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Abstract. We provide a general series form solution for second-order linear PDE system
with constant coefficients and prove a convergence theorem. The equations of three dimen-
sional elastic equilibrium are solved as an example. Another convergence theorem is proved
for this particular system. We also consider a possibility to represent solutions in a finite
form as partial sums of the series with terms depending on several complex variables.
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1. Introduction

The series W =
∞∑

|n|=0

znWn(z) known as holomorphic expansions (HE) were ap-

plied in [1] for solving PDEs. In the present paper we apply them to linear second
order PDE systems with constant coefficients. The series form solution for a wide
class of systems is constructed and the convergence theorem is proved. Some sys-
tems relevant to a number of physical and technical problems are not covered by this
theorem and need special consideration. We treat threedimensional Lamé’s elasticity
system as an example and investigate the convergence of the HE solution for this
particular case.
The possibility to present solutions in a finite form as partial sums of holomor-

phic expansions seems attractive. In this article we study polynomial solutions and
compare our results with those published in [2], [3]. We also study finite solutions of
another nature defined by arbitrary holomorphic functions. Kolosov-Muskhelishvili
formula for the plane elastic equilibrium is shown to be a special case of finite solution
for the above mentioned Lamé’s system.

*This work was not supported by the University of Antioquia.
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We do not consider boundary value problems but just systems of PDEs. The type
and dimension do not matter.

The following notation is used:

x = (x1, x2, . . . , xm+1)—vector in
� m+1 ;

l = (l1, l2, . . . , lm+1)—differential indicator with respect to x;
∂|l|/∂xl = ∂|l|/∂xl1

1 . . . x
lm+1
m+1 ;

z = (z1, z2, . . . , zm)—vector in � m ;

n = (n1, n2, . . . , nm) where nj are non negative integers;

zn = zn1
1 zn2

2 . . . znm
m ;

ζ = (z2, z3, . . . , zm);
ν = (n2, n3, . . . , nm);
|n| = n1 + n2 + . . .+ nm.

We use Cauchy operators

dk
z = 2−k(∂/∂x− i∂/∂y)k; dk

z = 2−k(∂/∂x+i∂/∂y)k if z = x+iy and k ∈ � ;
dn

z = dn1
z1
dn2

z2
. . . dnm

zm
;

dν
ζ = dn2

z2
dn3

z3
. . . dnm

zm
;

G—simply connected domain in � m ;

G1—some compact in G;

H(G) = {(f1(z), f2(z), . . . , fk(z)) : fj(z) a function holomorphic in G}. The
case k = 1 is also considered;
‖z‖ = max

j
|zj |;

‖f(z)‖ = max
j6k, z∈G1

|fj(z)| for f(z) ∈ H(G);

‖A‖ = max
i

∑
j

|ai,j |.

Unfortunately some symbols used in this article have more than one meaning but
the context will make things clear.

2. Formal solution for second-order linear PDE system

with constant coefficients

Let us consider the system of k second order constant coefficients PDEs

(1) Lu = (P +Q+R)u = f

with u = (u1(x), u2(x), . . . , uk(x)), x ∈ D ⊂ � m+1 and f = (f1(x), . . . , fk(x)). The
operators P , Q and R are homogeneous partial differential operators of order 0, 1
and 2, respectively. They have the forms Q =

∑
|l|=1

Ql∂/∂x
l , R =

∑
|l|=2

Rl∂
2/∂xl

where P , Rl, Ql are k × k real matrices.
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In the domain G = {(x, y) : x ∈ D, y = (y1, y2, . . . , ym−1) ∈ D1 ⊂ � m−1} the
system (1) is equivalent to

Lw(x, y) = ϕ(x, y), ϕ(x, y) = f(x) ∀ (x, y) ∈ G,
∂w

∂yj
= 0, j = 1, 2, . . . ,m− 1.(2)

Let us define complex variables z1 = x1+ix2, z2 = x3+iy1, . . . , zm = xm+1+iym−1

and consider G to be a simply connected domain in � m . The exchange of real partial
differentiation in L for the Cauchy operators yields

