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Abstract. In this paper we present recent results for the bicharacteristic based finite
volume schemes, the so-called finite volume evolution Galerkin (FVEG) schemes. These
methods were proposed to solve multi-dimensional hyperbolic conservation laws. They
combine the usually conflicting design objectives of using the conservation form and fol-
lowing the characteristics, or bicharacteristics. This is realized by combining the finite
volume formulation with approximate evolution operators, which use bicharacteristics of
the multi-dimensional hyperbolic system. In this way all of the infinitely many directions
of wave propagation are taken into account. The main goal of this paper is to present a
self-contained overview on the recent results. We study the L1-stability of the finite vol-
ume schemes obtained by various approximations of the flux integrals. Several numerical
experiments presented in the last section confirm robustness and correct multi-dimensional
behaviour of the FVEG methods.

Keywords: multidimensional finite volume methods, bicharacteristics, hyperbolic sys-
tems, wave equation, Euler equations
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1. Introduction

In general, numerical solution of truly multi-dimensional systems of conservation
laws is a challenging task. The main reason is that even for small initial data we

do not have existence and qualitative results for the solution of multi-dimensional

*This research has been supported under the VW-Stiftung grant I 76 859, by the grant
No 201/03 0570 of the Grant Agency of the Czech Republic, by the Deutsche Forschungs-
gemeinschaft grant GK 431 and partially by the European network HYKE, funded by
the EC as contract HPRN-CT-2002-00282.
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Riemann problems. In principle, we have two finite volume approaches to overcome

this fact. First, there are the so-called central finite volume methods (FVM), which
do not use the Riemann problem, see e.g. [4] and the references therein. However,
if no characteristic information is taken into account they may not provide a sat-

isfactory resolution when small time steps are enforced by the stability condition.
Note that for multi-dimensional problems the central schemes have the CFL stability

restrictions strongly less than 1.
The second approach is based on a quasi-dimensional splitting and on the use of an

approximate solution to the one-dimensional Riemann problem, with well understood

structure. If the main features we want to approximate are just one-dimensional,
this approach can produce good qualitative results. But for complex genuinely multi-

dimensional structures, such as oblique shocks or circular expansions, dimensional
splitting approach can yield spurious local wave structure resolutions.

Looking back to the literature of the last decade we find several new genuinely

multi-dimensional methods. For example, the wave propagation algorithm of
LeVeque [5], the method of transport (MoT) of Fey [2] and its simplified ver-

sion of Noelle [14], or the multistate FVM of Brio et al. [1]. The last approach is
based on the use of the Kirchhoff formulae for the wave equation or the linearized

Euler equations in order to correct multi-dimensional contributions in corners of the
computational cells. In fact, our approach is similar to that of Brio. However, in-

stead of the Kirchhoff formulae which are explicit in time but singular over the sonic
circle, we use a different method. We work with a general theory of bicharacteristics

for linear hyperbolic systems of first order and derive the so-called approximate
evolution operators. This is the most involved part of the derivation of our schemes.

The basic idea of the evolution Galerkin schemes (EG), introduced by Morton,
see e.g. [13], is the following. Transport quantities are shifted along characteristics

and then projected onto a finite element space. Using the results of Ostkamp [15] we
have derived in [7] several new evolution Galerkin methods for the linear system of

the wave equations, which have better stability properties as well as global accuracy.
Their generalization to the second order EG method was done in [11] for linear two-

dimensional systems. In [6] we have studied the two-dimensional Riemann problem
for the wave equation system and demonstrated good accuracy of the EG schemes

as well as correct multi-dimensional resolution of oblique shocks.

In her dissertation [16] Ostkamp proposed a generalization of the EG method
to nonlinear Euler equations. However, in order to implement her scheme quite

tedious calculations of three-dimensional integrals had to be done. It was barely
feasible for practical applications, such as the shallow water equations and the Euler

equations, especially for higher order methods. The decisive step was to take a
different approach, which led us to the finite volume framework. In the so-called
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finite volume evolution Galerkin (FVEG) methods the approximate evolutions are

used only on cell interfaces to evaluate the numerical fluxes.

Note that there is a connection between the FVEG method and the interface
centered MoT of Noelle. Both methods use multi-dimensional evolution only on

cell interfaces instead of on whole computational cells. This leads to the crucial
simplification of the original methods within the FV framework.

The aim of this paper is to give a self-contained overview on the recent results of

the evolution Galerkin schemes. We want to present the basic ideas of the theory
of bicharacteristics, which are used for the derivation of exact and approximate

evolution operators for general multi-dimensional hyperbolic systems. We illustrate
the application of these techniques on the Euler equations system. Further interesting

applications are, for example, the wave equation system, the shallow water equations,
the magneto-hydrodynamic equations or the equations of nonlinear elasticity.

The paper is organized as follows. In Section 2 the formulation of the finite volume
evolution Galerkin scheme is presented. The exact integral representations for the

linearized Euler equations are given in Section 3. In order to apply the approximate
evolution operator to fully nonlinear systems, such as the Euler equations of gas

dynamics or the shallow water equations, first a suitable linearization is needed. It is
done by freezing the Jacobian matrices locally around suitable constant states. De-

spite the linearization procedure the FVEG methods satisfy the entropy condition on
sonic rarefaction waves and no entropy fix is needed, see [8], [9] for numerical experi-
ments. Approximation of the so-called mantle integrals is discussed in Section 4. We

describe the EG3 approximate evolution operator [7] and following the lines of our
recent paper [9] we present new EG5 approximate evolution operators, which yield

numerical schemes stable almost up to the CFL number 1. In Section 5 the second
order scheme obtained by means of a bilinear recovery in space is introduced. We

present here an L1-stability analysis of the FVM obtained by different cell interface
flux integration.

