ξc̃1(r) = ξc̃2(r) for all r. �
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3. Construction of fuzzy-valued functions

In this section, we shall discuss the construction of fuzzy-valued functions from

two families of functions.
Let f̃ be a function defined on X by f̃ : X → F(

�
). Then we say that f̃ is a

fuzzy-valued function. We also denote by f̃L
α (x) = (f̃(x))L

α and f̃U
α (x) = (f̃(x))U

α for
x ∈ X . Therefore the fuzzy-valued function f̃ induces the real-valued functions f̃L

α

and f̃U
α for α ∈ [0, 1].

Let L(x) = {lα(x) : α ∈ [0, 1]} and U(x) = {uα(x) : α ∈ [0, 1]} be two families of
functions, where lα and uα are real-valued functions defined on X for α ∈ [0, 1]. Let

Bα(x) = [min{lα(x), uα(x)}, max{lα(x), uα(x)}]

for α ∈ [0, 1]. Then we can induce a function f̃ which assumes values in the family
of all fuzzy subsets of

�
; that is to say, for any fixed x ∈ X , f̃(x) is a fuzzy subset

of
�
with membership function defined by

(2) ξf̃(x)(r) = sup
α∈[0,1]

α · 1Bα(x)(r)

via the form of Resolution Identity in Proposition 2.3. In the sequel, we are going to

construct a subset of X such that f̃(x) is a fuzzy number for each x in this subset
of X .

For α < β and α, β ∈ [0, 1], we adopt the following notations

Ell,α,β = {x ∈ X : lα(x) 6 lβ(x)},
Euu,α,β = {x ∈ X : uβ(x) 6 uα(x)},

Elu,α = {x ∈ X : lα(x) 6 uα(x)}.

We assume Elu,1 = {x ∈ X : l1(x) 6 u1(x)} 6= ∅. We also let

Ell =
⋂

06α<β61

Ell,α,β , Euu =
⋂

06α<β61

Euu,α,β , Elu =
⋂

α∈[0,1]

Elu,α

and

ELU = Ell ∩Euu ∩ Elu.

Then, for each x ∈ ELU , we have a family of decreasing closed intervals {Aα(x) =
[lα(x), uα(x)] : α ∈ [0, 1]} induced from {L(x),U(x)}. Then the membership function
of f̃(x), for x ∈ ELU , is given by

ξf̃(x)(r) = sup
α∈[0,1]

α · 1Aα(x)(r)
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from (2). Let us also adopt the following notations

F L
α;A = {x ∈ X : lαn(x) → lα(x) for αn ↑ α},(3)

F U
α;A = {x ∈ X : uαn(x) → uα(x) for αn ↑ α}.

Let Fα;A = F L
α;A ∩ F U

α;A and Gα;A = Fα;A ∩ ELU . Then, for each x ∈ Gα;A, we see

that Aα(x) =
∞⋂

n=1
Aαn(x) for αn ↑ α. Let FA =

⋂
α∈[0,1]

Fα;A and GA =
⋂

α∈[0,1]

Gα;A.

Then we see that GA = FA∩ELU . Now, from Proposition 2.4, f̃(x) is a fuzzy number
for x ∈ GA, i.e., f̃ is a fuzzy-valued function defined on GA and f̃α(x) = Aα(x) =
[lα(x), uα(x)] for x ∈ GA and α ∈ [0, 1]. We call f̃ the pseudo-fuzzy-valued function
induced by {L,U}. The reason why we call f̃ the pseudo-fuzzy-valued funtion is that
f̃(x) is just a fuzzy subset of

�
, not a fuzzy number, for x ∈ X \GA. The following

proposition is useful for defining the fuzzy-valued integrals.

Proposition 3.1.

(i) If there exists a countable dense subset {αn} of [0, 1] such that Elu,αn ⊆ FA for

all n, then Elu can be expressed as countable intersections.

(ii) If there exists a countable dense subset {βn} of [0, 1], such that Ell,α,βn ⊆ FA

and Euu,α,βn ⊆ FA for all α ∈ [0, βn) and all n, then Ell and Euu can be

expressed as countable intersections.

���������
. It will be enough to just prove case Ell. We now have

(4) Ell =
⋂

{β : 06β61}

⋂

{α : 06α<β61}
Ell,α,β ≡

⋂

{β : 06β61}
Hβ ⊆

∞⋂

n=1

Hβn ,

where Hβ =
⋂

{α : 06α<β61}
Ell,α,β . Given any β ∈ [0, 1], there exists a subsequence

{βnk
} ⊆ {βn} such that βnk

↑ β. If α < β then we have lα(x) 6 lβnk
(x) for some

K > 0, α < βnk
and k > K. Therefore, we have lα(x) 6 lβ(x) for α < β by taking

limit, i.e, x ∈ ⋂
06β61

Hβ . Thus Ell =
∞⋂

n=1
Hβn . For fixed βn, let {α(n)

m }∞m=1 be any

countable dense subset of [0, βn]. Similarly, we can show that

(5) Hβn =
⋂

{α : 06α<βn61}
Ell,α,βn =

∞⋂

m=1, α
(n)
m <βn

E
ll,α

(n)
m ,βn

.

This completes the proof. �
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Let f̃ and g̃ be two pseudo-fuzzy-valued functions induced by {L,U} and {L̄,U},
respectively. At the same time, we also have two corresponding families of decreasing
closed intervals

{Aα(x) = [lα(x), uα(x)] : α ∈ [0, 1] and x ∈ ELU}

and

{Āα(x) = [l̄α(x), ūα(x)] : α ∈ [0, 1] and x ∈ EL̄U}

from {L,U} and {L̄,U}, respectively. Let

L̂(x) ≡ {l̂α(x) = lα(x) + l̄α(x) : α ∈ [0, 1]}

and

Û(x) ≡ {ûα(x) = uα(x) + ūα(x) : α ∈ [0, 1]}.

