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1. INTRODUCTION

We study here some noncooperative elliptic systems defined on a connected and
unbounded open set @ C RN (N > 3) of the form

—Au+ qu=agu+bov+ f in N,
(S) —Av+qu=cosut+dosv+g in Q,
u=v=0 on 9N; wu,v—0 for || > 400

where g1, 02, 03, 04 (sometimes referred to as weight functions), ¢1, g2, are positive
functions; f and g are measurable functions; a, b, ¢ and d are real numbers. u
and v are unknown real-valued functions defined in Q2 and belonging to appropriate
function spaces. The system (S) is noncooperative since b and c are not necessarily
positive. Under appropriate assumptions on the coefficients, we show the existence
of non-trivial solutions.

! This work was supported by a grant from ANDRU under No. CU39904.
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Generally, in order to study a nonlinear problem, we consider the linear approxi-
mation, which is easy enough to resolve of course. Here we have explored the inverse
process. In other words, we show that the linear system (S) can be taken as the limit
of a sequence of nonlinear systems.

The paper is organized as follows. In Section 1, we establish a Maximum Principle
result in the scalar case. We choose decreasing weight functions which lead to a gain
of compactness, (sce [7] and [8]). In Section 2, we obtain an existence and uniqueness
theorem for system (S). In order to prove it, we apply a nonlinear method introduced
in [3] and [4]. The main tool used here is Schauder’s fixed point theorem. The
Maximum Principle guarantees the invariance of subsets under operators. So, we can
prove the existence of solution for nonlinear systems. We observe that there exists
a vast literature on the use of nonlinear methods to the study of noncooperative
elliptic systems. We point out that an interesting version of the Maximum Principle
for noncooperative systems was given in [13]. We refer the reader to the works in
[5], [6] and references therein.

2. NOTATION

We denote

(1) u* = max(3u,0),sou =ut —u~.

(2) mes(-) is the Lebesgue N-dimensional measure.

(3) For £ € ]0,1] fixed: B. = QN B(0,1/¢) = {z € Q/|z| < 1/e}.
1p, is the characteristic function of B,.

(4) palz) = (1 +]2>)™*, a € R%; R} is the set of positive real numbers.

(5) Let D(2) be the set of all infinitely differentiable functions with compact sup-
port in Q2. We denote by D’(Q2) the dual space of D(2). Let us define V(RN) =
{u € D'(RN)/ fon (IVul? + p1[u?) dz < +oo}.
The space V is the closure of D(f2) with respect to the norm

llullvy = (/ﬂ(lvul2 +P1IUI2)dz)i

equivalent (under some conditions) to the norms

3
lulls = ( [ avu + @ +moj)lu|2)dz) (i=1,% j=1,4 meRY).
Q

V(RY) is a Hilbert space, VN > 3 (see [17], p. 230).
(6) L2(2) = {ue D’ (R)/p3u € L2(2)} where p(z) is a positive function defined
on 2.
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H™(Q) = {u € D'()/D*u € L*(Q), 0 < |a] < m}.
(7) 0= I:lea%((glv 02, 03, 94)
3. HYPOTHESES

We suppose that
(8) 3a,BER, > N/2,821; 3k >0 (i =1,2,3,4), Ic; > 0 (¢ = 1,2) such that

0 sgi(z) < kipa(x)v i=1,2,3,4,
0 <gi(z) <

(9) e2(z) < Var(z)es(z), Vz e, 03(z) < yor1(x)oa(xr) Vz €.

(10) f,g€ Lil_l(ﬂ) ={ue D' Q)/ [o(1 +|z[})|ul?>dz < +o0}.

cpp(z), i=1,2.

4. EXISTENCE OF SOLUTIONS

4.1. Remarks on the scalar case
We consider the problem

—Au+ qu = Agiu in
(11) { Q1 01

u=0 on 9Q; u—0 for |z|] = +o0.

By [7], [8], Problem (11) possesses an increasing infinite sequence of positive eigen-
values.

Moreover, the first eigenvalue A(q1, 01) is principal ([9]) and is characterized vari-
ationally by

(12) Nae) [ el de < [ (VP + aluf?) dsi vue V.
We consider now the problem

—Au+qu=Agu+h in Q,
(13) { Q1 o1

u=0 on 9Q; u—0 for |z| = +oo.

We claim that the Maximum Principle holds for Problem (13) with condition
h > 0, if all solutions of Problem (13) are nonnegative.
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Theorem 1. Assume that (8) holds and h € Li_,(Q). Problem (13) satisfies
1
the Maximum Principle if and only if A(g1,01) > ).

Proof. Let ¢ be an eigenfunction associated with A(q;, 1), then ¢ does not
change sign. Multiplying the equation in (13) by ¢ and integrating over {2, we obtain

(/\(ql,el)—/\)/s;glmpdx=/nhcpd:c.

If the Maximum Principle holds then [, hpdz > 0 implies [, 1updz > 0.
Consequently A(q1,01) > A
Conversely, if A(g1,01) > A then u > 0. Indeed, observe that u = u* — u~. Now,
multiplying the equation of Problem (13) by u~ and integrating over Q, we get

/(V’uVu_ +quuT)dz = /\/ oiuu” dz +/ hu™ dz.
Q Q Q

Since

/ VutVu~ dz = / qutudz = / oiutu~dz =0,
Q Q Q

we obtain
/ (Ve P+ qilu~?)dz = /\/ o|lu|?dr — / hu™ dz.

Q Q Q
By (12), we have

Nave) [ el Pas <) [ o Pda- [ b ds,

Q Q Q
0< (Mq1,01) — /\)/ oJu™|?dz < —/ hu~dz <0
") Q

Hence u > 0. O

Theorem 2. Under the assumptions of Theorem 1, Problem (13) with condition
h > 0 has one nonnegative solution in V if and only if A(q1, 01) > A.