The error analysis of the FVEG methods was presented in [9] and [17]. For linear
or linearized systems it was proved that if a bilinear recovery is used the method is

of the second order in space and time. In Section 6 we illustrate through numerical
experiments the behaviour of the scheme on various test examples.
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2. Finite volume evolution Galerkin method

Let Ω be our two-dimensional computational domain covered by regular square
mesh cells

Ωij ≡
[(

i− 1
2

)
h,

(
i +

1
2

)
h

]
×

[(
j − 1

2

)
h,

(
j +

1
2

)
h

]

=
[
xi− 1

2
, xi+ 1

2

]
×

[
yj− 1

2
, yj+ 1

2

]
,

where i, j ∈ �
, and h > 0 is the mesh size parameter.

In finite volume schemes typically the one-dimensional Riemann problems in nor-

mal direction to the cell interfaces are used to approximate fluxes on cell interfaces.
Instead of this dimensional-splitting technique we use in our scheme a genuinely

multi-dimensional approach. In order to compute fluxes on cell interfaces the value
of the approximate solution will be determined by means of a suitable approximate

evolution operator. In this way all directions of wave propagation are taken into
account explicitly.

As an example of general hyperbolic conservation laws let us consider the Euler
equations written in the conservative variables

(2.1) ut + f1(u)x + f2(u)y = 0.

Here the vector of conservative variables is u := (%, %u, %v, e)T and the fluxes are

f1(u) :=




%u

%u2 + p

%uv

(e + p)u


 , f2(u) :=




%v

%uv

%v2 + p

(e + p)v


 ,

where % is the density, %u, %v is the momentum in x-, y-direction, respectively, p is

the pressure and e stands for the total energy, i.e. e = p/(γ − 1) + %(u2 + v2)/2.
Let us integrate (2.1) over a mesh cell Ωij and time interval [tn, tn+1]. Applying

the Gauss theorem for the flux integrals yields the equality

(2.2)
∫

Ωij

u(x, y, t) dx dy
∣∣∣
tn+1

tn

+
∫ tn+1

tn

∫

∂Ωij

(f1(u)nx + f2(u)ny) dS dt = 0,

where (nx, ny) is the unit outer normal to the face of the control volume ∂Ωij . Let
Un+1, Un denote the piecewise constant functions obtained by the integral averages

evaluated at time tn+1 or tn, respectively. More precisely,

Un
∣∣∣
Ωij

=
1
h2

∫

Ωij

u(x, y, tn) dx dy.
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The crucial point of the FVEG schemes is the use of the approximate evolution

operators for the evaluation of fluxes at cell interfaces.
Starting from some initial data U 0 at time t = 0 and taking into account the

fact that the regular rectangular mesh is used, the finite volume evolution Galerkin

method (FVEG) is recursively defined by means of

(2.3) Un+1 = Un − 1
h

∫ tn+1

tn

F1(U(t)) dt− 1
h

∫ tn+1

tn

F2(U(t)) dt.

Here Fk(U(t)) represent the approximations of the physical fluxes fk(u), k = 1, 2,
on the cell interfaces. For the time integration of fluxes the midpoint rule is used.

The intermediate values of the solution at cell interfaces are calculated by means of
the approximate evolution operator E∆t/2, which has been derived using the charac-

teristics theory of hyperbolic systems, cf. Section 3. The approximate fluxes (e.g. on
vertical edges) have the form

(2.4) Fk(Un+ 1
2 ) =

1
h

∫ h

0

fk(E∆t/2RhUn) dSy, k = 1, 2.

An analogous formula holds for horizontal edges. Here Rh is a recovery opera-
tor which transforms a piecewise constant function U to a piecewise bilinear func-

tion RhU , cf. Section 5.
If no recovery in (2.4) is used the whole method is of the first order. In this case we

evaluate all space integrals exactly. For higher order schemes the interface integrals
are approximated by a suitable numerical quadrature. We should also note that, if

the interface integrals in the first order scheme are computed exactly, we actually
compute the cell interface fluxes (2.4) in the following way:

(2.5) Fk(Un+ 1
2 ) = fk

(
1
h

∫ h

0

E∆t/2U
n dS

)
.

3. Linearized Euler equations and evolution operator

For better readability of the paper we have decided to present in this chapter a
brief overview of the derivation of the exact evolution operator for the linearized

Euler equations. Readers interested in more details of the calculations are referred
to [17] or [10]. In order to derive an evolution operator for the Euler equations it is

suitable to work with the system in primitive variables

(3.1) vt + A1(v)vx + A2(v)vy = 0, x = (x, y)T ,
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where v := (%, u, v, p)T is the vector of primitive variables and the Jacobian matrices

A1(v), A2(v) are given by

A1(v) :=




u % 0 0
0 u 0 1

%

0 0 u 0
0 γp 0 u


 , A2(v) :=




v 0 % 0
0 v 0 0
0 0 v 1

%

0 0 γp v


 .

Here % denotes the density, u and v the components of velocity, p the pressure and

γ the isentropic exponent; γ = 1.4 for dry air. In what follows we briefly describe
the main technique for deriving an integral representation (or an exact evolution

operator). First, we linearize the system (3.1) by freezing the Jacobian matrices at
a suitable point P̃ = (x̃, ỹ, t̃). Denote by ṽ = (%̃, ũ, ṽ, p̃) the local variables at the
point P̃ and by c̃ the local speed of sound there, i.e. c̃ =

√
γp̃/%̃. Thus, the linearized

system (3.1) with frozen constant coefficient matrices has the form

(3.2) vt + A1(ṽ)vx + A2(ṽ)vy = 0, x = (x, y)T .