L = Ad2
z1

+Bdz1dz1 + dz1

∑

|ν|=1

Cνd
ν
ζ +Ddz1(3)

+ Ād2
z1

+ dz1

∑

|ν|=1

Cνd
ν
ζ +Ddz1 +

∑

|ν|=2

Eνd
ν
ζ +

∑

|ν|=1

Fνd
ν
ζ + P

where

A = R(2) −R(0,2) − iR(1,1), B = 2(R(2) +R(0,2)),(4)

Cν = 2(R(1,0,ν) − iR(0,1,ν)), D = Q(1,0) − iQ(0,1),

Eν = 4R(0,0,ν), Fν = 2Q(0,0,ν).

All the subindexes of the real matrices on the right-hand side of (4) are vectors of
dimension m+ 1. Note that we do not write right zeros in subindexes. It means, for
instance, that R(0,2) should be understood as R(0,2,0,...,0). The elements of Ā, Cν ,
D are conjugate to those of A, Cν , D.
We can apply the operator L to a complex variable, complex valued vector function

W (z) = (W 1,W 2, . . . ,W k), <(W j) = wj , =(W j) = vj and consider the system

LW (z) = g(z),(5)

(dzj − dzj
)W (z) = 0, j = 2, . . . ,m,

where g(z) is a complex valued function with real (imaginary) part equal to ϕ(x, y)
in (2). We call (5) the complex analog for (2) because the real (imaginary) part ofW
satisfies (2). Throughout this paper we concentrate on the study of the complex
analog.
�����	��

�

1. The complex analog for (2) is not unique. We can organize complex
variables in a different way and obtain a system different from (5). We also have
some freedom to choose g(z) in (5) because we only need the real or the imaginary
part of this function to be equal to ϕ(x, y) in (2).
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Let us search for coefficients of the formal HE solution of (5), that is, for the vector
functions Wn(z) = (W 1

n(z),W 2
n(z), . . . ,W k

n (z)) ∈ H(G) which make the sum of the
series

(6) W =
∞∑

|n|=0

znWn(z)

satisfy (5). All the necessary information on holomorphic expansions can be found
in [1].

Substituting (6) in (5), we obtain the following equations for the HE coefficients:

(7) A(n1 + 2)(n1 + 1)Wn1+2 − (n1 + 1)M1Wn1+1 −M0Wn = gn,

and

(8) Wnj+1 =
1

nj + 1
dzjWn, j = 2, 3, . . . ,m.

Henceforth, we will write Wnj+1 forWn1,n2,...,nj−1,nj+1,nj+1,...,nm in order to shorten
the expressions and we consider g(z) to have a holomorphic expansion

g(z) =
∞∑

|n|=0

zngn(z).

The detailed forms of the operators M1 and M0 are

(9) −M0 = Ād2
z1

+ dz1

∑

|ν|=1

Cνd
ν
ζ +Ddz1 +

∑

|ν|=2

Eνd
ν
ζ +

∑

|ν|=1

Fνd
ν
ζ + P

and

(10) −M1 = Bdz1 +
∑

|ν|=1

Cνd
ν
ζ +D.

The equalities (7) and (8) are necessary and sufficient for W to be a formal solution
of (5). See [1] for the proof.
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3. Convergence theorem

This section deals with the homogeneous system (5) and we consider the matrix A
in (3) to be nonsingular. From (7) we find

(11) Wn1+2,0 =
1

(n1 + 2)(n1 + 1)
A−1((n1 + 1)M1Wn1+1,0 +M0Wn1,0)

and (8) yields

(12) Wn1,ν =
1
ν!
dν

ζWn1,0.

These equalities hold for all non negative integers n1 and all ν as well. They establish
one-to-one correspondence between the set of formal HE solutions for (5) and the
Cartesian square of H(G). In fact, provided W0 ∈ H(G) and W1 ∈ H(G) we put
W0,0,...,0 = W0, W1,0,...,0 = W1 and use (11) to find Wn1,0,...,0 for n1 > 1. The
equality (12) defines Wn = Wn1,ν . The reverse correspondence is evident.
The convergence of the formal solution depends on the norms of Wn. We evaluate

them and the norms of all other functions on some fixed compact G1 ⊂ G.