We denote by L̂ = L ⊕fct L̄ and Û = U ⊕fct U . Then we also have a family of
decreasing closed intervals

{Âα(x) = [l̂α(x), ûα(x)] : α ∈ [0, 1] and x ∈ EL̂Û}

from {L̂, Û}. Therefore {L̂, Û} can induce a pseudo-fuzzy-valued function h̃ such
that h̃ is a fuzzy-valued function on GÂ. Now, we see that x ∈ Ell,α,β ∩ El̄l̄,α,β

implies l̂α(x) = lα(x) + l̄α(x) 6 lβ(x) + l̄β(x) = l̂β(x) for α < β, i.e., (Ell,α,β ∩
El̄l̄,α,β) ⊆ El̂l̂,α,β . Similarly, we also have (Euu,α,β ∩Eūū,α,β) ⊆ Eûû,α,β and (Elu,α ∩
El̄ū,α) ⊆ El̂û,α for α < β. Suppose that x ∈ F L

α;A ∩ F L
α;Ā
. Then, for αn ↑ α,

we have lim
n→∞

l̂αn(x) = l̂α(x), i.e., (F L
α;A ∩ F L

α;Ā
) ⊆ F L

α;Â
. Similarly, we also have

(F U
α;A ∩ F U

α;Ā
) ⊆ F U

α;Â
. Therefore we write h̃ ≈ f̃ ⊕ g̃ if (Ell,α,β ∩ El̄l̄,α,β) = El̂l̂,α,β,

(Euu,α,β ∩ Eūū,α,β) = Eûû,α,β , (Elu,α ∩ El̄ū,α) = El̂û,α, (F L
α;A ∩ F L

α;Ā
) = F L

α;Â
and

(F U
α;A ∩ F U

α;Ā
) = F U

α;Â
for α < β. In this case, we conclude that (ELU ∩EL̄U ) = EL̂Û

and (FA ∩ FĀ) = FÂ, i.e., (GA ∩ GĀ) = GÂ. From Propositions 2.1, 2.5 (ii) and

2.3 (ii), we can show the following results for later use.

Proposition 3.2.
(i) Let f̃ be a fuzzy-valued function defined on X . We consider the families L(x) =

{f̃L
α (x) : α ∈ [0, 1]} and U(x) = {f̃U

α (x) : α ∈ [0, 1]}. Then {L,U} induces f̃

and ELU = FA = X , i.e., GA = X .

(ii) Let f̃ and g̃ be two fuzzy-valued functions defined on the same set X . Let

L(x) = {f̃L
α (x)}, L̄(x) = {g̃L

α(x)}, U(x) = {f̃U
α (x)} and U(x) = {g̃U

α (x)}.
Suppose that f̃0 and g̃0 are induced by {L,U} and {L̄,U}, respectively, and h̃ is
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induced by {L̂ = L⊕fct L̄, Û = U ⊕fct U}. Then h̃ ≈ f̃0⊕ g̃0, f̃0 = f̃ , g̃0 = g̃ and

h̃(x) = f̃(x)⊕ g̃(x) for all x ∈ X , i.e., h̃α(x) = f̃α(x)⊕int g̃α(x) for all x ∈ X .

Definition 3.1. Let L(x) = {lα(x) : α ∈ [0, 1]} and U(x) = {uα(x) : α ∈ [0, 1]}
be two families of real-valued functions defined on X . We say that {L,U} is a
standard family if Elu,α ⊆ FA, Ell,α,β ⊆ FA and Euu,α,β ⊆ FA for all α < β and
α, β ∈ [0, 1].

Proposition 3.3. Let f̃ be a pseudo-fuzzy-valued function induced by a standard
family {L,U}. Then GA = ELU , and GA can be expressed as countable intersections.
���������

. By the definition of standard family, we see that ELU ⊆ FA. This

means that GA = ELU since GA = ELU ∩ FA. The countable intersections of GA

follow from Proposition 3.1 immediately. �

4. The fuzzy-valued measures

In order to define the fuzzy-valued measure, we need to consider the limit of a

sequence of fuzzy numbers. Thus we first introduce a metric on the set of all fuzzy
numbers F(

�
).

Let A ⊆ � n and B ⊆ � n . The Hausdorff metric is defined as

dH(A, B) = max
{

sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖
}
.

According to Puri and Ralescu [8], we define the metric dF in F(
�
) as

dF (ã, b̃) = sup
α∈[0,1]

dH (ãα, b̃α),

since ãα and b̃α are bounded closed intervals for all α ∈ [0, 1]. We can see that
(F(

�
), dF ) is a complete metric space. The following result is obvious.

Proposition 4.1. Let ã and b̃ be two fuzzy numbers. Then we have

dH(ãα, b̃α) = max
{∣∣ãL

α − b̃L
α

∣∣,
∣∣ãU

α − b̃U
α

∣∣}.

Definition 4.1. Let {ãn} be a sequence of fuzzy numbers. Then {ãn} is said to
converge if there is a fuzzy number ã with the following property: ∀ ε > 0, ∃N > 0
such that dF (ãn, ã) < ε for n > N . In this case, we also say that the sequence {ãn}
converges to ã, and it is denoted by

lim
n→∞

ãn = ã.

If there is no such ã, the sequence {ãn} is said to diverge.
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Proposition 4.2. Let {ãn} be a sequence of fuzzy numbers. If the limit of the
sequence {ãn} exists, then it is unique and

(
lim

n→∞
ãn

)
α

=
[

lim
n→∞

(ãn)L
α , lim

n→∞
(ãn)U

α

]

for all α ∈ [0, 1]. Moreover, {(ãn)L
α} and {(ãn)U

α } converge uniformly with respect
to α on [0, 1].
���������

. The result follows from Proposition 4.1 immediately. �

Definition 4.2. Let {ãn} be a sequence of fuzzy numbers. Let s̃n =
n⊕

i=1

ãi be

the partial sum of the sequence {ãn}. If the limit of the sequence {s̃n} exists, then
the infinite (fuzzy) sum of the sequence {ãn} is said to converge, and we also write

∞⊕

n=1

ãn = lim
n→∞

s̃n = lim
n→∞

n⊕

i=1

ãi,

otherwise the infinite (fuzzy) sum of the sequence {ãn} is said to diverge.