The eigenvalues of the matrix pencil A(ṽ) = A1(ṽ)nx +A2(ṽ)ny, where n = n(θ)
= (nx, ny)T = (cos θ, sin θ)T ∈ � 2 is a unit vector, are

λ1 = ũ cos θ + ṽ sin θ − c̃,

λ2 = λ3 = ũ cos θ + ṽ sin θ,

λ4 = ũ cos θ + ṽ sin θ + c̃,

and the corresponding linearly independent right eigenvectors are

r1 =
(
− %̃

c̃
, cos θ, sin θ,−%̃c̃

)T

, r3 = (0, sin θ,− cos θ, 0)T ,

r2 =(1, 0, 0, 0)T , r4 =
( %̃

c̃
, cos θ, sin θ, %̃c̃

)T

.

Let R(ṽ) be the matrix of the right eigenvectors and R−1(ṽ) its inverse. Denote
by w the vector of characteristic variables

w = R−1(ṽ)v =




1
2

(
− p

%̃c̃
+ u cos θ + v sin θ

)

%− p

c̃2

u sin θ − v cos θ
1
2

( p

%̃c̃
+ u cos θ + v sin θ

)




.
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Multiplying the system (3.2) by R−1(ṽ) from the left we obtain the following system
written in characteristic variables:

(3.3) wt + B1(ṽ)wx + B2(ṽ)wy = 0,

where Bk(ṽ) = R−1(ṽ)Ak(ṽ)R(ṽ), k = 1, 2, are transformed Jacobian matrices.
Being in one space dimension the system (3.3) reduces to a diagonal system con-

sisting of separated advection equations. Their exact evolution operator reads

(3.4) wl(x, t) = wl(x− λlt, 0), l = 1, . . . , 4.

In the multi-dimensional case the system (3.3) will reduce to a diagonal one
only if the Jacobian matrices A1, A2 commute, which is not the case of the two-

dimensional Euler equations. Thus, we rewrite the system (3.3) in the form of the
quasi-diagonalized system

wt +




ũ− c̃ cos θ 0 0 0
0 ũ 0 0
0 0 ũ 0
0 0 0 ũ + c̃ cos θ


wx(3.5)

+




ṽ − c̃ sin θ 0 0 0
0 ṽ 0 0
0 0 ṽ 0
0 0 0 ṽ + c̃ sin θ


 wy = S

with

S =




1
2
c̃
(
sin θ

∂w3

∂x
− cos θ

∂w3

∂y

)

0

c̃ sin θ
(∂w1

∂x
− ∂w4

∂x

)
− c̃ cos θ

(∂w1

∂y
− ∂w4

∂y

)

1
2
c̃
(
− sin θ

∂w3

∂x
+ cos θ

∂w3

∂y

)




.

Each characteristic variable wl, l = 1, . . . , 4, is evolved in time along the corre-
sponding bicharacteristic curve xl defined by

(3.6)
dxl

dt
= bll(n) := (b1

ll, b
2
ll)

T ,

where B1 = (b1
jk)j,k=1,...,4, B2 = (b2

jk)j,k=1,...,4. The set of all bicharacteristics cre-
ates a mantle of the so-called Mach cone, see Fig. 1. In order to obtain the exact
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evolution of each characteristic variable wl we integrate the lth equation of the sys-

tem (3.5) from the apex P = (x, y, t+∆t) down to the corresponding footpoint Ql(θ):

Q1(θ) = (x− (ũ− c̃ cos θ)∆t, y − (ṽ − c̃ sin θ)∆t, t),

Q2 = Q3 = (x− ũ∆t, y − ṽ∆t, t),

Q4(θ) = (x− (ũ + c̃ cos θ)∆t, y − (ṽ + c̃ sin θ)∆t, t).

x
y

t P ′

Qt(θ)

P = (x, y, t + ∆t)

Figure 1. Bicharacteristics along the Mach cone through P and Ql(θ).

Multiplying the resulting system from the left by the matrix R(ṽ) yields the exact
integral equations, i.e. the exact evolution operators, for the primitive variables of

the linearized Euler equations (3.2):

%(P ) = %(Q2)−
p(Q2)

c̃2
+

1
2π

∫ 2 �

0

[p(Q1)
c̃2

(3.7)

− %̃

c̃
u(Q1) cos θ − %̃

c̃
v(Q1) sin θ

]
dθ − %̃

c̃

1
2π

∫ 2 �

0

∫ t+∆t

t

S(ξ, t̃, θ) dt̃ dθ,

u(P ) =
1
2π

∫ 2 �

0

[
−p(Q1)

%̃c̃
cos θ + u(Q1) cos2 θ + v(Q1) sin θ cos θ

]
dθ(3.8)

+
1
2π

∫ 2 �

0

∫ t+∆t

t

cos θS(ξ, t̃, θ) dt̃ dθ +
1
2
u(Q2)

− 1
2%̃

∫ t+∆t

t

px(Q2(t̃)) dt̃,

v(P ) =
1
2π

∫ 2 �

0

[
−p(Q1)

%̃c̃
sin θ + u(Q1) cos θ sin θ + v(Q1) sin2 θ

]
dθ(3.9)

+
1
2π

∫ 2 �

0

∫ t+∆t

t

sin θS(ξ, t̃, θ) dt̃ dθ +
1
2
v(Q2)