Proof. In view of Theorem 1, the necessary condition holds.
Let us consider the sufficient condition. The differential form

a(u,v) =L(Vu-Vv+q1uv)dz—A/(291uvdx
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is continuous and coercive on V x V. Indeed, let m € R} be such that A +m > 0.
Taking into account the variational characterization of A\(q1, 01) we have

a(u,u) = /Q[IV'ul2 + (@1 + mo1)|u|?] dz — (A + m) /Q o |ul?dz

A+m 2
>(1- —"—)|u
( '\(QI,QI)'*'m)” I

where || - ||; is a norm equivalent to || - ||y by virtue of (8) and Hardy’s inequality

2
(VN>3, 3y > 0: Yu € D(RV), / h‘—lzd:v{'y/ |Vu|2da:).
ry |2 RN

Since f € L:_l (), the application v — fn hvdz is a continuous linear form on V.
1

Hence by the Lax-Milgram lemma, Problem (13) possesses one solution u. By The-

orem 1, u is nonnegative. O

4.2. Vectorial case
Let us consider the system (S) now. In what follows, we will find a sufficient
condition for the system (S) to have a unique solution.

Theorem 3. Let (8), (9) and (10) be satisfied, as well as

(14) g1, 1) > a; (Mg1,01) — a)(Mg2, 04) — d) > |be].

Then the system (S) has one (weak) solution in V x V.

First, we state the following lemma.

Lemma 1. Assume that the hypothesis of Theorem 3 holds. Let (z,w) € V xV
be a solution of

(-A+q1)z=a01z +boow in N,
(15) (—A + @2)w = cp3z + doaw in Q,
z=w=0 on d0; z,w—0 for |z| & +o0.
Then (z,w) = (0,0).

Proof. We multiply the first equation of the system (15) by z and integrate
over (Q:

A(le|2+q1|z|2)dz=a 001|Z|2d1‘+b/ o2zwdz.
Q

189




Using the variational characterization of \(q;, 01), we have

0< (Maq1,01) —a)/ o1]z]*dz < lb{‘/ p2zwdzx
Q Q

By hypothesis (9) and the Cauchy-Schwarz inequality we obtain

(16) (Mq1,01) —a) /{; o1]z|%dz < |b] (/n o1z|? dz)% (/(; o4|w|? dz)%.

Similarly, multiplying the second equation of system (15) by w and integrating
over {2, we get

) Oae)-d) [ adoas <l [ gl|z|2dz)% ([ euor dz)%.

Combining (16) with (17), we obtain

0 < [(A(as; 1) — @)(Mgz, 04) — d) — [bc]] /Q ol dz - /Q oalwl? dz <0,

which implies that z = w =0 a.e. a

Proof of Theorem 3. Let m € R} be such that a+m > 0and d+m > 0.
We define an operator

T: Ly(Q) x L;(Q) = V xV, (&n) = T(£n) = (w,v)

such that (w,v) verifies the system

01§ 021 .
-A = —_— b———1 Q,
( +q +moy)w (a+m)1+6|£| B, + T+ el B.+f in
(18) N | S d+m)—2"1 4 in Q
( + g2 + mog)v cl+€|§| B, + ( +m)1+€|77| B.+9g ,

w=v=0o0n 8N, w,v—0 for |z|] & +oo.

(i) First we verify that T is well defined.
Let (¢,n) € L2(2) x L2(Q), we put

_ 01§ 02

(19) \I’l(grr’) - (a+m)1 +E|£|155 + bl +€|77|IB€’
03€ 047

= 1 d 1B..

U2 (€,m) 01+6|€| B. +( +m)1+€|7)| B.
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We have

/u+mmmWn

Q

\ki 2d$, i = a3a
< LMI (i=1,3)

2 Qt£
/ﬂ(l+lxl |y Tr el ?

and

0in 2 2 2
14 |22 —leldx</1+a: a2 dz
[ 0+1aP)| 2 [ 1+ 1ol
<k / oln|*dz, (i =2,4).
Q

So 1 (&,n), ¥2(&,) € L2_. ().
In view of Theorem 2, tlhe system
(-A+q)w=—-mow + (¥1(&,7m) + f) in @ w=0 on
w — 0 for |z| = +o0,
(—A+g2)v = —moqv + (¥2(£,1) +9) in & v=0 on O

v — 0 for |z| & 400

(20)

has one solution (w,v) in V' x V, since

(‘1’1(677’) + f) € L:I—‘(n)v (‘1’2(5171) +g) € L:I—l(n)a
Mg, 1) > —m and  X(g2,04) > —m.

(ii) For all (£,7) € L2(2) x L2(2), we have

0i€ _ 1 egif k,. ) ' ,
Thelg] 2 = cTrejg) B S 2B e (=13, 1s €L ()
Similarly
oin k; . .
<= . —92.4).
e | < Tlm ae im0 (=29
Then

121(6,)] < 2max(a -+ m, [b) 13,
(21
12(6, )] < 2max(el,d+ m) 215,

with k = ma.x(kl, kg, k3, k4).
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We put h = 2max(a + m, |bl,|c|,d + m)X1p, .
We have

h € Lf,;n(ﬂ) and |¥1(&n)| < h; [P2(60)| < by V(En) € L3(Q) x LE(Q).
According to Theorem 2, the problem
P:=(-A+q+mo)Ju=h+fin Q; u=0 on 3Q; u— 0 for || = +oo

(or with P{ defined by replacing h by —h in P;) possesses one solution £° (&) in V.
Similarly, the problem

Py:=(-A+g@¢+mpos))v=h+gin Q; v=0 on 9Q; v— 0 for |z] > +oco

(or with Pj obtained by replacing h by —h in P,) has one solution 7° (o) in V.
Observe that & < £°. Indeed, we have

(A +q+ma)(®—&)=2hin Q, & —& =0 on 00,
(€% — &) = 0 for |z| = +o0.

According to Theorem 1, £ — & > 0. Similarly no — 7° < 0.
We consider now the restriction of T', denoted again by T, to the rectangle [£o, £°] x

[0, 7°-
We show that T' admits a fixed point using Schauder’s Theorem.

(iii) We prove first that the closed convex [&,£°] x [n0,7°] is invariant by T
Let (61 ’7) € [607 EO] X ['7017'0]' We show that w € [§07€0] and v € [7’0,7’0]' Combin-
ing (20) with P, we get

(~-A+q1+ma) (€ —w) =h—Ty(€,n) in Q, € —w=0 on N,
(€° —w) — 0 for |z| = +o0.

Since h — ¥41(&,7) = 0 then w < £°. In the same way, we obtain v < 7°. On the
other hand, we have

(—A+q+mo)(w——£)=T1(Em) +hin R, w—E& =0 on N
(w—&) = 0 for |z| = +o0.