Lemma 1. Let V ∈ H(G) satisfy the inequalities ‖dn
zV ‖ < at|n| for all n and

some fixed constants a and t > 1. Let P =
∑
n
And

n
z be a differential polynomial

of degree N1, the total number of terms being N2 and Λ = max
n

‖An‖. Then, the
inequality ‖PV ‖ 6 aΛN2t

N1 holds.

��

�����
. ‖PV ‖ 6

∑
n
‖An‖ ‖dn

zV ‖ 6 atN1
∑
n
‖An‖ 6 aΛN2t

N1 . �
� �������������

of functions satisfying the conditions of Lemma 1.
(1) V (z) = (V1(z), V2(z), . . . , Vk(z)) where Vj(z) are polynomials. This function
has only a finite number of nonzero derivatives uniformly bounded on G1 by
some constant a. Take t = 1.

(2) Let a1, . . . , ak be fixed vectors in � m . We write zaj for the inner product in � m .
The function H(G) 3 V (z) = (exp(za1), exp(za2), . . . , exp(zak)) has derivatives
dn

zV (z) = (ān
1 exp(za1), ān

2 exp(za2), . . . , ān
k exp(zak)). Take t = max

j
{1, ‖aj‖}

and a = ‖V ‖.

The list of examples can be enlarged easily.
In the next theorem we state sufficient conditions for the convergence of the formal

solution for the system (5).
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Theorem 1. LetW1 ∈ H(G) andW2 ∈ H(G) satisfy the conditions of Lemma 1.
The formal HE solution for (5) defined by W1 and W2 converges uniformly on G1.
��

�����

. We write Wn1,0 for Wn1,0,...,0. The expression for Wn1,0 provided
by (11) is a sum of differential operators applied to W0 or W1. We have

W2,0 =
1
2
(A−1M1W1 +A−1M0W0),

W3,0 =
1
6
(A−1A−1M2

1W1 +A−1A−1M1M0W0 +A−1M0W1),

and so on. There are no similar terms and hence Num(Wn1,0) = Num(Wn1−1,0) +
Num(Wn1−2,0), where Num(Wn1,0) denotes the number of summands in the expres-
sion for Wn1,0. Consequently,

Wn1,0 =
1
n1!

Fn1+1∑

k=1

TkWj .

Here Fk is the kth Fibonacci number,Wj is eitherW0 orW1 and Tk are differential
operators depending on k and also on n1 but the last dependence is not important
for us.
Every Tk is the product of matrices A−1 and operators M1 and M0. The number

of factors A−1 is less than n1 and the total number of M1 and M0 is less than n1 as
well.
The operator M0 defined by (9) is a differential polynomial of degree 2 and the

number of terms is equal to 1
2 (m + 1)(m + 2). The operator M1 has degree 1 and

m+ 1 terms. Consequently, the degree of Tk does not surpass 2n1 and the number
of terms is less than ( 1

2 (m + 1)(m + 2))n1 . The number of matrix factors in the
coefficients of Tk is less than 2n1. We denote by α1 the maximum norm of the ma-
trices encountered in (9), (10) and put α = max{α1, ‖A−1‖, 1}. Then the inequality
‖AB‖ 6 ‖A‖ ‖B‖ and Lemma 1 imply

‖TkWj‖ 6 a
[
α2t2

(m+ 1)(m+ 2)
2

]n1

.

Binet’s formula yields

Fn1 =
((1 +

√
5)n1 − (1−

√
5)n1)√

5 2n1
6 2 · 4n1 · 2−1 · 2−n1 = 2n1

and the inequality

‖Wn1,0‖ 6 1
n1!