Proposition 4.3. If {ãn} is a sequence of fuzzy numbers, and the infinite sum of
the sequence {ãn} exists, then we have

( ∞⊕

n=1

ãn

)

α

=
[ ∞∑

n=1

(ãn)L
α ,

∞∑

n=1

(ãn)U
α

]
.

���������
. The result follows from Propositions 4.2 and 2.2 immediately. �

We denote by 0̃ a crisp number with value 0. Then we are in a position to consider
the fuzzy-valued measures.

Definition 4.3. By a fuzzy-valued measure µ̃ on a measurable space (X,M),
we mean a nonnegative fuzzy-valued set function defined on all sets in M which

satisfies the following two conditions:
(i) µ̃(∅) = 0̃;

(ii) µ̃
( ∞⋃

i=1

Ei

)
=

∞⊕
i=1

µ̃(Ei) for any sequence {Ei} of disjoint measurable sets.

Let µ̃ be a fuzzy-valued measure on a measurable space (X,M). Then µ̃(E) is
a fuzzy number for E ∈ M. Therefore, we can define the set functions µ̃L

α(E) =
(µ̃(E))L

α and µ̃U
α (E) = (µ̃(E))U

α on (X,M) for each α ∈ [0, 1]. Then, from Proposi-
tion 4.3, we see that if µ̃ is a fuzzy-valued measure on a measurable space (X,M),
then µ̃L

α and µ̃U
α are the traditional measures on the same measurable space (X,M).

Let µ1 and µ2 be two measures on the same measurable space (X,M). Recall that
µ1 is absolutely continuous with respect to µ2, denoted as µ1 � µ2, if µ2(E) = 0
implies µ1(E) = 0 for each set E.
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Definition 4.4. Let µ̃ be a fuzzy-valued measure on a measurable space (X,M).
Then µ̃L

α and µ̃U
α are the traditional measures on (X,M) for all α ∈ [0, 1]. We say

that µ̃ is a canonical fuzzy-valued measure if the conditions µ̃L
β � µ̃L

α , µ̃
U
α � µ̃U

β and
µ̃U

α � µ̃L
α are satisfied for all α < β and α, β ∈ [0, 1].

Let ν and µ be two measures on the same measurable space (X,M). Recall that µ
and ν are equivalent measures if µ � ν and ν � µ. Let µ̃ be a fuzzy-valued measure
on a measurable space (X,M). We denote by Ξ = {µ̃L

α, µ̃U
α : α ∈ [0, 1]} a family of

measures which are all on the same measurable space (X,M).

Proposition 4.4. If µ̃ is a canonical fuzzy-valued measure on a measurable

space (X,M), then all measures in Ξ are equivalent.
���������

. The result follows from Proposition 2.1 and the definition of canonical

fuzzy-valued measure immediately. �

5. The fuzzy-valued integrals

In this section, we shall discuss the fuzzy-valued integral of fuzzy-valued measur-
able function which is constructed from two families of measurable functions.

Definition 5.1. Let (X,M) be a measurable space. Let L(x) = {lα(x) : α ∈
[0, 1]} and U(x) = {uα(x) : α ∈ [0, 1]} be two families of real-valued functions defined
on X . Let f̃ be a pseudo-fuzzy-valued function induced by {L,U}. If lα and uα are
measurable functions for all α ∈ [0, 1], then we say that f̃ is measurable.

We denote by F the family of all fuzzy subsets of � . Recall that F(
�
) denotes

the set of all fuzzy numbers. Let µ̃ be a fuzzy-valued measure on a measurable
space (X,M) and µ be a traditional measure on a measurable space (X,M). We
consider a function f̃ : X → F which assumes values in F , not in F(

�
). Then we

say that f̃ is a fuzzy-valued function a.e. [µ] if the set Z = {x ∈ X : f̃(x) ∈ F(
�
)}

satisfies µ(Zc) = 0, and that f̃ is a fuzzy-valued function a.e. [µ̃] if µ̃(Zc) = 0̃,
i.e., µ̃L

α(Zc) = 0 = µ̃U
α (Zc) for all α ∈ [0, 1].

Definition 5.2. Let µ̃ be a fuzzy-valued measure on a measurable space (X,M).
Let L(x) = {lα(x) : α ∈ [0, 1]} and U(x) = {uα(x) : α ∈ [0, 1]} be two families of
real-valued measurable functions defined on X . Then {L,U} is said to be a canonical
family with respect to µ̃ if {L,U} is a standard family and there exists a measure
µ ∈ Ξ such that the following conditions are satisfied:
(i) lα 6 lβ a.e. [µ], uβ 6 uα a.e. [µ] and lα 6 uα a.e. [µ] for all α < β and

α, β ∈ [0, 1].
(ii) lαn ↑ lα a.e. [µ] and uαn ↓ uα a.e. [µ] for αn ↑ α.

12



Proposition 5.1. Let L(x) = {lα(x) : α ∈ [0, 1]} and U(x) = {uα(x) : α ∈ [0, 1]}
be two families of real-valued measurable functions defined on X . Let f̃ be a pseudo-

fuzzy-valued measurable function induced by {L,U}. Then the following statements
hold true.

(i) Suppose that {L,U} is a standard family. If µ is a measure on a measurable

space (X,M) such that conditions (i) and (ii) in Definition 5.2 are satisfied, then
µ(Gc

A) = 0. That is to say, f̃ is a fuzzy-valued measurable function a.e. [µ].
(ii) Suppose that {L,U} is a canonical family with respect to µ̃, where µ̃ is a canon-

ical fuzzy-valued measure on a measurable space (X,M). Then µ̃(Gc
A) = 0̃,

i.e., f̃ is a fuzzy-valued measurable function a.e. [µ̃].
���������

. From condition (i) in Definition 5.2, Eqs. (4) and (5) in the proof of

Proposition 3.1, we see that

0 6 µ(Ec
ll) 6

∞∑

n=1

∞∑

m=1

µ
(
Ec

ll,α
(n)
m ,βn

)
= 0.