Since ¥;(£,m) + h > 0 then & < w. Analogously, we obtain 7y < v.
Consequently (£, £°] x [no,n°] is invariant by T
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(iv) We show now that T is continuous. Let (£.,7n) be a sequence of [£p,£%] x
[0, 7°) convergent to (¢,7) in L2(2) x L2(Q).

We put T'(€n, M) = (wn,vn), T(§,n) = (w,v).
From (18) and (19), we get

(A +q +moy)(wn —w) = U1 (én, ) — ¥1(&,m) in Q,
(22) (—A + g2 + mps)(vn — V) = ¥2(bn,nn) — ¥2(&,m) in Q,

Wpn=w=v, =v=0 on 390 wn,w,vs,v—0 for |z| = +00.

Multiplying both the first and the second equation of the system (22) by (wn — w)
and (v, — v) respectively, later integrating over (2, we obtain by virtue of Hardy’s
inequality

"wn —w"l < \/'7||‘I’1(§m7ln) - ‘I’l(ga 77)"L2_1(Q),
Py

lun — vll2 < VAIIZ2(n, 1a) — Y2(& M2 (@)-
Py

Then, to prove (wn,v,) = (w,v) in V x V|, it suffices to show that

U1(nrnn) = V1(&,m) and  ¥a(én,nn) = P2(§,7n) in Lf,l—x(n)-

We have
” 01én e 15, " Eelfn o€ 15
1+e|§,, Be 1+ €l¢| (n) 1+s|£,. B 1+e|£| “Nez_, (@)
1

The function I(z) = z(1 + |z|)~! is Lipschitzian on R and verifies

(23) Vz,y €R, |l(z) -Uy)| < |z -yl
Consequently,
€01én €01 1
< = -
“1+€|€n B~ Trelg Pl o S 6”691571 EQIEHL:‘_I(Q)
1

< lorén - 91‘5"1,2_1(9) — 0 for n = +00,
Py

since

2y 2 2 2 kl
|+ tePretien - e de < [+l s - € ds

S kl"fn - {"ig(n) -0 fOl' n — +00.
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Similarly, we show that gann(1 + €|nn|) 115, — g2n(1 + €|n|)~'1p, for € = 0 in
12.,(9).

Then ¥y (&n,70) = ¥1(&,n) in L:I_l(ﬂ) and therefore w, - win V.

In the same way, v, = v in V. Consequently, T is continuous.

(v) Next we show that T': L2(Q) x L2(Q) — L%(Q) x L2(Q) is compact.

We have the compact imbedding V' C L%(Q).

Indeed, let (u,), be a bounded sequence in V. (u,), is bounded in H!(B,). Hence
the imbedding H'(B,) into L?(B,) is compact; there exists a subsequence denoted
again by (4y)n, such that

/ elup —u[*dz < / [up — ug|*dz = 0 when p,g — +o0.
€ B,

On the other hand, since the weight p tends to 0 at infinity, we have

1

2 2 2
olu, —u dz—/ 1+|z]%)e lup — uql|* dz
/Q\Bc fup =l Q\B( ) (1+z)""

<k sup 1 [l
u —_—_—
h lz|>1/€ (1 + ile)a—l P

—ugll, -0 for e > 0.

Consequently, (un). is a Cauchy sequence in L3(2).

Since T: L2(Q) x L2(2) = V x V is continuous, T': L2(2) x L2(2) — L%() x
L2(f2) is compact. According to (iii) and (v), we can apply Schauder’s fixed point
theorem. Then there exists (£,7) € [£o, %] X [no,7°] such that T'(&,n) = (&,7).

Since £ and 7 depend on €, we denote £ = u. and 7 = v,.

So ue, v, verify the system

01U¢ 02Ve .
_A+ +m u a+m___ B, b—lBE+ mQ’
( (/31 Ql) € ( ) E|u5| 1+¢ l s| f
(24) 03Ue 1 d 04V¢ .
- =—Cc— + ————1p5 +g in Q,
(—A + g2 + mp4)ve 1 T o] B, + ( m)1 T efor] B.+9

ue =v. =0 on 8Q; wue,v. — 0 for |z| & +oo.

(vi) We show that (euc). (as well as (eve)e ) is a bounded sequence in V.
We multiply the first equation of the system (24) by £2u. and integrate over 2,
obtaining

€01Uc

—————culp. dz
1+elus| © B

/ (IV(eu)? + (@ + mey)leuel?) dz = (@ +m) /
Q

+b/ €02V euelgcdx+/efeu5d:c.
1 + efvel Q
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Since eluc|(1 + elue)™! < 1, elve](L +¢lve|) 1 <1,0<e< 1, f€ Lz_l(ﬂ) and
1
a > N/2, there exists a constant M > 0 such that |leu|; < M
Similarly, there exists M’ > 0 such that ||eve|[2 < M'.

(vii) We show that eu, — 0 (as well as ev, -+ 0) whene -+ 0in V.

Since (eu¢) is bounded in V, there exists a subsequence denoted again by (cue)e
(we denote it by writing for example € = -,1;, n > 1) weakly convergent to u* in V'
and hence strongly convergent to u* in L2(f2).

We multiply the first equation of the system (24) by &:

€01Ue bQ25

(A + (@ +mar))(eue) = (a+m) =7l +bi=m -

1, +ef in Q.

Then Yy € D(Q2),

/[V(eus) -V + (g1 + mor)euy) dm/[Vu* -Vo + (1 + mpy)u*y]dz for € — 0.
Q Q

Moreover Yo € D(), [,efeodz — 0 for € — 0.
On the other hand,

_E01Ue ot 2) E01Ue ou’
1+|z dz = / 1+ |z -
/( | l 1+€|u€| 1+| "| ( | I 1+e€lu| 1+ |u*
v’ |2
RS
z < / (1+|z)*)|eru*[* dz
Q\B,

gkl/ olu*|*dz — 0 for € = 0.
Q\B.

2

o1u* |2
1+ |z? I
v/Q\Bz( ')1+|u*|

Taking (23) into account, we have

*
/(1+|$|2) EQ1Ue 01U
B.

1+elus| 1+ |u|

2
dr < / (1+ |2|?)leorue — eru*|* dz
Q
< k1/ oleus —u*[>dz — 0 for £ = 0.
Q

Similarly, we show that egove(1 + elve|)~11p, = g2v*(1 + |v*|)7! for e = 0
in Lz_,(Q)
In the same manner we can establish that

o3u

T (e, ve) - B2
€ 2(u€v€) cl+| l

+(d+m)——— for e+ 0 in L:l_l(ﬂ).