2a[α2t2(m+ 1)(m+ 2)]n1
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holds. We put β = α2t2(m+ 1)(m+ 2) and conclude the proof with the estimation

‖Wn‖ = ‖Wn1,ν‖ 6 1
n1!

2a[α2t2(m+ 1)(m+ 2)]n1 t|ν| 6 1
n1!

2aβ|n|

which is sufficient for the uniform convergence of (6). �

The convergence theorem for a non-homogeneous system is not difficult to prove.
It can be done using the estimates from Theorem 1 and the theory developed in [1].
The condition ‖gn(z)‖ 6 at|n| will do perfectly well.
�����	��

�

2. The results of [1] ensure the existence and uniform convergence of
the derivatives of the convergent HE solution.

4. Threedimensional Lamé’s system for the linear

elasticity problem

In the previous section we restricted the class of systems assuming the matrix A
to be nonsingular. This does not hold, however, in many cases which are particularly
important for applications. One of these is the threedimensional Lamé’s system

(13) (λ+ µ)
∂Θ
∂xj

+ µ∆uj = 0, j = 1, 2, 3,

where λ and µ are Lamé’s constants and Θ =
3∑

j=1

∂uj/∂xj . This system describes

linear displacements in elastic medium.
We put a = λ+µ, b = µ and transform (13) to the form (1). The nonzero matrices

involved in the operators P , Q and R are

R(2,0,0) =



a+ b 0 0

0 b 0
0 0 b


 , R(0,2,0) =



b 0 0
0 a+ b 0
0 0 b


 ,

R(0,0,2) =



b 0 0
0 b 0
0 0 a+ b


 , R(1,0,1) =




0 0 a

0 0 0
a 0 0


 ,

R(0,1,1) =




0 0 0
0 0 a

0 a 0


 , R(1,1,0) =




0 a 0
a 0 0
0 0 0


 .

For the system (13) we have k = 3, m = 2, x = (x1, x2, x3), z = (z1, z2), n = (n1, n2)
and we enjoy the possibility to write sub-indices and degrees in their complete form
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without making expressions too awkward. It can be noticed that the matrix A
defined by (4) is singular and we cannot use (11). We proceed by taking into account
that the complex analog (5) is not just an algebraic system and there is no need to
consider dz1W and d2

z1
W as independent values. We construct the complex analog

for (13) following the steps described in Section 1 and change unknown functions
V 1 = W 1 + iW 2, V 2 = W 1 − iW 2 and V 3 = 2W 3. The first system in the complex
analog transforms to

ad2
z1
V 2 + (a+ 2b)dz1dz1(V

1 + V 2) + adz1dz2V
3(14)

+ ad2
z1
V 1 + 2bd2

z2
(V 1 + V 2) + adz1dz2V

3 = 0,

ad2
z1
V 2 + (a+ 2b)dz1dz1(V

1 − V 2) + adz1dz2V
3(15)

− ad2
z1
V 1 + 2bd2

z2
(V 1 − V 2)− adz1dz2V

3 = 0,

adz1dz2V
2 + bdz1dz1V

3 + adz1dz2V
1 + (a+ b)d2

z2
V 3 = 0,(16)

and the second system stays unchanged,

(17) dz2V
j = dz2V

j .

These equations enable us to express dz1V
j in terms of derivatives with respect to zj

but not to zj . We subtract (15) from (14) to find dz1V
2. The equation (16) provides

dz1V
3 and finally, from (14), we have dz1V

1. The explicit expressions are

dz1V
1 = − 1

a+ 2b
(2bJd2

z2
V 1 + aJ3d4

z2
V 2 − aJ2d3

z2
V 3),(18)

dz1V
2 = − 1

a+ 2b
(adz1V

1 + 2bJd2
z2
V 2 + adz2V

3),(19)

dz1V
3 = − 1

a+ 2b
(2adz2V

1 − 2aJ2d3
z2
V 2 + (3a+ 2b)Jd2

z2
V 3),(20)

where Jϕ(z) =
∫ z1

0 ϕ(ξ, ζ) dξ. To find the coefficients of the HE solution for (14)–(17)
we substitute the holomorphic expansion of V j =

