
Applications of Mathematics

Ladislav Adamec
Kinetical systems

Applications of Mathematics, Vol. 42 (1997), No. 4, 293–309

Persistent URL: http://dml.cz/dmlcz/134360

Terms of use:
© Institute of Mathematics AS CR, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134360
http://dml.cz


42 (1997) APPLICATIONS OF MATHEMATICS No. 4, 293–309

KINETICAL SYSTEMS

Ladislav Adamec, Brno
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Abstract. The aim of the paper is to give some preliminary information concerning a
class of nonlinear differential equations often used in physical chemistry and biology. Such
systems are often very large and it is well known that where studying properties of such
systems difficulties rapidly increase with their dimension. One way how to get over the
difficulties is to use special forms of such systems.
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1. Kinetical system

Consider a “chemical system” S which is composed of n “components” S1, . . . , Sn

of “concentrations” y1, . . . , yn. The components Si of the system are composed of d �
n “base elements” P1, . . . , Pd where the base element is understood to be a substance
which does not decompose into simple substances. Therefore each component Si is
characterized as a linear combination of the base elements P1, . . . , Pd, formally

Sj = uijP1 + . . .+ udjPd, j = 1, . . . , n.

Coefficients of these linear combinations, usually expressed by nonnegative integers,
form the rows of a matrix called in physical chemistry the “formula matrix” of the
system S.
Let us suppose that there are m “reactions” in S described by stoichiometric

equations

c1jS1 + . . .+ cnjSn

rj
⇀↽
dj

c′1jS1 + . . .+ c′njSn,(1)

i = 1, . . . , m; j = 1, . . . , n,
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where nonnegative integers cij , c′ij are stoichiometric coefficients of the i-th compo-
nent in the j-th reaction, and rj , dj are non-negative functions of temperature T

called “rate constants”.
Assuming further that the temperature of S is a known time function T (t) and

that every reaction (1) leads after Guldberg and Waage to a time variation in the
concentration of the i-th component

ẏi = (cij − c′ij)

[
−rj(T )

n∏

k=1

y
ckj

k + dj(T )
n∏

k=1

y
c′

kj

k

]
,

the total change of the concentration of the i-th component is

ẏi =
m∑

j=1

(cij − c′ij)

[
−rj(t)

n∏

k=1

y
ckj

k + dj(t)
n∏

k=1

y
c′

kj

k

]
.

We are now ready to formulate our system mathematically.

Definition 1.1. Let us consider n × m matrices C = [cij ], C′ = [c′ij ], where
cij , c

′
ij ∈ ��0 and A = [aij ] := C−C′, 0 < L := rank(A) < n. Let rj , dj : � → [0,∞)

be continuous functions and G = [Gj ] an m-dimensional vector such that

(2) Gj(t, y) := −rj(t)
n∏

k=1

y
ckj

k + dj(t)
n∏

k=1

y
c′

kj

k .

The system of equations

(3) ẏ = AG(t, y), (t, y) ∈ � × �n ,

is called a kinetical system.

������ 1. We shall always assume that the principal submatrix A(1, . . . , L)
composed of the first L columns and the first L rows of A is nonsingular.

Our plan is as follows. In §2 we derive basic properties of nonnegative solutions
of the non-autonomous system (3). In §3 we give a proof of existence of a critical
point for the autonomous case. The main results are concentrated in §4 and they
concern the asymptotic properties of a subset of (3)—the so called detailed balanced
systems. The technique of proofs in this paper is based on the methods of differential
inequalities, on the elementary fixed point method and on the invariance principle.
Through the paper we use the following notation:
�—the set of real numbers.
�—the set of integers.
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�
n—the space of n dimensional column vectors x = col[x1, . . . , xn], xi ∈ �, i =

1, . . . , n.
�

n
>0 := {x = col[x1, . . . , xn] ∈ �n : xi > 0 i = 1, . . . , n}—the positive orthant.
�

n
�0 := {x = col[x1, . . . , xn] ∈ �n : xi � 0 i = 1, . . . , n}—the nonnegative orthant.
�

n×m— the space of n×m matrices A = [aij ], aij ∈ �, i = 1, . . . n, j = 1, . . . , m.
The previous notation is used also in the case when the set � is replaced by the

set of integers �.
If x, y ∈ �n then x > y (x � y) ⇐⇒ x− y ∈ �n

>0 (x− y ∈ �n
�0 ).