Similarly, we also have µ(Ec
uu) = 0 = µ(Ec

lu). Thus we conclude that µ(Ec
LU ) = 0.

From Proposition 3.3, we also see that µ(Gc
A) = 0. Since f̃(x) ∈ F(

�
) for x ∈

GA, f̃ is a fuzzy-valued measurable function a.e. [µ]. Now, if µ ∈ Ξ, then, from
Proposition 4.4, we have µ̃L

α(Gc
A) = 0 = µ̃U

α (Gc
A) for all α ∈ [0, 1]. It follows that

µ̃(Gc
A) = 0̃. This completes the proof. �

Definition 5.3. Let µ̃ be a fuzzy-valued measure on a measurable space (X,M).
Let L(x) = {lα(x) : α ∈ [0, 1]} and U(x) = {uα(x) : α ∈ [0, 1]} be two families of real-
valued functions defined onX . We say that {L,U} is nonnegative (resp. nonpositive)
a.e. [µ̃] if lα > 0 (resp. 6 0) a.e. [µ̃U

α ] and uα > 0 (resp. 6 0) a.e. [µ̃U
α ].

Definition 5.4. Let µ̃ be a canonical fuzzy-valued measure on a measurable
space (X,M). Let L(x) = {lα(x) : α ∈ [0, 1]} and U(x) = {uα(x) : α ∈ [0, 1]}
be two families of real-valued measurable functions defined on X , and {L,U} be
a canonical family with respect to µ̃. Let f̃ be a pseudo-fuzzy-valued measurable

function induced by {L,U}. Suppose that lα ∈ L1(µ̃L
α) (i.e., Lebesgue integrable

with respect to µ̃L
α) and uα ∈ L1(µ̃U

α ) (i.e., Lebesgue integrable with respect to µ̃U
α )

for all α ∈ [0, 1]. Then we consider the following two cases.
(i) If {L,U} is nonnegative a.e. [µ̃], then, from Proposition 4.4 and condition (i)
in Definition 5.2, we have

∫
E lα dµ̃L

α 6
∫

E uα dµ̃L
α 6

∫
E uα dµ̃U

α since lα 6 uα

a.e. [µ̃L
α ] and µ̃L

α 6 µ̃U
α . Therefore we consider the closed interval Cα as

Cα =
[∫

E

lα dµ̃L
α ,

∫

E

uα dµ̃U
α

]

for α ∈ [0, 1].
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(ii) If {L,U} is nonpositive a.e. [µ̃] then, similarly, we consider the closed interval Cα

as

Cα =
[∫

E

lα dµ̃U
α ,

∫

E

uα dµ̃L
α

]

for α ∈ [0, 1]. The membership function of the fuzzy-valued integral
∫

E f̃ dµ̃ is
defined by

ξ∫
E

f̃ dµ̃(r) = sup
α∈[0,1]

α · 1Cα(r)

via the form of Resolution Identity in Proposition 2.3, and we say that f̃ is
integrable with respect to µ̃ on E.

Now we want to explain that Definition 5.4 is well-defined. It will be enough

to just justify the nonnegative case. Let f̃ be a pseudo-fuzzy-valued measurable
function induced by a canonical family {L,U}. Suppose that f̃ is also induced by

another canonical family {L′,U ′}. Then we can induce decreasing closed intervals
{Aα(x) : α ∈ [0, 1]} from {L,U} for x ∈ ELU and decreasing closed intervals {A′α(x) :
α ∈ [0, 1]} from {L′,U ′} for x ∈ EL′U ′ . Since {Aα(x) : α ∈ [0, 1]} and {A′α(x) : α ∈
[0, 1]} induce the same fuzzy number f̃(x) for x ∈ ELU ∩ EL′U ′ , it is not hard to

see that Aα(x) = A′α(x) for x ∈ ELU ∩ EL′U ′ and all α ∈ [0, 1]. It follows that
lα(x) = l′α(x) and uα(x) = u′α(x) for x ∈ ELU ∩ EL′U ′ and all α ∈ [0, 1]. Using
Proposition 4.4 and similar arguments as in the proof of Proposition 5.1, we see that
µ̃L

α(Ec
LU ) = µ̃L

α(Ec
L′U ′) = µ̃U

α (Ec
LU ) = µ̃U

α (Ec
L′U ′) = 0 for all α ∈ [0, 1]. It follows that

lα = l′α a.e. [µ̃L
α ] and uα = u′α a.e. [µ̃U

α ] for all α ∈ [0, 1], i.e., for the nonnegative case
∫

E

lα dµ̃L
α =

∫

E

l′α dµ̃L
α and

∫

E

uα dµ̃U
α =

∫

E

u′α dµ̃U
α

for all α ∈ [0, 1]. This means that Definition 5.4 is well-defined.
In order to make the fuzzy-valued integrals more tractable mathematically, we

need the following results.

Proposition 5.2. Let {fn} be a sequence of nonnegative measurable functions
on (X,M) and {µn} be a sequence of measures on (X,M).
(i) If fn ↑ f a.e. [µ] and µn ↑ µ then

∫

X

f dµ = lim
n→∞

∫

X

fn dµn.

(ii) If fn ↓ f a.e. [µ1] and µn ↓ µ with f1 ∈ L1(µ1) and µ1(X) < ∞ then
∫

X

f dµ = lim
n→∞

∫

X

fn dµn.

14



���������
. Using the routine arguments in real analysis, the results follow from

the Generalized Fatou’s Lemma and Generalized Dominated Convergence Theorem
in Royden [9]. �

Let µ̃ be a fuzzy-valued measure on a measurable space (X,M). We write µ̃(E) ≺
∞ if and only if µ̃L

α(E) < ∞ and µ̃U
α (E) < ∞ for E ∈M and all α ∈ [0, 1].