∑
n1,n2

zn1
1 zn2

2 V j
n1,n2

into (17)–(20),

group similar terms, equate to zero the coefficients at zn1
1 zn2

2 and solve the equations
obtained with respect to V j

n1+1,n2
and V j

n1,n2+1. The solutions are

V j
n1,n2+1 =

dz2V
j
n1,n2

n2 + 1
,

V 1
n1+1,n2

= − 2bJd2
z2
V 1

n1,n2
+ aJ3d4

z2
V 2

n1,n2
− aJ2d3

z2
V 3

n1,n2

(a+ 2b)(n1 + 1)
,

V 2
n1+1,n2

= − adz1V
1
n1,n2

+ 2bJd2
z2
V 2

n1,n2
+ adz2V

3
n1,n2

(a+ 2b)(n1 + 1)
,

V 3
n1+1,n2

= − 2adz2V
1
n1,n2

− 2aJ2d3
z2
V 2

n1,n2
+ (3a+ 2b)Jd2

z2
V 3

n1,n2

(a+ 2b)(n1 + 1)
.

590



The explicit expressions for Vn1,n2 are given by

(21) Vn1,n2 =
(−1)n1

n1!n2!
dn2

z2
(J3d4

z2
A1 + J2d3

z2
A2 + Jd2

z2
A3 + dz1A4 + dz2A5)n1V0,0,

where

A1 =
a

a+ 2b




0 1 0
0 0 0
0 0 0


 , A2 =

−a
a+ 2b




0 0 1
0 0 0
0 2 0


 ,

A3 =
2b

a+ 2b




1 0 0
0 1 0
0 0 3a+2b

2b


 , A4 =

a

a+ 2b




0 0 0
1 0 0
0 0 0


 ,

A5 =
a

a+ 2b




0 0 0
0 0 1
2 0 0


 .

We introduce the operator Tr = d
i(1)
z1 Jj(1) . . . d

i(m)
z1 Jj(m) =

m∏
k=1

d
i(k)
z1 Jj(k). Here i(k)

and j(k) take non negative integer values and r =
m∑

k=1

(i(k) + j(k)). The operator Tr

is not wholly defined by r but it is not important in what follows.

For the convergence theorem we considerG1 to be the closure of a simply connected
bounded domain which guarantees the estimate ‖JV ‖ 6 R‖V ‖ ∀V ∈ H(G) and some
fixed constant R.
Lemma 2 will be proved for a function holomorphic in the domain G of an arbitrary

dimension though in this paper we need it for the functions of two variables only.

Lemma 2. For a function V satisfying the conditions of Lemma 1, the opera-
tor Tr defined above and the constants R, β = aeRt and τ = max{t, R} the inequality
‖Trd

n
zV ‖ 6 βτ |n|+r holds.

��

�����
. For each factor in the operator Tr we have d

i(k)
z1 Jj(k) = d

i(k)−j(k)
z1

if i(k) > j(k) or di(k)
z1 Jj(k) = Jj(k)−i(k) if the reverse inequality holds. Therefore

Tr =
l∏

k=1

d
i(k,l)
z1 Jj(k,l) and l 6 [ 12m] + 1. Here i(k, l) and j(k, l) take non negative

integer values.
To conserve the form of the operator we add d0

z1
to the first term or J0 to the last

one if necessary. The inequality
l∑

k=1

(i(k, l) + j(k, l)) 6 r takes place. We follow with

the process and arrive at the equality Tr = di
z1
Jj or Tr = Jjdi

z1
with i+ j 6 r.
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If Tr = di
z1
Jj we have

‖Trd
n
zV ‖ =

{
‖di−j

z1
dn

zV ‖ 6 at|n|+i−j 6 at|n|+r, if i > j,

‖Jj−idn
zV ‖ 6 Rj−i‖dn

zV ‖ 6 aRrt|n|, if j > i.