1+|‘|
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We get, when € — 0,

o1u* o02v*
—A+q +mo)u* =(a+m Q,
( @+ me)u” = ( )1+| ] 1+|v"| m
(25) (A + g2 +mog)v* =c +(d+m)—— in Q,

1 + | *| 1 + | v*|
u*=v*=0 on 0f; u*,v*—0 for |z] & +o0.

We show now that u* = v* = 0.

We multiply the first equation of the system (25) by u* and integrate over Q:

*|2 *, %
Vu'f? *2) dg = /L’ﬂ"l: vt
/ﬂ(l u*]? + (@1 + moy)|u*|?) dz = (a + m) wr dz +b 91+|v‘|dz

< (a+m)/ gl|u*|2dz+|b|/ o2lu*v*|dz.
Q Q

By virtue of the variational characterization of \(q;, 01) and using (10), we get

3 3
) (ae)-a) [ alPa<h ( [ et dz) : ( [ e dx) .

In the same way, we prove that

@) (Mg, 04) — d) /,, oav* | d < |c|( /Q oulu'|? dz)% . ( /,, oalv* 2 d:r)%.

Combining (26), (27) with (14), we have u* = v* = 0.

(viii) We show that the sequence (u.). (as well as (v.).) is bounded in V. We
suppose that |juc|ly = +oo for € = 0 and |jve|ly = +oo for € = 0 and define

te = ma.x(lluellv, "vet"V)v

1
Ze = ~Ue then ||ze]lv <1
€

1
We = ~Ve then |Jwe|lv <1
€

Since (z.)e is a bounded sequence in V, there exists a subsequence denoted again
by (2)e, weakly convergent to z in V and hence strongly convergent to z in L3(f2).
Similarly, (we)e converges to w , weakly in V' and strongly in Lﬁ(Q).
Taking (24) into account, we get

012¢ 02We 1 .
—A = 1. +0b 1. + —f in Q,
( +q +mp1)ze (a+m)1 T o] B. T+ efor] B tzf
(28) 3% d 04w, 1.
— —-_—C— = + —_—1 + — in Q’
(—A + g2 + mos)we T eur] 5 + ( m)1+elve| B+ 9

zZe=w, =0 on 8N; 2., w.— 0 for |z] & +o0.
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We know that Vo € D(R), [o(Vz: - Vo + (@1 + mp1)zep)dz = [((Vz-Vo+ (a1 +
mp)zp) dz for € - 0 and [, %f«pdx — 0 for e — 0.
On the other hand,

2 012¢ 2
= 1+ 12 —_— Zl dz
2@ /Be( l2I") T+efu] &
1

+/ (1+ |z|2)|glz|2dz
Q\B.

" 012
1 +e|u€|

We have [, g, (1+ |z*)]e12]?dz < ky Jo\s, @l2I*dz — 0 for € —+ 0, and

2 2
/ (1 + J2f?) |~ —912| dxé/(lﬂxlz) —gl—ze——glzl dz
B, Q

1+ €|u| 1+ efue|
01(ze — 2) — eo12|uc| |2
< [ @+ | dz
< [ (rlap| 2t
01(ze —2) |2 | |eo12|uc| |2
<2/ (1+|z)? | )dz
s /9( =] )( 1+ elue| 1+ efuel
So
/(1+|z|2) 1z —2) | dz /(1+|a:|2)|91(z€ -2)|%dz
Q 1+ €lue| Q
<k1/ g|ze—z|2d:z:—}0 for e =» 0.
Q
Moreover,
2
E—lzj—qﬂ —0fore—>0 ae. in Q,
1+ elue|

2| E012[ue| |2
(1+|$| ) 1+€Iu€|

< (1+|21?)]o12]? < krol2).

Since z € Lg(ﬂ), by virtue of the Lebesgue dominated convergence theorem we

deduce that
2
/(1+lz|2) corzfue| dz = 0 for € = 0.
Q 1+ €lu|
Hence
012¢
— 0 fe - 0.
” 1 +e|u5| T oz L?2_, () or €
P
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Analogously, we obtain

032¢
"1 +5|“s| — 032 @ —0fore—>0
Py
and
0:iWe .
” 1 +€|Ue| — oiw v@ —=0fore—>0 (1=2,4).
P

1
When € — 0, we get
(A +q1)z=apz+boow in N,
(29) (=A + g2)w = cp3z + dosw in 9,

z=w=0on 90 z,w—0 for |z|] & +oo.

By virtue of Lemma 1, we have 2 = w = 0, which is in contradiction with the fact that
at least one sequence ((z¢) or (w.)) has the norm equal to one. The sequence (u)
(as well as (v.)) is bounded in V.

(ix) We extract a sequence denoted again by (u.) ((ve)) weakly convergent to u°
(or v°) in V' and hence strongly convergent to the same limit in L2(2).
We have Vo € D(Q2),

/(Vue -V + (@1 + mo1)ucp)dz — /‘(Vu0 -V + (g1 + mo1)ulp)dz, for e -0

Q Q

/(Vve -V + (g2 + mos)vep) dz — /(Vvo -V + (g2 + mog)v’p)dz for € = 0.
Q Q

In the same way as in (viii), we show that

e '0“2 Q) 30fore>0 (i=1,3
" T Elusl — 0iu Lp;—l( ) or € (7' ’ )1
” QiVe - 0:0° =0 fore>0 (i=24).
1 +e|v€| L2_,(@)

1
When ¢ — 0, we get

(A 4+ q1)u® = ag1u® + be2r® + f in Q,
(S) (—A + g2)v° = cosu® + dpav° +g in R,

u’=v"=0on 99; u°%v° =0 for || & +o0.
We conclude that (u%,2°) is a solution of (S). O
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The uniqueness of the solution follows from Lemma 1. Indeed, let (u!,v!) be
another solution of the system (S). We put w = u® —u! and z = v° — v!, then (w, 2)
is a solution of the system (15). Lemma 1 gives (w, 2z) = (0,0).