Theorem 5.1. Let µ̃ be a canonical fuzzy-valued measure on a measurable

space (X,M). Let L(x) = {lα(x) : α ∈ [0, 1]} and U(x) = {uα(x) : α ∈ [0, 1]}
be two families of real-valued functions defined on X , and {L,U} be also a canonical
family with respect to µ̃. Let f̃ be induced by {L,U}. If f̃ is integrable on E and

µ̃(E) ≺∞, then we have the following results.
(i) If {L,U} is nonnegative a.e. [µ̃] then

(∫

E

f̃ dµ̃

)

α

=
[∫

E

lα dµ̃L
α ,

∫

E

uα dµ̃U
α

]

for all α ∈ [0, 1].
(ii) If {L,U} is nonpositive a.e. [µ̃] then

(∫

E

f̃ dµ̃

)

α

=
[∫

E

lα dµ̃U
α ,

∫

E

uα dµ̃L
α

]

for all α ∈ [0, 1]. Furthermore, the fuzzy-valued integral
∫

E f̃ dµ̃ is a fuzzy

number.
���������

. Let Cα be the closed interval given in Definition 5.4. From conditions

in Definition 5.2, Propositions 4.4 and 5.2, we see that the family of closed inter-
vals {Cα} is continuously decreasing with respect to α. That is to say, {Cα} satisfies
all conditions in Proposition 2.3 (ii). Therefore, using Proposition 2.3 (ii), we have(∫

E
f̃ dµ̃

)
α

= Cα. It is also not hard to show that the fuzzy-valued integral
∫

E
f̃ dµ̃

is a fuzzy number. �

Theorem 5.2. Let µ̃ be a canonical fuzzy-valued measure on a measurable

space (X,M), and f̃ be a nonnegative or nonpositive fuzzy-valued function defined

on X . Suppose that f̃L
α ∈ L1(µ̃L

α) and f̃U
α ∈ L1(µ̃U

α ) for all α ∈ [0, 1]. Then f̃ is

integrable on E. We also have that

(i) if f̃ is nonnegative then

(∫

E

f̃ dµ̃

)

α

=
[∫

E

f̃L
α dµ̃L

α ,

∫

E

f̃U
α dµ̃U

α

]

for all α ∈ [0, 1];
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(ii) if f̃ is nonpositive then

(∫

E

f̃ dµ̃

)

α

=
[∫

E

f̃L
α dµ̃U

α ,

∫

E

f̃U
α dµ̃L

α

]

for all α ∈ [0, 1]. Furthermore, the fuzzy-valued integral
∫

E
f̃ dµ̃ is a fuzzy

number.
���������

. We consider the families L(x) = {f̃L
α (x) : α ∈ [0, 1]} and U(x) =

{f̃U
α (x) : α ∈ [0, 1]}. By Proposition 3.2 (i), f̃ is induced by {L,U} on the whole
domain X . Since f̃L

αn
↑ f̃L

α , f̃U
αn

↓ f̃U
α , µ̃L

αn
↑ µ̃L

α and µ̃U
αn

↓ µ̃U
α for αn ↑ α from

Proposition 5.2 (ii), the result follows from Propositions 5.2 and 2.3 (ii) using similar
arguments as in the proof of Theorem 5.1. �

Proposition 5.3. Let µ̃ be a canonical fuzzy-valued measure on a measurable

space (X,M). Let f̃ and g̃ be pseudo-fuzzy-valued measurable functions induced by

two canonical families {L,U} and {L̄,U} with respect to µ̃, respectively. Suppose

that {L,U} and {L̄,U} are nonnegative or nonpositive a.e. [µ̃] simultaneously, and
that h̃ ≈ f̃ ⊕ g̃. If f̃ and g̃ are integrable on E and µ̃(E) ≺ ∞, then h̃ is also

integrable on E, and ∫

E

h̃ dµ̃ =
∫

E

f̃ dµ̃⊕
∫

E

g̃ dµ̃.

���������
. Now L̂ = L ⊕fct L̄ and Û = U ⊕fct U . From Proposition 4.4 and the

similar arguments in the proof of Proposition 5.1, it is not hard to show that {L̂, Û} is
a canonical family with respect to µ̃ which induces h̃. Since f̃ and g̃ are integrable

on E, using Theorem 5.1 and Proposition 2.2, we see that h̃ is integrable on E and

(∫

E

h̃ dµ̃

)

α

=
(∫

E

f̃ dµ̃⊕
∫

E

g̃ dµ̃

)

α

for all α ∈ [0, 1]. Similarly for the nonpositive case. This completes the proof. �

Proposition 5.4. Let µ̃ be a canonical fuzzy-valued measure on a measurable

space (X,M). Let f̃ and g̃ be nonnegative or nonpositive fuzzy-valued functions

simultaneously. If f̃ and g̃ are integrable on E, then h̃ = f̃ ⊕ g̃ is also integrable

on E and ∫

E

h̃dµ̃ =
∫

E

f̃ dµ̃⊕
∫

E

g̃ dµ̃.

���������
. The result follows by using similar arguments as in the proofs of Theo-

rem 5.2 and Proposition 5.3. �
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In the sequel, we shall introduce the fuzzy-valued intergal of the general case,

i.e., the fuzzy-valued function f̃ is not restricted to nonnegative or nonpositive
case. Let A(x) = [l(x), u(x)], where l and u are real-valued functions defined
on X with l 6 u. We define A+(x) = [l+(x), u+(x)] and A−(x) = [l−(x), u−(x)],
where l+(x) = max{l(x), 0}, u+(x) = max{u(x), 0}, l−(x) = min{0, l(x)} and
u−(x) = min{0, u(x)}. Then we have l(x) = l+(x)+l−(x) and u(x) = u+(x)+u−(x).
Thus A(x) = A+(x)⊕int A−(x).
Let L(x) = {lα(x) : α ∈ [0, 1]} and U(x) = {uα(x) : α ∈ [0, 1]} be two families

of real-valued functions defined on X . We have a family of decreasing closed in-

tervals {Aα(x)} from {L,U}. Let L+(x) = {l+α (x)}, L−(x) = {l−α (x)}, U+(x) =
{u+

α (x)} and U−(x) = {u−α (x)}. Then we have the corresponding families of de-
creasing closed intervals {A+