L(U, b) := {y ∈ �n : Uy = b}, b ∈ �d , U = [uij ] ∈ �d×n.
H := L(U, b) ∩ �n

>0 .

If x ∈ �n then ‖x‖p :=
[ n∑

i=1
|xi|p

]1/p
, p ∈ [1,∞].

Bp
n(z, ε) := {y = [y1, . . . , yn] : ‖z − y‖p < ε}.

∂A—the boundary of the set A.
If A is an n × m matrix then A(i1, . . . , is) denotes the principal submatrix of

A which consists of the i1-th, . . . , is-th columns and i1-th, . . . , is-th rows of the
matrix A.

2. Global existence of nonnegative solutions of kinetical systems

In this section we consider the Cauchy problem

(4) ẏ = AG(t, y), y(t0) = y0, (t, y) ∈ [0,∞)× �n ,

where the matrix A and the vector G were introduced in Definition 1.1.
It is easy to see that

(5) aijGj(t, y) = −|aij | [yiPij(t, y)−Qij(t, y)] , i = 1, . . . , n ; j = 1, . . . , m,

where Pij(t, y), Qij(t, y) are monoms of y such that if y � 0 then also Pij(t, y) � 0,
Qij(t, y) � 0. Indeed aij = cij − c′ij and if cij = c′ij then aij = 0 and (5) holds. If
cij > c′ij � 0, then aij > 0, cij � 1,

aijGj(t, y) = |aij |Gj(t, y) = −|aij |
[
yirj(t)y

cij−1
i

n∏

k=1
k �=i

y
ckj

k − dj(t)
n∏

k=1

y
c′

kj

k

]
,

and we obtain (5) for

Pij(t, y) := rj(t)y
cij−1
i

n∏

k=1
k �=i

y
ckj

k , Qij(t, y) := dj(t)
n∏

k=1

y
c′

kj

k .
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Similarly if aij < 0 then we obtain (5) for

Pij(t, y) := dj(t)y
c′

ij−1
i

n∏

k=1
k �=i

y
c′

kj

k , Qij(t, y) := rj(t)
n∏

k=1

y
ckj

k .

Assertion 2.1. Let y denote a solution of (4) and [t0, ω+) the right maximal
interval of existence for y. If there is a t1 ∈ [t0, ω+) such that y(t1) � 0, then y � 0
on [t1, ω+).

�����. We may suppose that t0 := t1. Let us choose T ∈ (t0, ω+) fixed and
consider a sequence of mappings {f j(t, y)}∞j=1, where

f j(t, y) := AG(t, y) +
1
j
[1, . . . , 1]T , j = 1, 2, . . . .

There is a positive integer j0 such that for all j � j0 the solution of

ż = f j(t, z), z(t0) = y0,

exists on [t0, T ] and owing to the uniqueness, zj → y uniformly on [t0, T ] for j →∞.
Let j � j0 and let t2 ∈ [t0, T ] be the first number such that zj

i = 0.
It follows from (5) that

f j
i (t, z) = −zi

∑

k

|aik|Pik(t, z) +
∑

k

|aik|Qik(t, z) +
1
j
.

Hence żj
i (t2) � 1/j > 0, and in virtue of continuity of f j the same holds also for t

near to t2. If t2 = t0, then zj
i (t) > zj

i (t2) = 0 for t > t2 near t2. If t2 > t0, then
zj

i (t) < zj
i (t2) = 0 for t < t2 near t2, however this contradicts the definition of t2.