Acknowledgment. We wish to thank the referee for helpful comments.
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Abstract. Using an approximation method, we show the existence of solutions for some
noncooperative elliptic systems defined on an unbounded domain.
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1. INTRODUCTION

We study here some noncooperative elliptic systems defined on a connected and
unbounded open set Q C RY (N > 3) of the form

—Au+ qu = aoru+bosv+ f in Q,
(S) —Av + qav = cosu + dogv +¢g in Q,

u=v=0 on 092 wu,v—0 for |z|] - +o0

where 01, 02, 03, 04 (sometimes referred to as weight functions), g1, q2, are positive
functions; f and g are measurable functions; a, b, ¢ and d are real numbers. u
and v are unknown real-valued functions defined in §2 and belonging to appropriate
function spaces. The system (S) is noncooperative since b and ¢ are not necessarily
positive. Under appropriate assumptions on the coeflicients, we show the existence

of non-trivial solutions.

! This work was supported by a grant from ANDRU under No. CU39904.
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Generally, in order to study a nonlinear problem, we consider the linear approxi-
mation, which is easy enough to resolve of course. Here we have explored the inverse
process. In other words, we show that the linear system (S) can be taken as the limit
of a sequence of nonlinear systems.

The paper is organized as follows. In Section 1, we establish a Maximum Principle
result in the scalar case. We choose decreasing weight functions which lead to a gain
of compactness, (see [7] and [8]). In Section 2, we obtain an existence and uniqueness
theorem for system (S). In order to prove it, we apply a nonlinear method introduced
in [3] and [4]. The main tool used here is Schauder’s fixed point theorem. The
Maximum Principle guarantees the invariance of subsets under operators. So, we can
prove the existence of solution for nonlinear systems. We observe that there exists
a vast literature on the use of nonlinear methods to the study of noncooperative
elliptic systems. We point out that an interesting version of the Maximum Principle
for noncooperative systems was given in [13]. We refer the reader to the works in
[5], [6] and references therein.

2. NOTATION

We denote

(1) u* = max(+u,0),sou =ut —u~.

(2) mes(-) is the Lebesgue N-dimensional measure.

(3) For € €]0,1] fixed: B = QN B(0,1/e) ={z € Q/|z| < 1/e}.
1p, is the characteristic function of B,.

(4) pa(z) = (1 4+ |2]?)~*, a € Ry ; RY is the set of positive real numbers.

(5) Let D(€2) be the set of all infinitely differentiable functions with compact sup-
port in Q. We denote by D’(€) the dual space of D(f2). Let us define V(RY) =
{u € D'(RV)/ fun (Vul? + pr|uf?) do < +oo}.
The space V is the closure of D(€) with respect to the norm

fulle = ([ (V6P + mlu?)ac)
Q

equivalent (under some conditions) to the norms

1

2
Julls = (/Qaw%<qi+m@j>|u|2>dx) (=1,% j—1,4 meR.).

V(RY) is a Hilbert space, VN > 3 (see [17], p. 230).
(6) L2() = {u € D'(Q)/p3u € L?(Q)} where p(z) is a positive function defined
on €.
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H™(Q) = {ue D'(Q)/D% € L*(), 0 < |a| < m}.
(7) 0 =max(e1, 02,03, 04)-
3. HYPOTHESES

We suppose that
(8) o, bR, a>N/2,8>1;3k; >0 (i =1,2,3,4), 3¢; > 0 (i = 1,2) such that

0 <oi(x)
0 <g¢;(x)

(9) 02(z) < voir(x)os(x), VreQ, os3(x) < Vor(x)oa(z) Ve

(10) f,g€ L;l,l(ﬂ) ={ue D)/ [+ |z[*)|ul*dz < +oo}.

g klpa(x)a 1= 15273547
< epg(z), i=1,2.

4. EXISTENCE OF SOLUTIONS

4.1. Remarks on the scalar case
We consider the problem

(11)

—Au+ qu = Ap1u in Q,
u=0 on 9Q; u—0 for |z|] = +o0.

By [7], [8], Problem (11) possesses an increasing infinite sequence of positive eigen-
values.

Moreover, the first eigenvalue A(g1, 01) is principal ([9]) and is characterized vari-
ationally by

(12) A(th,m)/ Q1IU|2dw</(IVU|2+Q1IUI2) dz; VueV.
Q Q

We consider now the problem

—Au+ qu=Aoiu+h in Q,
(13) { a1 01

u=0 on 9Q; wu—0 for |z|] — +o0.

We claim that the Maximum Principle holds for Problem (13) with condition
h > 0, if all solutions of Problem (13) are nonnegative.
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Theorem 1. Assume that (8) holds and h € Li,l(Q). Problem (13) satisfies
the Maximum Principle if and only if A(q1, 01) > .

Proof. Let ¢ be an eigenfunction associated with A\(qi, 1), then ¢ does not
change sign. Multiplying the equation in (13) by ¢ and integrating over 2, we obtain

(M1, 01) — )\)/

glugpdx:/hgodac.
Q Q

If the Maximum Principle holds then [, heo dz > 0 implies [, o1ue dz > 0.
Consequently A(q1, 01) > A
Conversely, if A(q1,01) > A then u > 0. Indeed, observe that u = u™ — u~. Now,
multiplying the equation of Problem (13) by u~ and integrating over ), we get

/(VuVu_ +quuT)de = )\/
Q

ojuu— d;zc—i—/ hu™ dz.
Q Q

Since

/ VutVu~ dz = / qutu dz = / owtu” dz =0,
Q Q Q

we obtain

/(|Vu7|2+q1|u7|2) d:r:)\/ gl|u7|2dx7/hufdx.
Q o o

By (12), we have

)\(ql,gl)/ o1|u”*dx < )\/ gl|u_|2dx—/hu_ dz,
Q Q Q
0< Maqr,01) — )\)/ o1lu”|?dz < —/ hu~dx <0
Q Q
Hence u > 0. ([l
Theorem 2. Under the assumptions of Theorem 1, Problem (13) with condition

h > 0 has one nonnegative solution in V' if and only if A\(q1, 01) > \.

Proof. In view of Theorem 1, the necessary condition holds.