α (x)} and {A−α (x)} from {L+,U+} and {L−,U−}, re-
spectively. We can see that Aα(x) = A+

α (x) ⊕int A−α (x) for x ∈ ELU . Let f̃ ,

f̃++ and f̃−− be induced by {L,U}, {L+,U+} and {L−,U−}, respectively, where
L = L+ ⊕fct L− and U = U+ ⊕fct U−.
	�
�������

5.1. Since f̃(x) is a fuzzy number for any fixed x ∈ X , we see that

f̃+(x) and f̃−(x) are the positive and negative parts of f̃(x), respectively, and f̃(x) =
f̃+(x) ⊕ f̃−(x) for any fixed x ∈ X by looking at (1). Therefore, f̃ can induce two

fuzzy-valued functions f̃+ and f̃− such that f̃ = f̃+ ⊕ f̃−. From Proposition 2.6,
f̃++(x) = f̃+(x) and f̃−−(x) = f̃−(x) for x ∈ ELU , i.e., f̃(x) = f̃++(x) ⊕ f̃−−(x)
for x ∈ ELU .

Definition 5.5. Let µ̃ be a canonical fuzzy-valued measure on a measurable

space (X,M). Let L(x) = {lα(x) : α ∈ [0, 1]} and U(x) = {uα(x) : α ∈ [0, 1]} be two
families of real-valued functions defined on X such that {L+,U+} and {L−,U−} are
two canonical families with respect to µ̃, where {L+,U+} is nonnegative a.e. [µ̃]
and {L−,U−} is nonpositive a.e. [µ̃]. Let f̃ , f̃++ and f̃−− be induced by {L,U},
{L+,U+} and {L−,U−}, respectively. If f̃++ and f̃−− are integrable on E, then we
say that f̃ is integrable on E, and the fuzzy-valued integral

∫
E

f̃ dµ̃ is defined by

∫

E

f̃ dµ̃ =
∫

E

f̃++ dµ̃⊕
∫

E

f̃−− dµ̃.

	�
�������
5.2. From Theorem 5.1 and Proposition 2.2,

∫
E f̃ dµ̃ is a fuzzy number

and (∫

E

f̃ dµ̃

)

α

=
[∫

E

l+α dµ̃L
α +

∫

E

l−α dµ̃U
α ,

∫

E

u+
α dµ̃U

α +
∫

E

u−α dµ̃L
α

]
.
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Theorem 5.3. Let µ̃ be a canonical fuzzy-valued measure on a measurable

space (X,M). Let f̃ be a fuzzy-valued function defined on X . If f̃+ and f̃− are

integrable on E, then f̃ is also integrable on E and

∫

E

f̃ dµ̃ =
∫

E

f̃+ dµ̃⊕
∫

E

f̃− dµ̃.

���������
. We consider the families L(x) = {f̃L

α (x) : α ∈ [0, 1]} and U(x) =
{f̃U

α (x) : α ∈ [0, 1]}. Then ELU = X (the whole domain) from Proposition 3.2. From

Remark 5.1, we see that f̃++(x) = f̃+(x) and f̃−−(x) = f̃−(x) for x ∈ ELU = X .
The result follows from Remark 5.2 and Theorem 5.2 immediately. �

Proposition 5.5. Let µ̃ be a canonical fuzzy-valued measure on a measurable

space (X,M). Let f̃ and g̃ be induced by two families {L,U} and {L̄,U}, respec-
tively. Suppose that {L+,U+}, {L̄+,U+}, {L−,U−} and {L̄−,U−} are canonical
families with respect to µ̃. We further assume that lα(x) and l̄α(x) have the same
sign for each x (i.e., lα(x) · l̄α(x) > 0) and for all α ∈ [0, 1], and uα(x) and ūα(x)
also have the same sign for each x and for all α ∈ [0, 1]. Suppose that h̃ ≈ f̃ ⊕ g̃. If

f̃ and g̃ are integrable on E, then h̃ is also integrable on E and

∫

E

h̃ dµ̃ =
∫

E

f̃ dµ̃⊕
∫

E

g̃ dµ̃.

���������
. Let L̂+ = L+ ⊕fct L̄+, Û+ = U+ ⊕fct U+, L̂− = L− ⊕fct L̄− and

Û− = U− ⊕fct U−. Using similar arguments as in the proof of Proposition 5.3, we
can see that {L̂+, Û+} and {L̂−, Û−} are two canonical families with respect to µ̃.

We also have l̂α = lα + l̄α and ûα = uα + ūα. Thus l̂+α + l̂−α = l+α + l−α + l̄+α + l̄−α and
û+

α + û−α = u+
α +u−α + ū+

α + ū−α . Since lα(x) and l̄α(x) have the same sign for each x,

we have l̂+α = l+α + l̄+α and l̂−α = l−α + l̄−α . Similarly, we also have û+
α = u+

α + ū+
α and

û−α = u−α + ū−α . Now, from Remark 5.2 and Proposition 2.2, we have

(∫

E

h̃ dµ

)

α

=
(∫

E

f̃ dµ⊕
∫

E

g̃ dµ

)

α

for all α ∈ [0, 1]. This completes the proof. �
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6. Dominated Convergence Theorems

We shall discuss the Dominated Convergence Theorem for the fuzzy-valued inte-

grals with respect to fuzzy-valued measures.

Definition 6.1. Let ã be a fuzzy number. We call ã a canonical fuzzy number

if ãL
α and ãU

α are continuous with respect to α on [0, 1].

We also need the following results for canonical fuzzy numbers.

