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ONE CASE OF APPEARANCE OF POSITIVE SOLUTIONS

OF DELAYED DISCRETE EQUATIONS*

� � ��� � ��� �	� 
 � �  � �
,
����� � � ������� � �

, Brno

Abstract. When mathematical models describing various processes are analysed, the fact
of existence of a positive solution is often among the basic features. In this paper, a general
delayed discrete equation

∆u(k + n) = f(k, u(k), u(k + 1), . . . , u(k + n))

is considered. Sufficient conditions concerning f are formulated in order to guarantee the
existence of a positive solution for k → ∞. An upper estimate for it is given as well. The
appearance of the positive solution takes its origin in the nature of the equation considered
since the results hold only for delayed equations (i.e. for n > 0) and not for the case of an
ordinary equation (with n = 0).
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1. Introduction

The phenomenon of existence of a positive solution of differential or difference
equations often arises when we analyse mathematical models describing various pro-
cesses. It is an opposite case to the phenomenon of oscillation of all solutions. The
existence of positive solutions is very often substantial for a concrete model con-
sidered. In biology e.g. when a model of population dynamics is described by an
equation, the positivity of a solution may mean that a concrete biological species
can exist in the supposed environment. This is a motivation for intensive study of
conditions of existence of positive solutions of differential and difference equations,
as well as of their properties. Let us note that investigations in this field can be
found e.g. in [1], [3]–[12].

*This work was supported by the Grant 201/01/0079 of the Grant Agency of the Czech
Republic and by the Project ME423/2001 of the Ministry of Education, Youth and Sports
of The Czech Republic.

429



In this paper conditions of existence of a positive solution are given for a general
class of nonlinear delayed discrete equations. Results obtained indicate sufficient
conditions for the existence of a positive solution and also give an upper estimate
for it. As for the results in the existing literature we remark that only concrete
classes of linear and nonlinear discrete equations were considered. Sufficient condi-
tions in Theorem 2 are sharp in a sense. This is illustrated by considering a simple
linear equation with a suitable right-hand side and with a coefficient satisfying an
indicated inequality. If in this equation the coefficient is constant and satisfies the
inverse inequality then in accordance with the known results all solutions oscillate.
This comparison underlines the high effectiveness of the sufficient conditions. More-
over, the importance of our results consists also in the fact that the appearance of
positive solutions is caused by the delay (which is quite usual e.g. in biological mod-
els) involved in the equation considered. If the delay is missing, the results lose any
sense.

2. Preliminary

Let us consider the scalar delayed discrete equation

(1) ∆u(k + n) = f(k, u(k), u(k + 1), . . . , u(k + n)),

where f(k, u0, u1, . . . , un) is defined on N(a) × � n+1 , N(a) := {a, a + 1, . . .}, a ∈ �
with values in � , a ∈ � and n ∈ � are fixed, � := {1, 2, . . .}. In this paper we are
interested in the existence of a positive solution of equation (1) for k →∞.
Together with the discrete equation (1) we consider an initial problem. It is posed

as follows: for a given s ∈ � find the solution of (1) satisfying n+1 initial conditions

(2) u(a + s + m) = us+m ∈ � , m = 0, 1, . . . , n

with prescribed constants us+m.
Let us recall that the solution of the initial problem (1), (2) is defined as an infinite

sequence of numbers

{u(a + s) = us, u(a + s + 1) = us+1, . . . , u(a + s + n) = us+n,

u(a + s + n + 1), u(a + s + n + 2), . . .}

such that for any k ∈ N(a + s) the equality (1) holds.
The existence and uniqueness of the solution of the initial problem (1), (2) is

obvious for every k ∈ N(a + s).
We will suppose that for all

(k, u0, u1, . . . , un), (k, v0, v1, . . . , vn) ∈ N(a)× � n+1 ,
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the Lipschitz type condition

|f(k, u0, u1, . . . , un)− f(k, v0, v1, . . . , vn)| 6 λ(k)
n∑

i=0

|ui − vi|

holds with a nonnegative function λ(k) defined onN(a). Then the initial problem (1),
(2) depends continuously on the initial data (see e.g. [1]).
For every k ∈ N(a) let us define a set ω(k) as

(3) ω(k) := {u ∈ � : b(k) < u < c(k)},

where b(k), c(k), b(k) < c(k) are real functions defined on N(a).
The following theorem is proved in [2] and will be used below.