Let us consider the sufficient condition. The differential form

a(u,v) = / (Vu - Vv + quuv) dz — )\/ oruvdx
Q Q
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is continuous and coercive on V' x V. Indeed, let m € R be such that A +m > 0.
Taking into account the variational characterization of A(q1, 01) we have

alu,w) = /Q[IWIQ (@ + menlulP] dz — (A +m) /Q o1luf? dz

A+m
> (1= s ) ull?
AMai,01) +m
where || - ||1 is @ norm equivalent to || - ||y by virtue of (8) and Hardy’s inequality

2
<VN>3, 3y >0: Yu € D(RY), / ﬂdxgy/ |Vu|2d:17>.
Ry [zf? RN

Since f € LZ,I(Q), the application v — [, hvdz is a continuous linear form on V.
1
Hence by the Lax-Milgram lemma, Problem (13) possesses one solution u. By The-

orem 1, u is nonnegative. |

4.2. Vectorial case
Let us consider the system (S) now. In what follows, we will find a sufficient
condition for the system (S) to have a unique solution.

Theorem 3. Let (8), (9) and (10) be satisfied, as well as

(14) Mai, 01) > a; (M1, 01) — a)(Mgz, 1) — d) > |bc].

Then the system (S) has one (weak) solution in V x V.
First, we state the following lemma.
Lemma 1. Assume that the hypothesis of Theorem 3 holds. Let (z,w) € V xV

be a solution of

(A +q1)z=a01z +bosw in Q,
(15) (—A + q2)w = co3z + dosw in Q,
z=w=0 on 09; z,w—0 for |z| — +o0.
Then (z,w) = (0,0).

Proof. We multiply the first equation of the system (15) by z and integrate
over ):

/(|V2|2+q1|z|2)dx:a/ Q1|z|2d:1c+b/ g2zwdz.
Q Q Q
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Using the variational characterization of A(q1, 01), we have

0< (Agq1,01) — a)/ o01]z)? dz < |b|’/ o2zwdx
Q Q

By hypothesis (9) and the Cauchy-Schwarz inequality we obtain

16 ey o) [ alsPas <l [ gl|z|2dw)% ([ g4|w|2dw)%.

Similarly, multiplying the second equation of system (15) by w and integrating
over (), we get

0 Mo =) [ o<l [ g1|z|2dx)% (f g4|w|2dx)%.

Combining (16) with (17), we obtain

0 < (g1, 01) — a)(A(g2: a) — ) — |be] / o122 de - / oalwl? dr <0,
Q Q

which implies that z = w =0 a.e. |

Proof of Theorem 3. Let m € R be such that a +m > 0 and d +m > 0.
We define an operator

T: L2(Q) x LE(Q) =V xV, (&n)—T(n) = (w,v)

such that (w,v) verifies the system

01§ 021 .
-A+q +mo)w = (a+m)——— +b 1. + in §,
( qQ 01) ( )1+5|§| B. T4 el B. T f
(18) —A+go+mos)v=c 038 1. +(d+m 047 1 + in Q
( q2 :Q4) 1+€|§-| Be ( )1 +€|T]| B, g )

w=v=0on 092, wv—0 for |z] > Foo.

(i) First we verify that T is well defined.
Let (£,m) € L2() x L2(£2), we put

01& 021
U = 1 b 1
o) 1(&,m) (a+m)1+€|§| B. + Th el B
03¢ 041
Uy(E,n) = 1p. + (d+ 1.
Z(é- T’) Cl+5|§| B, ( m)1+5|77| B,
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We have

0:€ 2 2 2
1—}—:1:2’ 1de</1+x i&|° dx
[ a+1eP) 725 [ (14 1)l
<ki/g|£|2dx, (i=1.3),
Q

and

. 2
1 o) |7 20— 15[ d g/ 1+ [2]2)]oim[? d
[ 1) 2Etn [ o < [ (14 1of?) P s

<k / ol de, (i =2,4).
Q

So \111(6’77)’ \112(6377) € Lifl(Q)
In view of Theorem 2, the system
(A +q)w=-mow+ (¥1(§,n) + f) in & w=0 on 9
w— 0 for |z] — +oo,
(=A+q2)v=—mosv + (¥2(§,n) + g) in & v =0 on O

v—0 for || — 400

(20)

has one solution (w,v) in V' x V, since

(\Ill(é-an) + f) € Lifl(ﬂ)v (\IIQ(é.vT]) + g) € Lifl(ﬂ)v
Maqr,01) > —m and  A(ge, 04) > —mn.

(i) For all (¢,n) € L3(Q) x L3(), we have

0i§ 1 eoil¢] ks . . 2
== < —1 .. in Q =1,3), 1p € L*_(Q).
Trefe] 5 = eTejg or S oo 2o (=13), 1o € L0 (@)
Similarly
i1 k; . .
< —1 a.e. in , 1 =2,4).
1+€|T]| BE c Ba ( )
Then

k
[¥1(&,m)| < 2max(a +m, |b\)g1B€7

(21) -
|‘I’2(§»77)| < 2max(|c\7d_|_ m)ng

€

with k& = max(k:l, kg, k‘3, k‘4)
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We put h = 2max(a + m, |b],|c[,d + m)£1p,.
We have

he L2 () and |Wi(€n) < b [T2(&,0)] < hs Y m) € L3(Q) x L5(Q).
According to Theorem 2, the problem
Pi=(-A+qg +mo)u=h+fin Q u=0 on 9 u—0 for |z| = +0

(or with P defined by replacing h by —h in P;) possesses one solution £V (&) in V.
Similarly, the problem

Py:=(-A+g+mos)v=h+gin Q v=0 on 9Q; v—0 for |z|] — +o0

(or with P} obtained by replacing h by —h in P») has one solution n° (19) in V.
Observe that & < &Y. Indeed, we have

(=A+q +mo1)(E° — &) =2h in Q, ¢ —¢& =0 on 09,
(€% — &) — 0 for |z| — +oo.

According to Theorem 1, €% — & > 0. Similarly ny — n° < 0.
We consider now the restriction of T', denoted again by T, to the rectangle &g, £°] x

[0, 1°].
We show that T admits a fixed point using Schauder’s Theorem.

(iii) We prove first that the closed convex [€g, £°] x [no,7"] is invariant by T
Let (&,n) € [€0,£°] X [n0,n°]. We show that w € [y, £°] and v € [, "]. Combin-
ing (20) with P;, we get

(~A+q +mo) (€ —w)=h—T(&n) in Q £ —w=0 on 9,

(6" —w) — 0 for |z| — 4o0.