− 1
2%̃

∫ t+∆t

t

py(Q2(t̃)) dt̃,

p(P ) =
1
2π

∫ 2 �

0

[p(Q1)− %̃c̃u(Q1) cos θ − %̃c̃v(Q1) sin θ] dθ(3.10)

− %̃c̃
1
2π

∫ 2 �

0

∫ t+∆t

t

S(ξ, t̃, θ) dt̃ dθ,
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where ξ = (x− (ũ− c̃ cos θ)(t+∆t− t̃), y− (ṽ− c̃ sin θ)(t+∆t− t̃)), and the so-called
source term S is given in the form

S(x, t, θ) := c̃[ux(x, t, θ) sin2 θ − (uy(x, t, θ) + vx(x, t, θ)) sin θ cos θ

+ vy(x, t, θ) cos2 θ].

4. Approximate evolution operators

The exact integral equations (3.7)–(3.10) for the solution to the linearized Euler

equations (3.2) will be a basis for our further numerical approximations. The above
exact integral representation (3.7)–(3.10) is implicit in time. In order to derive a nu-

merical scheme which is explicit in time, the time integrals of the source terms, the
so-called mantle integrals, have to be approximated with suitable numerical quadra-

tures.

4.1. Approximate evolution operator EG3

As in [7] the integrals of the source term with respect to time will be approximated
by the rectangle rule. Thus, we would need to evaluate derivatives of the velocity

components at time t. However, it was proved in [7, Lemma 2.1] that the integrals
of the source S can be simplified through integration by parts, which yields

(4.1) ∆t

∫ 2 �

0

S(t, θ) dθ =
∫ 2 �

0

[uQ cos θ + vQ sin θ] dθ.

Analogously we can derive

∆t

∫ 2 �

0

S(t, θ) sin θ dθ =
∫ 2 �

0

[2uQ sin θ cos θ + vQ(2 sin2 θ − 1)] dθ(4.2)

and

∆t

∫ 2 �

0

S(t, θ) cos θ dθ =
∫ 2 �

0

[uQ(2 cos2 θ − 1) + 2vQ sin θ cos θ] dθ.(4.3)

Further, the integrals in (3.8) and (3.9) involving px and py need to be replaced

by integrals over the cone mantle. This is done by using the Taylor expansion

px(P ′) = px(Q) + O(|P ′ −Q|) = px(Q) + O(∆t).
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Then we use the rectangle rule in time and the Gauss theorem on a sonic circle

O = {(x, y) : x2 + y2 6 c̃2∆t2}, which results in

− 1
2%̃

∫ t+∆t

t

px(P ′(t̃)) dt̃ = − ∆t

2%̃
px(P ′) + O(∆t2)(4.4)

= − 1
2%̃c̃2∆tπ

∫

O

px(Q) dx dy + O(∆t2)

= − 1
2%̃c̃2∆tπ

∮
p(Q) dy + O(∆t2)

= − 1
2π%̃c̃

∫ 2 �

0

p(Q) cos θ dθ + O(∆t2).

Analogously we derive the formula for py, which has the form

− 1
2%̃

∫ t+∆t

t

py(P ′(t̃)) dt̃ = − 1
2π%̃c̃

∫ 2 �

0

p(Q) sin θ dθ.

We have generated the approximate evolution operator for the Euler equations, which

we call, analogously as for the wave equation in [7], the EG3 operator.

Approximate evolution operator EG3

%(P ) = %(Q2)−
p(Q2)

c̃2
+

1
2π

∫ 2 �

0

[
p(Q1)

c̃2
− 2

%̃

c̃2

(
u(Q1) cos θ + v(Q1) sin θ

)]
dθ(4.5)

+O(∆t2),

u(P ) =
1
2
u(Q2) +

1
2π

∫ 2 �

0

[
−p(Q1)

%̃c̃
cos θ + u(Q1)(3 cos2 θ − 1)(4.6)

+ 3v(Q1) sin θ cos θ

]
dθ +O(∆t2),

v(P ) =
1
2
v(Q2) +

1
2π

∫ 2 �

0

[
−p(Q1)

%̄c̄
sin θ + 3u(Q1) sin θ cos θ(4.7)

+ v(Q1)(3 sin2 θ − 1)
]
dθ +O(∆t2),

p(P ) =
1
2π

∫ 2 �

0

[p(Q1)− 2%̃c̃(u(Q1) cos θ + v(Q1) sin θ)] dθ +O(∆t2).(4.8)

Note that other integral rules for the time approximation of the source terms can

be used as well. They would lead to the approximate evolution operators EG1, EG2
and EG4. The notation is used in analogy to [7], [18]. We decided to present here

only the operator EG3, which yields the most accurate numerical approximation
among EG1–EG4.
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On the other hand, the above FVEG methods suffered from the restrictive sta-

bility limits. For example, for the FVEG3 scheme a typical CFL stability limit was
0.63 and 0.56 for first and second order schemes, respectively. The CFL number is
defined as CFL = max{|u| + c, |v| + c}∆t/h. Note that integrals around the sonic

circle, i.e.
∫ 2 �
0 dθ, are evaluated for piecewise constant or piecewise bilinear data

exactly. Therefore, obviously, the only step where the stability could be reduced

was the time approximation of the mantle integral. For example, in the first order
EG scheme we work with piecewise constant data, in which case a discontinuity cuts

through the cone mantle. Naturally, classical quadratures, such as the rectangle or
the trapezoidal rule, which were used for the EG1–EG4 schemes, cannot correctly

reproduce integration of discontinuous data.