Considering the second possibility, namely Tr = Jjdi
z1
with j > i, and keeping in

mind that |z1| 6 R we get

‖Trd
n
zV ‖ = ‖J jdi

z1
dn

zV ‖ =
∥∥∥∥Jj−i

(
dn

zV (z)−
i−1∑

k=0

1
k!
zk
1d

k
z1
dn

zV (0, ζ)
)∥∥∥∥

6 Rj−i

∥∥∥∥
∞∑

k=i

1
k!
zk
1d

k
z1
dn

zV (0, ζ)
∥∥∥∥ 6 aRj−iRiti+|n|

∞∑

k=0

1
k!
Rktk

6 aeRtRjti+|n|.

If i > j we also have

‖Trd
n
zV ‖ 6 aeRtRjti+|n|,

and with the evident inequality |i+ j| 6 r we complete the proof. �

Theorem 2. The HE solution for the system (14)–(17) converges uniformly on
the compact G1 if V0,0 satisfies the conditions of Lemma 1.

��

�����
. We expand the expression (21) considering n2 = 0. It consists of

5n1 summands, each one of form

T = (J3d4
z2
A1)i1(J2d3

z2
A2)i2(Jd2

z2
A3)i3(dz1A4)i4 (dz2A5)i5 .

The factors can change their places but the sum of the degrees is constant and equal
to n1. The operators dz1 , dz2 and J commute with matrices Aj and dz2 commutes
with dz1 and J so that we can transform T in

T = Trd
4i1+3i2+2i3+i5
z2

5∏

j=1

A
ij

j ,

where r = 3i1 + 2i2 + i3 + i4. Applying Lemmas 1–2 we estimate

‖TV0,0‖ 6 βτ i
5∏

j=1

‖Aj‖ij

592



with i = 7i1 + 5i2 + 3i3 + i4 + i5 and further

‖TV0,0‖ 6 βτ7n1αn1 ,

where α = max
j65

{‖Aj‖, 1}.
The evident inequalities

‖Vn1,0‖ 6 1
n1!

βτ7n1αn15n1

and

‖Vn1,n2‖ 6 1
n1!n2!

β(5τ7α)n1 tn2

complete the proof. �

5. Finite solutions

The possibility to construct solutions expressed in terms of elementary functions
without any limit process (series summation, definite integration and so on) is attrac-
tive for scientists and those engaged in symbolic computation [4]. The results in this
area cover mostly polynomial solutions. The HE techniques also permit construction
of polynomial solutions.
Let us go back to the homogeneous system (5) and consider the case P = D = 0.

We observe that each summand on the right-hand sides of (11) and (12) contains
derivatives with respect to some zj . To construct the HE solution for (5) we start
with two arbitrary initial functionsW0 andW1 and consequently apply (11) and (12)
so that every additive term in the expanded expression forWn contains differentiation
and the order of derivatives grows uniformly and indefinitely when |n| increases. For
polynomialsW0 andW1 this meansWn ≡ 0 for |n| big enough. The solution achieved
is a polynomial. Vice versa, each polynomial solution for (5) has a holomorphic
expansion and the coefficients can be found by (11), (12) starting with appropriate
polynomials W0 and W1. This does not add anything new to the theory developed
in [2], [3]. The results presented in the above mentioned papers are more general
and we just propose an alternative technique.
Imposing some more restrictions on (5) we construct non-polynomial finite solu-

tions. If all the matrices in (9) and (10) are null except Eν and Fν and the matrix B
is nonsingular then we transform (11) and (12) to

Wn1,ν =
1
ν!
dν

ζWn1,0
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and

Wn1,0 =
(−1)n1

n1!
B−n1Jn1

( ∑

|ν|=2

Eνd
ν
ζ +

∑

|ν|=1

Fνd
ν
ζ

)n1

W0.