Since h — W1(£,m) > 0 then w < &Y. In the same way, we obtain v < 1°. On the
other hand, we have

(—A+qg +mo1)(w—E&)="1(&n)+hin Q w-—E& =0 on 09,

(w—2¢&) — 0 for |z| —» +o0.

Since ¥1(&,7) + h > 0 then & < w. Analogously, we obtain 79 < v.

Consequently [£o, %] x [1o,1°] is invariant by 7.
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(iv) We show now that T is continuous. Let (£,,7,) be a sequence of [£,£0] x
[110, "] convergent to (£,71) in L2(Q) x L2(Q).

We pUt T(énynn) = (Wnavn)v T(gvn) = (W,’U).
From (18) and (19), we get

(7A + q1 + le)(UJn - w) = qjl(§n7nn) - \1/1(5777) in Qa
(22) (_A + q2 + m:Q4)(U’ﬂ - U) = \112(67177771) - \112(6377) in Q7

wp=w=v,=v=0 on I wp,w,v,,v—0 for || — +o0.

Multiplying both the first and the second equation of the system (22) by (w, — w)
and (v, — v) respectively, later integrating over ), we obtain by virtue of Hardy’s

inequality

[wn —wllh < VAN¥1(Ens nn) — 1 (Es n)HL2 ()
v = vll2 < VAIY2(En, 10) — ‘1’2(6777)||L12;1(Q)-

Then, to prove (wn,v,) — (w,v) in V x V, it suffices to show that

\Pl(gnann) i ‘1’1(5777) a’nd \1/2(577.77777.) - \I/2(£777) in LZ;l(Q)

We have
H 016n 1S 1, H £01én R4S -
1+€|§n Be T 11 el 1<9 1+elén] 7 T+ele] L2, (@)
Py

The function /(z) = z(1 + |z|)~! is Lipschitzian on R and verifies

(23) Vey € R, |l@) —U(y)] < o -yl
Consequently,

L coién c01€ 1

- - < —|leoién — €

’1+5|§n| Be T g B L@ 8|| 01§ Q1§HL2;1(Q)
1
< [leién — 01€llz2_ (@) — 0 for n — +oo,
P1

since

[P - an < [l i

< kil|én — fHLg(Q) — 0 for n — +oo.

|2 Qlé—’ﬂ §|2 d.’L'
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Similarly, we show that 027, (1 + €|n.]) " t1p. — 02n(1 +ln|)~t1p, for ¢ — 0 in
12.,(9).
Then W1 (&,,mn) — P1(€,n) in L2,1(Q) and therefore w,, — w in V.

In the same way, v, — v in V. Consequently, T is continuous.

(v) Next we show that T': L2(Q) x L2(Q) — L2(Q) x L2(£2) is compact.

We have the compact imbedding V' C L2(12).

Indeed, let (uy,), be a bounded sequence in V. (uy,), is bounded in H'(B.). Hence
the imbedding H'(B.) into L?*(B.) is compact; there exists a subsequence denoted
again by (uy)n, such that

/ g|up7uq|2dx§/ |up — ug|*dz — 0 when p,q — +oo.

€ €

On the other hand, since the weight ¢ tends to 0 at infinity, we have

1
olup — ug|*da = / 1+ |z)?) o Jup — ug|* dz
g e == [ 0+ 1eF) el =

<k sup

! 2
|z|>1/ Wuul’_uq”\/ — 0 for ¢ — 0.
x|>1/e

Consequently, (u, )y is a Cauchy sequence in LE(Q).

Since T': L2() x L3(Q) — V x V is continuous, T': L2(Q) x L2(Q) — L2(2) x
L2(Q) is compact. According to (iii) and (v), we can apply Schauder’s fixed point
theorem. Then there exists (£,71) € [£0,&"] X [no, n°] such that T'(¢,n) = (£, 7).

Since ¢ and 1 depend on &, we denote £ = u. and 7 = v;..

So ue, v, verify the system

01Ue 02V¢ .
—A4+q +mo)us =(a+m)———1g. +b———15_+ f in Q,
( q1 Ql) € ( )1+5|u5| B. 1+€|vs| B. f
(24) 03Ue 04Ve .
—A + g2+ moa)v —=2° 1 +(d+m)———1p5 +g¢ in £,
(CA* @t megu = ey qle+ (@ qie +

ue =ve =0 on 9Q; wue,ve — 0 for |z| — +o0.

(vi) We show that (eu.). (as well as (gv.). ) is a bounded sequence in V.
We multiply the first equation of the system (24) by 2u. and integrate over (),
obtaining

/ (IV(eus)|® + (g1 + mor)|eue|*) dz = (a + m)/ ﬂauglgs dz
Q o 1+ ¢lucl

+b/ %Eungs d;zc—i—/afaugdx.
o 1+elve| Q
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Since eluc|(1 +eluc|)™t < 1, elve|(1 +elve]) P < 1,0<e <1, f € L;,I(Q) and
1
a > N/2, there exists a constant M > 0 such that ||euc||1 < M.
Similarly, there exists M’ > 0 such that |[ev.|2 < M.

(vii) We show that eu. — 0 (as well as ev. — 0) whene — 0in V.

Since (eue). is bounded in V, there exists a subsequence denoted again by (guc)e
(we denote it by writing for example ¢ = %, n > 1) weakly convergent to u* in V
and hence strongly convergent to u* in L2(Q).

We multiply the first equation of the system (24) by e:

€02V¢

€01Ue
1 b——m
B. T+ T+ cfor]

(A + (a1 + men)(eue) = (@t m) 7

lp. +ef in Q.
Then Yy € D(9),

/ [V(eue) - Vo + (1 + mo1)eusy) dx/ [Vu* - Vo + (@1 + mo1)u*p]de for € — 0.
Q Q

Moreover Yo € D(Q), [,efedr — 0 for € — 0.
On the other hand,

€01Ue o1u*
1+ [z | —2 1y — S
/Q( | | ) 1 +€|u8| B. 1 + |U*|

*

2
dx

2
o= [ (1] e
B. L+efuel 14 [u|

u* |2
e[|
O\B. 1+ |u¥

x < / (1+ |z]*)|o1u* | dz
O\ B.

* 2
Q\B. L+ [u¥|

gkl/ olu*|*dx — 0 for £ — 0.
Q\B.