Proposition 6.1. Let ã and b̃ be two canonical fuzzy numbers. Then dF (ã, b̃) < ε

if and only if |ãL
α − b̃L

α| < ε and |ãU
α − b̃U

α | < ε for all α ∈ [0, 1].
���������

. For a compact set S in
� n , from Bazaraa et al. [2], if f is upper semi-

continuous on S then f assumes maximum over S, and if f is lower semicontinuous
on S then f assumes minimum over S. Therefore the result follows from Proposi-
tions 4.1 immediately. �

We denote by Fc(
�
) the set of all canonical fuzzy numbers. If a function f̃ is

given by f̃ : X → Fc(
�
), then f̃ is called a canonical fuzzy-valued function. Next we

are going to discuss the Dominated Convergence Theorem for canonical fuzzy-valued

functions.
From Eq. (3), if F L

α;A and F U
α;A are re-defined as follows

F L
α;A = {x ∈ X : lαn(x) → lα(x) for αn → α}

and

F U
α;A = {x ∈ X : uαn(x) → uα(x) for αn → α}

(the difference is considering αn → α, not αn ↑ α), then, from Proposition 2.4 (note
that this proposition still holds true for canonical fuzzy number if condition (iii) is

replaced by continuity instead of left-continuity), f̃(x) is a canonical fuzzy number
for each x ∈ GA. In this case, we also call f̃ a canonical pseudo-fuzzy-valued function

induced by {L,U}.

Theorem 6.1 (Dominated Convergence Theorem). Let µ̃ be a canonical fuzzy-

valued measure on a measurable space (X,M) with µ̃(X) ≺∞. For each n = 1, 2, . . .,

let Ln(x) = {l(n)
α (x) : α ∈ [0, 1]} and Un(x) = {u(n)

α (x) : α ∈ [0, 1]} be two families
of real-valued functions defined on X , and {Ln,Un} be two canonical families with
respect to µ̃. Let f̃n be a canonical pseudo-fuzzy-valued function induced by {Ln,Un}
for each n = 1, 2, . . .. We assume that the following conditions are satisfied:

(i) each f̃n is integrable on E for n = 1, 2, . . .;
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(ii) for n → ∞, (l(n)
α )+(x) → l+(x), (l(n)

α )−(x) → l−(x), (u(n)
α )+(x) → u+(x) and

(u(n)
α )−(x) → u−(x) uniformly with respect to α on [0, 1] for any fixed x ∈ X ;

(iii) there exist nonnegative functions gL ∈ L1(µ̃L
α) and gU ∈ L1(µ̃U

α ) for all α ∈ [0, 1]
such that gL > max{(l(n)

α )+, |(u(n)
α )−|} and gU > max{(u(n)

α )+, |(l(n)
α )−|} for

each n = 1, 2, . . . and all α ∈ [0, 1].
Then the canonical pseudo-fuzzy-valued function f̃ induced by the families L(x) =

{lα(x) = l+(x) + l−(x) : α ∈ [0, 1]} and U(x) = {uα(x) = u+(x) +u−(x) : α ∈ [0, 1]}
is integrable on E and we also have

lim
n→∞

∫

E

f̃n dµ̃ =
∫

E

f̃ dµ̃.

���������
. From condition (ii), we see that l

(n)
α (x) → l(x) and u

(n)
α (x) → u(x)

uniformly with respect to α on [0, 1] for any fixed x. Since (l(n)
α )+ 6 (l(n)

1 )+ a.e. [µ̃L
1 ],

we have the inequality
∫

E
(l(n)

α )+ dµ̃L
1 6

∫
E

(l(n)
1 )+ dµ̃L

1 . This shows that (l(n)
α )+ ∈

L1(µ̃L
1 ), since f̃n is integrable, i.e., (l(n)

1 )+ ∈ L1(µ̃L
1 ). Similarly, since (u(n)

α )− ∈
L1(µ̃L

α), (u(n)
0 )+ ∈ L1(µ̃U

0 ), (l(n)
α )− ∈ L1(µ̃U

α ) (note that (l(n)
α )− and (u(n)

α )− are
nonpositive) and

∫
E

(u(n)
α )− dµ̃L

1 6
∫

E
(u(n)

α )− dµ̃L
α ,

∫
E

(u(n)
α )+ dµ̃U

0 6
∫

E
(u(n)

0 )+ dµ̃U
0 ,∫

E(l(n)
α )− dµ̃U

0 6
∫

E(l(n)
α )− dµ̃U

α , we have (u(n)
α )− ∈ L1(µ̃L

1 ) and (u(n)
α )+, (l(n)

α )− ∈
L1(µ̃U

0 ) for each n = 1, 2, . . . and all α ∈ [0, 1]. Since the convergence is independent
of α in condition (ii), (l(n)

α )+ ∈ L1(µ̃L
1 ) and (l(n)

α )− ∈ L1(µ̃U
0 ), from condition (iii)

and using the Lebesgue Dominated Convergence Theorem, we have

(6)

∣∣∣∣
∫

E

(l(n)
α )+ dµ̃L

1 −
∫

E

l+α dµ̃L
1

∣∣∣∣ <
ε

2
and

∣∣∣∣
∫

E

(l(n)
α )− dµ̃U

0 −
∫

E

l−α dµ̃U
0

∣∣∣∣ <
ε

2

for all α ∈ [0, 1] (i.e., independent of α) for n sufficiently large. From Remark 5.2
and (6), we can show that

∣∣∣∣
(∫

E

f̃n dµ̃

)L

α

−
(∫

E

f̃ dµ̃

)L

α

∣∣∣∣ < ε

for n sufficiently large and all α ∈ [0, 1]. Similarly, we also have

∣∣∣∣
(∫

E

f̃n dµ̃

)U

α

−
(∫

E

f̃ dµ̃

)U

α

∣∣∣∣ < ε

for n sufficiently large and all α ∈ [0, 1]. Thus the result follows from Proposition 6.1
immediately. �
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In the sequel, we are going to discuss the Dominated Convergence Theorem for

fuzzy-valued functions. Let {f̃n} be a sequence of fuzzy-valued functions that are
integrable on E and dominated by a nonnegative integrable fuzzy-valued function
such that the limit function of {f̃n} exists. Then we are going to show that

lim
n→∞

∫

E

f̃n dµ̃ =
∫

E

f̃ dµ̃,

where µ̃ is a canonical fuzzy-valued measure.