4.2. Approximate evolution operator EG5
Since the approximate evolution operators EG1–EG4 did not provide full stability

up to the CFL number 1, more appropriate numerical quadratures for time inte-
gration along the mantle of the Mach cone have been constructed in [9]. For the

one-dimensional advection equation it is known that any scheme which is stable up
to CFL = 1 has to reproduce the exact solution at CFL = 1. In [9] the following de-
sign principle was proposed for the wave equation system. Consider plane wave data
which are parallel to one of the spatial axis. For a first order scheme these are taken

to be piecewise constant, i.e. one-dimensional Riemann data in x- or y-directions.
Now we look for approximate evolution operators that reproduce the exact solution

at the the apex of the bicharacteristic cone centered at the original discontinuity.
When considering slopes for second order schemes we derive approximate evolution

operators for the slopes that again reproduce the solution for continuous piecewise
linear data exactly at the apex of the bicharacteristic cone centered at the kink of

such data.
In the dissertation of the second author [17] the rigorous derivation of the approxi-

mate evolution operator for the Euler equations using the above design principles has
been done. We have decided not to present these rather lengthy calculations here,

since it would enlarge the size of the paper substantially. Instead we only present
the formulations of the approximate evolution operator EG5 for both piecewise con-

stant and piecewise bilinear data. Numerical experiments presented in [9], [12], [17]
demonstrate that the FVEG5 method is approximately three times more accurate

than the FVEG3 method and has the CFL limit close to 1. Theoretical error analysis
of the FVEG5 scheme for linear and linearized systems has been done in [17].

215



Approximate evolution operator Econst
∆ for piecewise constant data

%(P ) = %(Q2)−
p(Q2)

c̃2
(4.9)

+
1
2π

∫ 2 �

0

[p(Q1)
c̃2

− %̃

c̃
u(Q1) sgn(cos θ)− %̃

c̃
v(Q1) sgn(sin θ)

]
dθ,

u(P ) =
1
2π

∫ 2 �

0

[
−p(Q1)

%̃c̃
sgn(cos θ) + u(Q1)

(1
2

+ cos2 θ
)

(4.10)

+ v(Q1) sin θ cos θ

]
dθ,

v(P ) =
1
2π

∫ 2 �

0

[
−p(Q1)

%̃c̃
sgn(sin θ) + u(Q1) cos θ sin θ(4.11)

+ v(Q1)
(1

2
+ sin2 θ

)]
dθ,

p(P ) =
1
2π

∫ 2 �

0

[p(Q1)− %̃c̃u(Q1) sgn(cos θ)− %̃c̃v(Q1) sgn(sin θ)] dθ.(4.12)

Approximate evolution operator Ebilin
∆ for piecewise bilinear data

%(P ) = %(Q2) +
1
4

∫ 2 �

0

1
c̃2

[p(Q1)− p(Q2)] dθ(4.13)

− 1
π

∫ 2 �

0

%̃

c̃
[u(Q1) cos θ + v(Q1) sin θ] dθ +O(∆t2),

u(P ) = u(Q2)−
1
π

∫ 2 �

0

p(Q1)
%̃c̃

cos θ dθ(4.14)

+
1
4

∫ 2 �

0

[
3(u(Q1) cos θ + v(Q1) sin θ) cos θ

− u(Q1)
1
2
u(Q2)

]
dθ +O(∆t2),

v(P ) = v(Q2)−
1
π

∫ 2 �

0

p(Q1)
%̄ā

sin θ dθ(4.15)

+
1
4

∫ 2 �

0

[
3(u(Q1) cos θ + v(Q1) sin θ) sin θ − v(Q1)

− 1
2
v(Q2)

]
dθ +O(∆t2),

p(P ) = p(Q2) +
1
4

∫ 2 �

0

[p(Q1)− p(Q2)] dθ(4.16)

− 1
π

∫ 2 �

0

%̃c̃[u(Q1) cos θ + v(Q1) sin θ] dθ +O(∆t2).
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5. Second order schemes

In the first order schemes no reconstruction is used and the exact solution

u(x, y, tn) is approximated by the piecewise constant function Un. The integrals
along the Mach cone and over each cell interface are computed exactly, i.e. no ap-

proximation is used. If we want to obtain higher order finite volume EG schemes, we
have to replace the piecewise constant function Un by a higher degree polynomial.

One possibility to obtain the second order scheme is to apply on each mesh cell Ωij ,
i, j ∈ �

the discontinuous bilinear recovery

RD
h Un

∣∣
Ωij

=
(
1+

(x− xi)
h

µxµ2
yδx+

(y − yj)
h

µ2
xµyδy+

(x− xi)(y − yj)
h2

µxµyδxδy

)
Un

ij ,

where µxv(x) = 1
2

(
v
(
x + 1

2h
)

+ v
(
x − 1

2h
))
, δxv(x) = v

(
x + 1

2h
)
− v

(
x − 1

2h
)
, an

analogous notation being used for y-direction. Note that this bilinear recovery is
constructed in such a way that it is conservative, i.e.

1
h2

∫

Ωij

RhUn dx dy =
1
h2

∫

Ωij

Un dx dy.

Another possibility is to use continuous but non-conservative bilinear recovery. In
this case we have on each mesh cell

RC
h Un

∣∣
Ωij

=
(
µ2

xµ2
y +

(x− xi)
h

µxµ2
yδx +

(y − yj)
h

µ2
xµyδy(5.1)

+
(x− xi)(y − yj)

h2
µxµyδxδy

)
Un

ij .