Altogether we have zj > 0 on [t0, T ] and also y = lim
j→∞

zj � 0 on [t0, T ] as results
from passing to the limit. This result is valid for all T ∈ (t0, ω+), therefore y � 0 on
[t0, ω+). �

Lemma 2.2. The equation (3) has at least d := n − L time independent first
integrals in the form

(6)
n∑

j=1

uijyj = bi, i = 1, . . . , d,

where uij , bi ∈ � are suitable constants.
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�����. Since 0 < L = rank(A) < n there is a real d× n matrix U = [uij ] such
that rank(U) = d and UA = 0. Therefore

Uy(t)− Uy(t0) =
∫ t

t0

Uẏ(s) ds =
∫ t

t0

U [AG(s, y(s))] ds =
∫ t

t0

(UA)G(s, y(s)) ds = 0.

Hence it follows that (6) holds with

(7) bi :=
n∑

j=1

uijyj(t0).

�
Definition 2.3. The real d × n matrix U = [uij ], rank(U) = d = n − L such

that UA = 0 is called the formula matrix. If in addition

(8)

uij ∈ ��0, i = 1, . . . , d, j = 1, . . . , n,

d∑

i=1

uij > 0, j = 1, . . . , n,

the matrix U is called the nonnegative formula matrix.

We shall need the following hypotheses:

H1 there is at least one nonnegative formula matrix U—one of them is chosen fixed.

Let us denote by L(U, b) the subset of �n satisfying (6), clearly L(U, b) is a linear
L = n− d dimensional manifold and it is obvious from Assertion 2.1 and Lemma 2.2
that L(U, b) ∩ �n

�0 is a (positively) invariant set of (3). To ensure that this set is
“sufficiently big” we assume the following:

H2 there exists a vector b ∈ �d
>0 such that there is a nonnegative solution y ∈ �d

�0
of (6), that is the set H := L(U, b) ∩ �n

�0 is not empty. One such vector is
chosen fixed.

Our general hypotheses in the next theorem will be almost those of Assertion 2.1,
the main difference being that we further assume:

H3 rj(t), dj(t) are positive for j = 1, . . . , m.

In this case we easily obtain a bit sharper results.

Theorem 2.4. Suppose that (4) satisfies H1, H2, H3 and y is a solution of (4)
with the maximal interval of existence [t0, ω+).
If y0 > 0, then y(t) > 0 on [t0, ω+).
If y0 � 0 and y0i = 0 for i ∈ I ⊂ {1, . . . , n}, then for each i ∈ I only one of the

following possibilities takes place:
a) yi(t) > 0 on (t0, ω+)
b) yi(t) ≡ 0 on [t0, ω+).
Always yi(t) > 0 on [t0, ω+) for each i ∈ {1, . . . , n} \ I.
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�����. First we shall investigate the case when y0 > 0. Let us consider in
the contrary that there is a T ∈ (t0, ω+) such that yj(T ) < 0 for at least one
j ∈ {1, . . . , n}. Then there is a largest t1 ∈ [t0, T ) such that y(t) > 0 on [t0, t1)
and yi(t1) = 0 for i ∈ I, where I is a suitable subset of {1, . . . , n}. We may assume
without loss of generality that I = {1, . . . , p}, 1 � p < n. If we denote

Vij(t, y) := (cij − c′ij) [−Pj(t, y) +Qj(t, y)] ,

where Pj(t, y) := rj(t)
n∏

k=1
y

ckj

k , Qj(t, y) := dj(t)
n∏

k=1
y

c′
kj

k , then

ẏi(t) =
m∑

j=1

Vij(t, y(t)), j = 1, . . . , n.

If t = t1, it is possible to obtain a useful classification of values of Vij(t1, y(t1))
with respect to certain combinations of the coefficients cij , c′ij for i = 1, . . . , p;
j = 1, . . . , m. For example if c1j + . . .+ cpj > 0 and c′1j + . . .+ c′pj = 0 and cij = c′ij
then Vij(t1, y(t1)) = 0. All such important cases are contained in Table 1:

c1j + . . .+ cpj c′1j + . . .+ c′pj Vij(t1, y(t1))
> 0 > 0 0
> 0 = 0 cij = c′ij 0
> 0 = 0 cij > c′ij cijQj(t1, 0, . . . , 0, yp+1, . . . , yn)
= 0 > 0 c′ij = cij 0
= 0 > 0 c′ij > cij c′ijPj(t1, 0, . . . , 0, yp+1, . . . , yn)
= 0 = 0 0