Now we are going to fuzzify a nonfuzzy-valued function. Recall that F denotes the
set of all fuzzy subsets of

�
. Let f :

� n → �
be a nonfuzzy-valued function (i.e., a

real-valued function defined on
� n ) and Ã1, Ã2, . . . , Ãn be n fuzzy subsets of

�
.

By the extension principle in Zadeh [16] and Nguyen [7], we can induce a function

f̃ : Fn → F from the nonfuzzy-valued function f . That is to say, f̃(Ã1, Ã2, . . . , Ãn)
is a fuzzy subset of

�
. The membership function of f̃(Ã1, Ã2, . . . , Ãn) is defined by

(7) ξf̃(Ã1,Ã2,...,Ãn)(r) = sup
{(x1,...,xn) : r=f(x1,...,xn)}

min{ξÃ1
(x1), . . . , ξÃn

(xn)}.

Now we can define the meaning of the absolute value of a fuzzy number. Let ã be a
fuzzy number and f(x) = |x|. Then we can consider the fuzzy subset |ã| induced by
the real-valued function f(x) = |x| using Eq. (7). It is not hard to show that |ã| is
a fuzzy number and

(8) |ã|α = {|r| : r ∈ ãα}

for all α ∈ [0, 1]. Let ã and b̃ be two fuzzy numbers. We write ã � b̃ if and only if

ãL
α > b̃L

α and ãU
α > b̃U

α for all α ∈ [0, 1]. Then “�” is a partial ordering on F(
�
). The

following results are not hard to prove by using routine arguments.

Proposition 6.2. Let {ãn} be a sequence of fuzzy numbers. Then

lim
n→∞

ãn = ã if and only if lim
n→∞

ã+
n = ã+ and lim

n→∞
ã−n = ã−.

Proposition 6.3. Let ã and b̃ be two fuzzy numbers. If ã � |b̃|, then we have
(i) ãL

α > (b̃+)L
α and ãL

α > |(b̃−)U
α | for all α ∈ [0, 1];

(ii) ãU
α > (b̃+)U

α and ãU
α > |(b̃−)L

α | for all α ∈ [0, 1].

We are going to apply Theorems 5.2 and 5.3 to deduce the following Dominated

Convergence Theorem.
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Theorem 6.2 (Dominated Convergence Theorem). Let µ̃ be a canonical fuzzy-

valued measure on a measurable space (X,M) with µ̃(X) ≺ ∞ and {f̃n} be a
sequence of integrable fuzzy-valued functions with respect to µ̃ on E such that the

limit function lim
n→∞

f̃n(x) = f̃(x) exists. If there exists a nonnegative integrable

fuzzy-valued function g̃(x) with respect to µ̃ on E such that g̃(x) � |f̃n(x)| for all
n = 1, 2, . . ., then

lim
n→∞

∫

E

f̃n dµ̃ =
∫

E

f̃ dµ̃.

���������
. Since g̃ is integrable, we have g̃L

α ∈ L1(µ̃L
α) and g̃U

α ∈ L1(µ̃U
α ) for

all α ∈ [0, 1]. From Propositions 6.3 and 2.1, we have g̃L
1 > g̃L

α > (f̃+
n )L

α and

g̃L
1 > g̃L

α > |(f̃−n )U
α | for all α ∈ [0, 1], and g̃U

0 > g̃U
α > (f̃+

n )U
α and g̃U

0 > g̃U
α > |(f̃−n )L

α |
for all α ∈ [0, 1] (i.e., independent of α). Now we consider the following inequality

(9)
∫

E

(f̃+
n )L

α dµ̃L
1 6

∫

E

(f̃+
n )L

1 dµ̃L
1 .

Since f̃+
n is integrable, i.e., (f̃

+
n )L

α ∈ L1(µ̃L
α) for all α ∈ [0, 1], it follows that (f̃+

n )L
α ∈

L1(µ̃L
1 ) from (9). Similarly, since (f̃−n )U

α ∈ L1(µ̃L
α), (f̃−n )L

α ∈ L1(µ̃U
α ), (f̃+

n )U
0 ∈ L1(µ̃U

0 )
(note that (f̃−n )L

α and (f̃−n )U
α are nonpositive) and

∫
E

(f̃−n )U
α dµ̃L

1 6
∫

E
(f̃−n )U

α dµ̃L
α ,∫

E(f̃−n )L
α dµ̃U

0 6
∫

E(f̃−n )L
α dµ̃U

α ,
∫

E(f̃+
n )U

α dµ̃U
0 6

∫
E(f̃+

n )U
0 dµ̃U

0 , we have (f̃−n )U
α ∈

L1(µ̃L
1 ) and (f̃−n )L

α , (f̃+
n )U

α ∈ L1(µ̃U
0 ) for each n = 1, 2, . . . and all α ∈ [0, 1]. Since

(f̃+
n )L

α ∈ L1(µ̃L
1 ) and (f̃−n )L

α ∈ L1(µ̃U
0 ) for each n = 1, 2, . . . and all α ∈ [0, 1], using

Propositions 4.2, 6.2 and the Lebesgue’s Dominated Convergence Theorem, we have

∣∣∣∣
∫

E

(f̃+
n )L

α dµ̃L
1 −

∫

E

(f̃+)L
α dµ̃L

1

∣∣∣∣ <
ε

2
and

∣∣∣∣
∫

E

(f̃−n )L
α dµ̃U

0 −
∫

E

(f̃−)L
α dµ̃U

0

∣∣∣∣ <
ε

2

for n sufficiently large and all α ∈ [0, 1] (i.e., independent of α). From Theorems 5.2
and 5.3, we can show that

∣∣∣∣
(∫

E

f̃n dµ̃

)L

α

−
(∫

E

f̃ dµ̃

)L

α

∣∣∣∣ < ε

for n sufficiently large and all α ∈ [0, 1]. Similarly, we also have

∣∣∣∣
(∫

E

f̃n dµ̃

)U

α

−
(∫

E

f̃ dµ̃

)U

α

∣∣∣∣ < ε

for n sufficiently large and all α ∈ [0, 1]. The result follows from Proposition 6.1
immediately. �
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