In our numerical experiments we have used the conservative bilinear recovery RD
h

for the FVEG1–FVEG4 schemes. The second order FVEG5 scheme is constructed as

a combination of the approximate evolution operator Ebilin
∆ which evolves the contin-

uous bilinear data, and the approximate evolution operator Econst
∆ which corrects the

evolution of the constant part in order to preserve conservativity of the cell interface
values Un+ 1

2 , cf. also [9]. Thus for the FVEG5 scheme we use the formula

Un+ 1
2 = Econst

∆ (1− µ2
xµ2

y)Un + Ebilin
∆ RC

h Un.

It is a well-known fact that higher order methods can suffer from oscillations near

discontinuities. In order to avoid developing oscillations in the solution we control
gradients of the recovered functions by a limiter. There are many possibilities to

choose a suitable limiter. In our numerical computations we have used the so-called
minmod limiter, see [5], [17].
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As we have mentioned above, in the second order scheme we compute exactly only

the Mach cone integrals. Integrals over cell interfaces are computed by some suitable
numerical quadratures. In the next subsection we study the L1-stability for these
quadrature rules.

5.1. L1-stability analysis of the cell interface flux integrals
Natural quadrature points on cell interface are vertices used for the trapezoidal

rule and midpoints used in the midpoint rule. Combining vertices and midpoints

yields Simpson’s rule. In what follows we consider these three quadrature rules for
approximation of the cell interface integrals.

Let us consider a scalar linear advection equation in two-dimensions

(5.2) Ut + ũUx + ṽUy = 0,

where ũ, ṽ > 0 are positive constant velocities. We can write the finite volume scheme
for the equation (5.2) as

(5.3) h2(Un+1
ij − Un

ij) + h∆t
(
F

n+ 1
2

i+ 1
2 j
− F

n+ 1
2

i− 1
2 j

+ G
n+ 1

2
ij+ 1

2
−G

n+ 1
2

ij− 1
2

)
= 0,

where h > 0 is the mesh size parameter. The exact evaluation of the fluxes at time
tn+ 1

2
= tn + 1

2∆t gives

F
n+ 1

2
i+ 1

2 j
= ũ

[
(ũ∆th− 1

2 ũṽ∆t2)Un
ij + 1

2 ũṽ∆t2Un
i−1j

ũ∆th

]
(5.4)

= ũ

[(
1− ṽ∆t

2h

)
Un

ij +
ṽ∆t

2h
Un

i−1j

]
,

F
n+ 1

2
i− 1

2 j
= ũ

[(
1− ṽ∆t

2h

)
Un

i−1j +
ṽ∆t

2h
Un

i−1j−1

]
,(5.5)

G
n+ 1

2
ij+ 1

2
= ṽ

[(
1− ũ∆t

2h

)
Un

ij +
ũ∆t

2h
Un

ij−1

]
,(5.6)

G
n+ 1

2
ij− 1

2
= ṽ

[(
1− ũ∆t

2h

)
Un

ij−1 +
ũ∆t

2h
Un

i−1j−1

]
.(5.7)

Then the finite volume scheme (5.3) becomes

Un+1
ij = Un

ij −
[ ũ∆t

h
∆x −

ũṽ∆t2

2h2
∆x∆y

]
Un

ij(5.8)

−
[ ṽ∆t

h
∆y −

ũṽ∆t2

2h2
∆x∆y

]
Un

ij

=
[
1− ũ∆t

h
∆x

][
1− ṽ∆t

h
∆y

]
Un

ij ,
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where ∆xUij , ∆yUij , are the backward differences in x-, y-direction, respectively,

i.e. e.g. ∆xUij = Uij −Ui−1j . This scheme is a tensor product of the one-dimensional
upwind schemes and it is well-known that it is monotone and stable up to CFL 6 1,
where we define CFL := max

{
ũ∆t/h, ṽ∆t/h

}
. More precisely, under the above

CFL condition let us show the L1-stability of the scheme, i.e. ‖Un+1‖1 6 ‖Un‖1.
For the discrete grid function Un we define the discrete L1-norm by

(5.9) ‖Un‖1 = h2
∑

i,j∈ �
|Un

ij |.

We can rewrite equation (5.8) as

Un+1
ij =

(
1− ũ∆t

h

)(
1− ṽ∆t

h

)
Un

ij +
ṽ∆t

h

(
1− ũ∆t

h

)
Un

ij−1

+
ũ∆t

h

(
1− ṽ∆t

h

)
Un

i−1j +
ũṽ∆t2

h2
Un

i−1j−1.

From the definition of the L1-norm we have

‖Un+1‖1 = h2
∑

i,j

|Un+1
ij |

6 h

[∑

i,j

∣∣∣
(
1− ũ∆t

h

)(
1− ṽ∆t

h

)
Un

ij

∣∣∣ +
∑

i,j

∣∣∣ ṽ∆t

h

(
1− ũ∆t

h

)
Un

ij−1

∣∣∣

+
∑

i,j

∣∣∣ ũ∆t

h

(
1− ṽ∆t

h

)
Un

i−1j

∣∣∣ +
∑

i,j

∣∣∣ ũṽ∆t2

h2
Un

i−1j−1

∣∣∣
]
.