Theorem 1. Let us suppose that f(k, u0, u1, . . . , un) is defined on N(a)× � n+1

with values in � and that for all

(k, u0, u1, . . . , un), (k, v0, v1, . . . , vn) ∈ N(a)× � n+1

we have

|f(k, u0, u1, . . . , un)− f(k, v0, v1, . . . , vn)| 6 λ(k)
n∑

i=0

|ui − vi|,

where λ(k) is a nonnegative function defined on N(a). If, moreover, the inequalities

f(k, u0, u1, . . . , un−1, b(k + n))− b(k + n + 1) + b(k + n) < 0(4)

and

f(k, u0, u1, . . . , un−1, c(k + n))− c(k + n + 1) + c(k + n) > 0(5)

hold for every k ∈ N(a) and every u0 ∈ ω(k), u1 ∈ ω(k +1), . . . , un−1 ∈ ω(k +n−1),
then there exists an initial condition

u∗(a + m) = u∗m ∈ � , m = 0, 1, . . . , n

with
u∗0 ∈ ω(a), u∗1 ∈ ω(a + 1), . . . , u∗n ∈ ω(a + n)

such that the corresponding solution u = u∗(k) of equation (1) satisfies the inequal-
ities

b(k) < u∗(k) < c(k)

for every k ∈ N(a).
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3. Existence of a positive solution

In this part we indicate conditions under which a positive solution of Equation (1)
exists. In the proof of the corresponding theorem, the following elementary lemma
concerning asymptotic expansion of a certain function is necessary. The proof is
omitted since it can be done easily with the aid of the binomial formula. Let us
recall that the symbol O used below means the Landau order symbol.

Lemma 1. For k →∞ and σ, d ∈ � fixed, the following asymptotic representation
holds:

(6)
(
1 +

d

k

)σ

= 1 +
σd

k
+

σ(σ − 1)d2

2k2
+ O

( 1
k3

)
.

Theorem 2 (Existence of a positive solution). Let a ∈ � and n ∈ � be fixed.
Let us suppose that f(k, u0, u1, . . . , un) is defined on N(a)× � n+1 with values in �
and for all

(k, u0, u1, . . . , un), (k, v0, v1, . . . , vn) ∈ N(a)× � n+1

we have

|f(k, u0, u1, . . . , un)− f(k, v0, v1, . . . , vn)| 6 λ(k)
n∑

i=0

|ui − vi|,

where λ(k) is a nonnegative function defined on N(a). If, moreover, there exists a
constant θ ∈ [0, 1) such that

−
( n

n + 1

)k+n

·
√

k ·
( 1

n + 1
+

θn

8k2

)
(7)

< f

(
k, u0, u1, . . . , un−1,

√
k + n ·

( n

n + 1

)k+n
)

and

(8) f(k, u0, u1, . . . , un−1, 0) < 0

for every k ∈ N(a) and every u0 ∈ ω(k), u1 ∈ ω(k +1), . . ., un−1 ∈ ω(k +n−1) with

b(k) := 0, c(k) :=
√

k ·
( n

n + 1

)k
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then there exists a positive integer a1 > a and a solution u = u(k), k ∈ N(a1) of
equation (1) such that

(9) u(k) > 0

holds for every k ∈ N(a1).
��� �!�#"

. In the proof, Theorem 1 is used. We have (see (3))

ω(k) := {u ∈ � : b(k) < u < c(k)} ≡
{

u ∈ � : 0 < u <
√

k ·
( n

n + 1

)k
}

for every k ∈ N(a). Let us verify that inequality (4) holds. It is easy to see that
(due to (8))

f(k, u0, u1, . . . , un−1, b(k + n))− b(k + n + 1) + b(k + n)

= f(k, u0, u1, . . . , un−1, 0) < 0

for every k ∈ N(a) and every u0 ∈ ω(k), u1 ∈ ω(k + 1), . . ., un−1 ∈ ω(k + n− 1).
Let us start the verification of inequality (5). For sufficiently large k ∈ N(a) and

for every u0 ∈ ω(k), u1 ∈ ω(k + 1), . . ., un−1 ∈ ω(k + n− 1) we get

f(k, u0, u1, . . . , un−1, c(k + n))− c(k + n + 1) + c(k + n)

= f

(
k, u0, u1, . . . , un−1,

√
k + n ·

( n

n + 1

)k+n
)

−
√

k + n + 1 ·
( n

n + 1

)k+n+1

+
√

k + n ·
( n

n + 1

)k+n

.

Further, the inequality (7) yields

f(k, u0, u1, . . . , un−1, c(k + n))− c(k + n + 1) + c(k + n)

> −
( n

n + 1

)k+n

·
√

k ·
( 1

n + 1
+

θn

8k2

)

−
√

k + n + 1 ·
( n

n + 1

)k+n+1

+
√

k + n ·
( n

n + 1

)k+n

=
( n

n + 1

)k+n

·
√

k ·
[
−

( 1
n + 1

+
θn

8k2

)
−

√
1 +

n + 1
k

· n

n + 1
+

√
1 +

n

k

]
.