Table 1

Thus Vij(t1, y(t1)) � 0 for i = 1, . . . , p; j = 1, . . . , m. At the same time it is easy to
see that for each i ∈ I two mutually exclusive cases are possible:

∃j ∈ {1, . . . , m} : cij �= c′ij ∧ (c1j + . . .+ cpj)(c′1j + . . .+ c′pj) = 0,(9)

∀j ∈ {1, . . . , m} : cij = c′ij ∨ (c1j + . . .+ cpj)(c′1j + . . .+ c′pj) �= 0.(10)

Let us put I = I1 ∪ I2 (I1 ∩ I2 = ∅), where (9) holds for each i ∈ I1 and (10) holds
for each i ∈ I2.
Let i ∈ I1, then there is j(i) ∈ {1, . . . , m} such that

Vij(i)(t1, y(t1)) = c′ij(i)Pj(i)(t1, 0, . . . , 0, yp+1(t1), . . . , yn(t1)) > 0

or
Vij(i)(t1, y(t1)) = cij(i)Qj(i)(t1, 0, . . . , 0, yp+1(t1), . . . , yn(t1)) > 0.
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Therefore

ẏi(t1) =
m∑

j=1

Vij(t1, y(t1)) � Vij(i)(t1, y(t1)) > 0,

and this inequality holds on (t1 − ε, t1 + ε) for ε > 0 small enough. But this means
that yi(t1 − 1

2ε) < yi(t1) = 0 which contradicts the definition of t1, also I1 = ∅ and
I = I2.
Let i ∈ I2. We can suppose, without loss of generality, that I2 = {1, . . . , p}. Then

ẏi(t1) =
m∑

j=1

Vij(t1, y(t1)) = 0, i = 1, . . . , p.

It is seen from Table 1 that Vij(t1, y(t1)) = Vij(t1, 0, . . . , 0, yp+1(t1), . . . , yn(t1)) for
i = 1, . . . , n; j = 1, . . . , m, therefore for t = t1 and in general for every t∗ such that
yi(t∗) = 0, i = 1, . . . , p it is possible to write (4) in the form

ẏi(t∗) = 0, i = 1, . . . , p,

ẏi(t∗) = fi(t∗, 0, . . . , 0, yp+1(t∗), . . . , yn(t∗)), i = p+ 1, . . . , n,

where fi is the i-th element on the right hand side of (3). Consider the problem

(11)
u̇i = 0, ui(t1) = 0, (a)
u̇j = fj(t, 0, . . . , 0, up+1, . . . , un), uj(t1) = yj(t1), (b)
i = 1, . . . , p, j = p+ 1, . . . , n,

with the unique solution u = col[u1, . . . , un],

(12)
ui(t) ≡ 0, i = 1, . . . , p,

ui(t) = hi(t), i = p+ 1, . . . , n,

on (ω1−, ω1+). If we substitute this solution into the right-hand side of (4), we obtain

fi(t, u1(t), . . . , up(t), up+1(t), . . . , un(t)) = fi(t, 0, . . . , 0, hp+1(t), . . . , hn(t))

= 0 = u̇i(t), i = 1, . . . , p,

fi(t, u1(t), . . . , up(t), up+1(t), . . . , un(t)) = fi(t, 0, . . . , 0, hp+1(t), . . . , hn(t))

= ḣi(t) = u̇i(t), i = p+ 1, . . . , n.

and this means that (12) is the solution of (4) on (t1−δ, t1] ⊂ (ω1+, t1]∩[t0, t1] for δ > 0
small enough. Therefore (4) has a couple of solutions u, y such that u(t1) = y(t1)
and u(t1−1/2δ) = 0 �= y(t1−1/2δ), which is absurd. Hence y(t) > 0 for t ∈ [t0, ω+).
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It remains to investigate the case y0 � 0, y0i = 0 for i ∈ I �= ∅. The proof, which
is almost the same as in the previous case, is only outlined here for completeness.
We shall again write I = I1 ∪ I2, where (9) [(10)] holds for each i ∈ I1 [i ∈ I2]. If