The characteristic of this case is that all the summands contain derivatives with
respect to zν and starting with W0 = ϕ(z1)ζν we come to the finite solution which
is not necessarily a polynomial with respect to z1.
Considering Lamé’s system we easily come to a polynomial solution if V0,0 in (21) is

a polynomial. The argumentation is the same as in the general case. The possibility
to construct a non polynomial solution is not so evident and is due to the fact that the
operator dz1 in (21) has a nilpotent matrix A4 as a coefficient. Hence each additive
term in the expanded expression for Vn1,n2 has a derivative with respect to z2 for
n1 + n2 big enough and the order of derivatives grows uniformly and indefinitely
when n1 + n2 grows. So for every V0,0 = ϕ(z1)zk

2 a finite solution appears and it is
not necessarily a polynomial with respect to z1. An example of such a solution for
Lamé’s system is

u1 = <
(
−2(λ+ µ)
λ+ 3µ

x3z1 tan2 z1

)
,

u2 = =
(2(λ+ µ)
λ+ 3µ

x3z1 tan2 z1

)
,

u3 = <
(
2x2

3 tan2 z1 −
3λ+ 5µ
λ+ 3µ

(tan z1 − z1)z1

)
.

We can separate the parts and obtain

u1 = − (λ+ µ)x3(2x1 sin(2x1) sinh(2x2)− x2(sinh2(2x2)− sin2(2x1)))
2(λ+ 3µ)(cosh2(2x2)− sin2(2x1))2

,

u2 = − (λ+ µ)x3(2x2 sin(2x1) sinh(2x2) + x1(sinh2(2x2)− sin2(2x1)))
2(λ+ 3µ)(cosh2(2x2)− sin2(2x1))2

,

u3 =
x2

3 sin(2x1) sinh(2x2)
(cosh2(2x2)− sin2(2x1))2

+
(3λ+ 5µ)(x2 sin(2x1)− x1 sinh(2x2))

2(λ+ 3µ)(cosh2(2x2)− sin2(2x1))
.

The functions given above solve the system (13). We use (21) and the initial function
V0,0 = {0, 0, z2

2 tan2(z1)} to solve the equations (14)–(17). The transformation of V
to u is trivial and therefore is skipped. The solution obtained has singularities at
( 1
4π + 1

2 πk, 0, x3).
Let us consider the expression (21) for the initial functions V0,0 which are inde-

pendent of z2. They will bring solutions for the twodimensional Lamé’s problem.
We write z for z1 and n for n1.
The expression (21) transforms to

Vn(z) =
(−1)n

n!
dn

zA
n
4V0(z).
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The square of the matrix A4 is equal to zero and therefore Vn ≡ 0 for n > 1. For V1(z)
we have V 1

1 (z) = 0, V 2
1 (z) = −(a/(a+ 2b))dzV

1
0 and V

3
1 (z) = 0 so that

V 1(z) = V 1
0 (z),

V 2(z) = V 2
0 (z)− a

a+ 2b
zdzV

1
0 (z),

V 3(z) = V 3
0 (z),

where V 1
0 (z), V 2

0 (z) and V 3
0 (z) are arbitrary holomorphic functions. We can express

uj(x1, x2) in terms of V j but it seems more interesting to consider

µ(u1 + iu2) =
µ

2
(V 1 + V 2)

=
µ

2
V 1

0 − µ(λ+ µ)
2(λ+ 3µ)

zdzV
1
0 +

µ

2
V 2

0

=
λ+ 3µ
λ+ µ

( µ(λ + µ)
2(λ+ 3µ)

V 1
0

)
− µ(λ+ µ)

2(λ+ 3µ)
zdzV

1
0 +

µ

2
V 2

0.

By taking κ = λ+ 3µ/(λ+ µ), ϕ(z) = 1
2 (µ(λ + µ)/(λ+ 3µ))V 1

0 (z) and ψ(z) =
− 1

2µV
2
0 (z) we arrive at

µ(u1 + iu2) = κϕ− zdzϕ̄− ψ,

which is the famous Kolosov-Muskhelishvili formula for the general solution of two-
dimensional Lamé’s problem.
�����	��

�

3. In [5] Lamé’s system was carefully studied for the first time with
the help of HE type series. However, they were used just as a technical tool and no
mathematical background was developed.
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