Taking (23) into account, we have

E01U¢ Qlu*
1+ z|? -
L 0~ 1

2
dz < / (1+ |z]?)|eor1ue — o1u*|* d
Q
< k1/ oleue —u*|*dz — 0 for € — 0.
Q

Similarly, we show that egov.(1 + elve|) 1, — 020*(1 + [v*])7! for ¢ — 0
in L;,l Q).
In }che same manner we can establish that

* *

04V
d+
]

03U
T+l *

eUs(ue, ve) — for e — 0 in Li,l(Q).
1
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We get, when ¢ — 0,

o1u” 020"

—A+q +mo)u* = (a+m in Q,
(25) o3u* 040"
—A+ qo +mpg)v* =c + (d+m in ,

u*=v*=0 on 9% u*,v*—0 for |z| — +o0.
We show now that u* = v* = 0.

We multiply the first equation of the system (25) by «* and integrate over 2

‘Q1|U*|2 QQU*U*
Vu*|? + (¢1 + moy u*2d:1c=a+m/ :dx—i—b/ dz

< (a+m)/ Q1|u*|2dx+|b|/ oo|u*v*| dx.
Q Q

By virtue of the variational characterization of A(q1, 01) and using (10), we get

@) e - [ gl|u*|2dx<|b|( / g1|u*|2dx) ( / g4|v*|2da:) .
Q Q Q

In the same way, we prove that

1 1
2 2
@) (@ e0) —d) / oalv" P de < ] (/ g1|u*|2da:) - (/ g4|v*|2da:) .

Combining (26), (27) with (14), we have u* = v* = 0.

(viii) We show that the sequence (uc). (as well as (v:)) is bounded in V. We
suppose that ||uc||v — +oo for € — 0 and ||ve|ly — 400 for € — 0 and define

te = max(||uc|lv, [[vet]|v),

1
Ze = U then ||z:||v <1,
€

1
We = ;U then |lwe||yv < 1.
€

Since (z:)c is a bounded sequence in V, there exists a subsequence denoted again
by (z)e, weakly convergent to z in V' and hence strongly convergent to z in L2(€).
Similarly, (w.). converges to w , weakly in V and strongly in L2(Q2).
Taking (24) into account, we get

01%¢ 02We 1 .
~A+q +mo1)ze = (a+m)———1p +b—2""1p5 4+ —f in Q,
( q1 Ql) € ( )1+€|u€| Be 1+€|vs| Be tsf
(28) 03%¢ 04We 1 .
—A+ gy +mog)we =c—————1g_+ (d+m)————15_+ —¢g in §Q,
( 4 04)we 1+ e|u| B+ ( )1 + elvg| B. tgg

ze=w: =0 on 9Q; z.,w.— 0 for || — +o0.
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We know that Vo € D(Q), [(Vz:-Vo+ (g1 +mo1)zp) dz — [(Vz-Vo+ (g1 +
mo1)zp) dx for e — 0 and [, ifgpdx — 0 for € — 0.
On the other hand,

H 01%¢
—1
1+ elue|

2 2
—/ (14 |z?) &—glz‘ dz
B.

s _
pema ‘ 12_,(2) 1+ elue]
Py

+/ (1+ |z|?)]o12]* da.
O\B.
We have fQ\Ba (1+ |z} |12 dz < ks fSZ\BE 0|z|>dx — 0 for € — 0, and

2
’dx

01%¢ 2 9 012
1—}—:1:2’7— z‘ dx</1+x — — 01%2
/BE( | | ) 1+€|u6| o Q( | | ) 1+€|Us| o

— — 2
< [ |2 2ol
Q

1+ elue|
— )2 2
<2/(1+|x|2)<(91(25 2) corzue| )d:z:.
Q 1+ elug| 1+ elug]
So
/(1+|:17|2) alze=2)1% o /(1+|x|2)|g1(zefz)|2d:r
Q 1+ efue] Q
gkl/ 0lze — z[*dz — 0 for ¢ — 0.
Q
Moreover,

2

5127|u5| — 0 for e -0 a.e. in Q,
1+ elug|
£012|ue| |2 2 2 2
1 HI—=——"= <1 <k .
(14 1) | T2 | < (1l orf < ol

Since z € LE(Q), by virtue of the Lebesgue dominated convergence theorem we

deduce that
€012 |uc|
14 |z)?) | —= =L
el e

2
drx — 0 for € — 0.

Hence
01%¢

HilBa — 0 for ¢ — 0.
1+ elue| 12_,(@)

1

*912‘
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Analogously, we obtain

03%¢ ’
o 0 f 0
H 1 +€|Us| — 032 inl(Q) — or € —
Py
and
QiWe ‘ .
ERRT— — 0 0 f 0 =2,4).
Py

When ¢ — 0, we get

(A +q1)z =ap1z + bogw in Q,
(29) (—A + q2)w = co3z + dosw in Q,

z=w=0on 09; z,w—0 for || — +o0.

By virtue of Lemma 1, we have z = w = 0, which is in contradiction with the fact that
at least one sequence ((z:) or (w.)) has the norm equal to one. The sequence (u.)
(as well as (v.)) is bounded in V.

(ix) We extract a sequence denoted again by (u.) ((ve)) weakly convergent to u"
(or v°) in V and hence strongly convergent to the same limit in L2(€2).
We have Yy € D(9Q),

/ (Ve - Vo + (1 + mor )uep) da — / (Vi - Vg + (g1 + mor)u’p) dz, for & — 0
Q Q

/(va -V + (g2 + mog)vep) do — / (Vo' - Vo + (g2 + moy)v°p) dz for € — 0.
Q Q

In the same way as in (viii), we show that

_ Qile —_ . 0H2 QO 0 f 0 i —=1.3
H 1+ 2lu] B. — QiU Lp—l( )—0 for e -0 (i=1,3),

Qive : 0’ 0 f 0 (i=24
H 1+ E|’U5| — o L2, () —0fore—0 (=24

1

When € — 0, we get

(—A + q1)u’ = ap1u® + bogv® + f in Q,

(S) (—A + g2)v° = cosu® + dosr” + g in Q,
u? =1"=0 on 9Q; u’ v’ -0 for |z| — +oo.
We conclude that (u®,v?) is a solution of (S). O

198



another solution of the system (S). We put w = u

The uniqueness of the solution follows from Lemma 1. Indeed, let (ul,vl) be

Y —u! and z = v° — v, then (w, 2)

is a solution of the system (15). Lemma 1 gives (w, z) = (0,0).
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