Thus, if the conditions

(
1− ũ∆t

h

)(
1− ṽ∆t

h

)
> 0,

ṽ∆t

h

(
1− ũ∆t

h

)
> 0,(5.10)

ũ∆t

h

(
1− ṽ∆t

h

)
> 0,

ũṽ∆t2

h2
> 0

hold then the scheme (5.8) is stable, since we can take terms from (5.10) in front of

the absolute value. We get

‖Un+1‖1 6 h2

[(
1− ũ∆t

h

)(
1− ṽ∆t

h

)∑

i,j

|Un
ij |+

ṽ∆t

h

(
1− ũ∆t

h

) ∑

i,j

|Un
ij−1|

+
ũ∆t

h

(
1− ṽ∆t

h

) ∑

i,j

|Un
i−1j |+

ũṽ∆t2

h2

∑

i,j

|Un
i−1j−1|

]

=
(
1− ũ∆t

h

)(
1− ṽ∆t

h

)
‖Un‖1 +

ṽ∆t

h

(
1− ũ∆t

h

)
‖Un‖1

+
ũ∆t

h

(
1− ṽ∆t

h

)
‖Un‖1 +

ũṽ∆t2

h2
‖Un‖1 = ‖Un‖1.
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Note that conditions (5.10) can be rewritten in the form

0 6 ũ∆t

h
6 1 and 0 6 ṽ∆t

h
6 1,

which corresponds to the CFL condition given above.

Now we would like to find stability conditions for the trapezoidal rule approxima-

tion of the interface integrals of fluxes. If we replace the exact fluxes (5.4)–(5.7) by
the trapezoidal rule, we get

F
n+ 1

2
i+ 1

2 j
=

ũ

2
(Un

ij + Un
ij−1), F

n+ 1
2

i− 1
2 j

=
ũ

2
(Un

i−1j + Un
i−1j−1),

G
n+ 1

2
ij+ 1

2
=

ṽ

2
(Un

ij + Un
i−1j), G

n+ 1
2

ij− 1
2

=
ṽ

2
(Un

ij−1 + Un
i−1j−1).

Then the finite volume scheme (5.3) has the form

Un+1
ij = Un

ij −
ũ∆t

2h
[∆x + ∆x −∆x∆y]Un

ij(5.11)

− ṽ∆t

2h
[∆y + ∆y −∆x∆y]Un

ij

=
[
1− ũ∆t

h
∆x

][
1− ṽ∆t

h
∆y

]
Un

ij

+
( ũ∆t

2h
− ũṽ∆t2

h2
+

ṽ∆t

2h

)
∆x∆yUn

ij .

Let us show that this scheme is stable only if ũ∆t/h = ṽ∆t/h. We can
rewrite (5.11) as

Un+1
ij =

1
2

(
2− ũ∆t

h
− ṽ∆t

h

)
Un

ij +
1
2

(
− ũ∆t

h
+

ṽ∆t

h

)
Un

ij−1

+
1
2

( ũ∆t

h
− ṽ∆t

h

)
Un

i−1j +
1
2

( ũ∆t

h
+

ṽ∆t

h

)
Un

i−1j−1

and hence the L1-norm can be bounded from above in the following way:

‖Un+1‖1 = h2
∑

i,j

|Un+1
ij |(5.12)

6 h2

2

[∑

i,j

∣∣∣
(
2− ũ∆t

h
− ṽ∆t

h

)
Un

ij

∣∣∣ +
∑

i,j

∣∣∣
(
− ũ∆t

h
+

ṽ∆t

h

)
Un

ij−1

∣∣∣

+
∑

i,j

∣∣∣
( ũ∆t

h
− ṽ∆t

h

)
Un

i−1j

∣∣∣ +
∑

i,j

∣∣∣
( ũ∆t

h
+

ṽ∆t

h

)
Un

i−1j−1

∣∣∣
]
.
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In order to obtain stability of the scheme the following four conditions have to hold

simultaneously:

ũ∆t

h
+

ṽ∆t

h
6 2,

ũ∆t

h
− ṽ∆t

h
6 0,

ũ∆t

h
− ṽ∆t

h
> 0,

ũ∆t

h
+

ṽ∆t

h
> 0.

Thus we need to require that ũ∆t/h = ṽ∆t/h, ũ∆t/h 6 1 and ṽ∆t/h 6 1. If we put
these conditions into (5.12), we obtain

‖Un+1‖1 6 h2

2

[(
2− ũ∆t

h
− ṽ∆t

h

)∑

i,j

|Un
ij |+

(
− ũ∆t

h
+

ṽ∆t

h

) ∑

i,j

|Un
ij−1|

+
( ũ∆t

h
− ṽ∆t

h

)∑

i,j

|Un
i−1j |+

( ũ∆t

h
+

ṽ∆t

h

)∑

i,j

|Un
i−1j−1|

]

=
1
2

[(
2− 2

ũ∆t

h

)
‖Un‖1 +

(
2
ũ∆t

h

)
‖Un‖1

]
= ‖Un‖1.

We have shown that the trapezoidal rule yields a stable finite volume scheme only
if ũ = ṽ and hence it is suited only for special situations, e.g. for the approximation

of edge integrals for the wave equation without advection, i.e. ũ = 0 = ṽ. For other
systems with arbitrary advections, such as the Euler equations, this quadrature rule

yields an unstable scheme.

In an analogous way we can derive a stability condition for the FV scheme using
the midpoint rule for flux integrals, which reads

ũ∆t

h
+

ṽ∆t

h
6 1, 0 6 ũ∆t

h
, 0 6 ṽ∆t

h
.

If Simpson’s rule is used the following stability conditions have to be satisfied:

1
5

ṽ∆t

h
6 ũ∆t

h
6 5

ṽ∆t

h
and 0 6 ũ∆t

h
+

ṽ∆t

h
6 6

5
.