Using formula (6) with σ = 1/2, d = n + 1 and with σ = 1/2, d = n we get
√

1 +
n + 1

k
= 1 +

n + 1
2k

− (n + 1)2

8k2
+ O

( 1
k3

)

and
√

1 +
n

k
= 1 +

n

2k
− n2

8k2
+ O

( 1
k3

)
.
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Therefore

f(k, u0, u1, . . . , un−1, c(k + n))− c(k + n + 1) + c(k + n)

>
( n

n + 1

)k+n

·
√

k ·
[
−

( 1
n + 1

+
θn

8k2

)

−
(

1 +
n + 1
2k

− (n + 1)2

8k2
+ O

( 1
k3

))
· n

n + 1

+ 1 +
n

2k
− n2

8k2
+ O

( 1
k3

)]
.

It is easy to verify that the expression in the square brackets equals

−
( 1

n + 1
+

θn

8k2

)
−

(
1 +

n + 1
2k

− (n + 1)2

8k2
+ O

( 1
k3

))
· n

n + 1

+ 1 +
n

2k
− n2

8k2
+ O

( 1
k3

)
=

n(1− θ)
8k2

+ O
( 1

k3

)

and, consequently,

f(k, u0, u1, . . . , un−1, c(k + n))− c(k + n + 1) + c(k + n)

>
( n

n + 1

)k+n

·
√

k ·
[n(1− θ)

8k2
+ O

( 1
k3

)]
.

Now it is obvious that there exists an integer a1 > a such that the inequality

n(1− θ)
8k2

+ O
( 1

k3

)
> 0

holds for every k ∈ N(a1). Consequently,

f(k, u0, u1, . . . , un−1, c(k + n))− c(k + n + 1) + c(k + n) > 0,

i.e. the inequality (5) holds for every k ∈ N(a1). So, all the suppositions of Theorem 1
are valid with a := a1. Hence there exists an initial problem

u∗(a1 + m) = u∗m ∈ � , m = 0, 1, . . . , n

with

u∗0 ∈ ω(a1), u∗1 ∈ ω(a1 + 1), . . . , u∗n ∈ ω(a1 + n)

such that the corresponding solution u = u∗(k) of equation (11) satisfies u∗(k) > 0
for every k ∈ N(a1), i.e. (9) holds. The theorem is proved. �

Taking into account the form of the set ω(k) for every k ∈ N(a), given by rela-
tion (3), it is easy to improve the assertion of Theorem 2:
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Theorem 3 (Estimation of a positive solution). Let all assumptions of Theorem 2
be valid. Then there exists a positive integer a1 > a and a solution u = u(k),
k ∈ N(a1) of equation (1) such that

(10) 0 < u(k) <
√

k ·
( n

n + 1

)k

holds for every k ∈ N(a1).
$&%('*)+� ,

1. Let us note that the assumption n ∈ � in Theorems 2, 3 cannot
be weakened to n ∈ � ∪ {0}. Indeed, as can be seen easily, if n = 0, the proof of
Theorem 2 as well as formula (10) lose any sense. It means that the results presented
hold only in the case of (substantially) delayed discrete equations.

4. An application

Let us consider the delayed scalar linear discrete equation

(11) ∆u(k + n) = −p(k)u(k)

with fixed n ∈ � and variable k ∈ N(a), N(a) := {a, a+1, . . .}, a ∈ � . The function
p : N(a) → � is supposed to be positive. Let us apply Theorems 2, 3 to the case of
equation (11). The following result is a consequence of these theorems in the case
when

f(k, u(k), u(k + 1), . . . , u(k + n)) := −p(k)u(k), λ(k) := p(k).

Theorem 4. Let a ∈ � and n ∈ � be fixed. Suppose that there exists a constant
θ ∈ [0, 1) such that the function p : N(a) → � satisfies the inequalities

(12) 0 < p(k) 6
( n

n + 1

)n

·
( 1

n + 1
+

θn

8k2

)

for every k ∈ N(a). Then there exists a positive integer a1 > a and a solution
u = u(k), k ∈ N(a1) of equation (11) such that the inequalities

0 < u(k) <
√

k ·
( n

n + 1

)k

hold for every k ∈ N(a1).
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5. Concluding remarks

Problems concerning the asymptotic behaviour of solutions of discrete equations
has been widely investigated. Let us remark that the result given by Theorem 4
improves a previous one, given in [10, p. 192]. Our results are sharp in a sense.
Indeed, it is known (see e.g. [10, p. 179]) that if p(k) = p = const and an inequality
opposite to (12) holds, namely, the inequality

p >
( n

n + 1

)n

· 1
n + 1

,

then all solutions of (11) oscillate. This inequality is a necessary and sufficient
condition for the oscillation of all solutions of the discrete equation (11) with a
constant coefficient.
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