This analysis yields the conclusion that for problems with arbitrary advection

velocities ũ, ṽ Simpson’s rule leads in general to the most stable discretization of
the flux integrals. It is the numerical quadrature that we use in our numerical

experiments in Section 6. Note that this L1-stability analysis holds for general two-
dimensional FV schemes.
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6. Numerical experiments

In this section, through numerical simulations, we illustrate the performance of
the FVEG methods for the linear wave equation system and for fully nonlinear Euler

equations of gas dynamics.

6.1. Water waves propagation
It is known that the approximation of circular waves on rectangular meshes can

cause difficulties. Particularly, if the dimensional splitting approach is used, spurious

mesh oriented structures can be developed, see e.g. [5], [7], [14] and the references
therein.

We consider the wave equation system

(6.1) vt + A1(v)vx + A2(v)vy = 0, x = (x, y)T ,

where v := (ϕ, u, v)T . Here ϕ is the pressure wave, u and v are the velocities in x-,
y-direction, respectively. The Jacobian matrices A1(v), A2(v) are given by

A1(v) :=




0 c 0
c 0 0
0 0 0


 , A2(v) :=




0 0 c

0 0 0
c 0 0


 ,

where c is a sound speed; see [9] for approximate evolution operators of (6.1). Con-
sider the following initial data modeling a pointwise disturbance:

ϕ(x, 0) = − c exp(−15x2 − 15y2),

u(x, 0) = 0 = v(x, 0).

The computational domain [−3, 3] × [−3, 3] is divided into 100 × 100 cells. The
first component ϕ of the solution obtained by the second order FVEG scheme at

different times from T = 0.2 until T = 8.0 is shown in Fig. 2. We can notice a well
resolved symmetric circular wave. As time evolves the wave propagates and is being

reflected from the left boundary. The Mach stem which is evolving behind the main
wave can be recognized at time t = 8.0. This problem can be considered as a model
for a pointwise disturbance of water surface, e.g. as it occurs when a stone is thrown
into a lake.

As mentioned above, we set reflected boundary conditions on the left vertical
boundary and absorbing boundary conditions elsewhere. In numerical experiments

presented in this paper we have implemented absorbing boundary conditions by
linear extrapolation of all quantities to the so-called ghost cells, which are adjacent
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Figure 2. Propagation of circular water wave.
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to the boundary of the computational domain. Thus we have, e.g. for the pressure

wave ϕ,
ϕ−1j = ϕ0j , ϕ−2j = ϕ1j , j ∈ �

,

where Ω−1j , Ω−2j and Ω0j , Ω1j are the ghost cells and the cells belonging to Ω,
respectively.

Note that due to the second order method two layers of the ghost cells are needed.
The reflected boundary conditions are easily modelled by reflecting the interior data

across the boundary and negating the normal component of velocity. Thus we have
on the left vertical boundary

u−1j = −u0j , u−2j = −u1j , j ∈ �
.

Other quantities, i.e. ϕ, v, are extrapolated.

6.2. Interaction between circular shocks and reflected waves
In this example we consider again the wave equation system (6.1) with discontin-

uous initial data

ϕ = 1, u = 0, v = 0, ‖x‖ < 0.4,

ϕ = 0, u = 0, v = 0, elsewhere.

The computational domain [−1, 1] × [−1, 1] is divided into 200 × 200 cells. We
implemented reflected boundary conditions on the vertical boundaries and absorbing

boundary conditions on the horizontal ones. In Fig. 3 the pressure wave distribution
at different times T = 0.3, 1.0, 1.3 is depicted. We can notice a well-resolved circular
shock traveling away from the center of the computational domain. As time evolves
the shock reaches the vertical boundaries and is reflected into the computational

domain. Due to the linear model, interactions between the linear circular shock and
the reflected waves can be observed very well.

6.3. Static disc problem for the Euler equations
This is a two-dimensional problem with circular symmetry. We consider nonlinear

hyperbolic systems of Euler equations (3.1). The computational domain is [−1, 1]×
[−1, 1] and the boundary conditions are periodical. Here the initial conditions are

%(x, y, 0) =

{
3, if (x2 + y2) 6 0.5,

1, otherwise,

u(x, y, 0) = 0,

v(x, y, 0) = 0,

p(x, y, 0) = 1.
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Figure 3. Interaction between the circular shock and reflected waves.

225



Thus we have contact discontinuity along the disc boundary. The exact solution

is the same as the initial condition, i.e. disc with radius 0.5. We compute this prob-
lem up to time t = 10 on different meshes (16 × 16, 32 × 32, 64 × 64, 128 × 128).
The initial conditions for cells lying on the boundary of the circular disc are imple-

mented by approximate weighted integral averages of initial data. In Fig. 4 we show
isolines of density computed on different meshes by the second order finite volume

schemes EG3 and EG5. In the middle column the weighted initial data which we
used are plotted. This example demonstrates that the steady contact discontinuity

is resolved in a correct way preserving the multi-dimensional phenomena as well.
Note that Kröger and Noelle reported in [3] that their MoT-ICE method fails for

this example producing a totally incorrect resolution as we can see in Tab. 1. We
present the L1-error in the % component for the finite volume EG3 and EG5 schemes

and for the MoT-ICE scheme on different meshes.

mesh EG3 EG5 MoT− ICE
16 0 0 7.1795 · 10−1

32 0.4 · 10−11 0.2 · 10−11 5.1174 · 10−1

64 1.2 · 10−11 1.2 · 10−11 3.8264 · 10−1

Table 1. L1-error in the % component for static disk problem (with periodic boundary
conditions).
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