i ∈ I1, then yi(t0 + α) > yi(t0) = 0, α > 0. If i ∈ I2, then two mutually exclusive
cases are possible. Either yi ≡ 0 or there exists a ti3 ∈ [t0, ω+), ti3 := inf{t ∈
[t0, ω+) : yi(t) > 0}.
Let t2 be the minimum of such ti3, i ∈ I. Consider (11) and its solution (12), this

time for an initial time t2, on [t2, t2 + γ). It is easy to see that (12) is a solution
of (4), too. But this contradicts the uniqueness property, therefore if i ∈ I2 then
yi ≡ 0. Theorem 2.4 is proved. �

������ 2. It follows from the proof of Theorem 2.4 that if ri(t), di(t) > 0
for i = 1, . . . , n, it is possible to suppose that for any nonnegative solution y of (4)
we have in fact yi(t) > 0 for i = 1, . . . , n on (t0, ω+). This assumption does not lead
to loss of generality, indeed it is always possible to work with the “lower dimensional
system” (b)(11) (which has again the structure of a kinetical system).

Theorem 2.5. Suppose that (4) satisfies H1, H2. If y is a solution of (4) such
that y0 � 0, then the maximal interval of existence of y is [t0,∞).
�����. It follows from Assertion 2.1 that y(t) � 0 for t � t0. Let us put

m := min {uij : uij > 0, i = 1, . . . , d; j = 1, . . . , n}. (8) implies that for each
j ∈ {1, . . . , n} there is an index i = i(j) ∈ {1, . . . , d} such that ui(j)j > 0 and we
easily get from Lemma 2.2 that

0 � yj(t) =
1

ui(j)j

(
bi(j) −

n∑

k=1
k �=j

yk(t)ui(j)k

)
� ‖b‖∞

m
, j = 1, . . . , n.

Hence

0 � ‖b‖1 =
d∑

k=1

bk =
d∑

k=1

n∑

j=1

ukjyj(t) = max
i

( d∑

k=1

uki

) n∑

j=1

yj(t)

=

∥∥∥∥
[ d∑

k=1

uki

]

i

∥∥∥∥
∞
‖y(t)‖1.

Consequently we have

‖b‖1∥∥∥∥
[

d∑
k=1

uki

]

i

∥∥∥∥
∞

� ‖y(t)‖1 � n‖y(t)‖∞ � n

m
‖b‖∞.

�
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The kinetic problem (4) has especially simple structure ifm = 1. In this case there
are n− 1 linearly independent first integrals and (4) is essentially a scalar problem.
That is why the following corollary holds:

Corollary 2.6. If the assumptions of Theorem 2.5 are fulfilled, m = 1 and all the
functions ri(t), di(t) are constant functions, then the limit lim

t→∞
y(t) exists.

3. Autonomous case—existence of stationary points

This section is concerned with the problem of existence of nonnegative stationary
points of (3) in the case when rj , dj are constants, i.e. (3) is in the form

(13) ẏ = AG(y), y(0) = y0, y0 � 0.

Definition 3.1. Let F be continuous on an open y-set Ω ⊂ �
n , let Ω0 be a

subset of Ω and y0 ∈ ∂Ω0 ∩ Ω. The point y0 is called an egress point of Ω0 with
respect to

(14) ẏ = F (y),

if for every solution y = y(t; 0, y0) of (14), y(0) = y0 there exists an ε > 0 such that
y(t) �∈ Ω0 for t ∈ (0, ε] [3, p. 173].

Lemma 3.2. If F is a continuous function on an open y-set Ω ⊂ �
n , solutions

of (14) are uniquely determined by the initial condition and H ⊂ Ω, H �= ∅ is a
compact, convex set such that the points of ∂H are not egress points of H with
respect to (14), then (14) possesses at least one stationary point on H .

�����. It is based on the fact that the set of maps Ta : H → H , Ta(y0) :=
y(a; 0, y0) behaves like an Abelian group and on the fixed point theorem due to
Brouwer. The detailed proof is omitted here because it is almost the same as the
proof of Theorem 8.2 in [1, p. 48]. �

Theorem 3.3. Suppose that (13) satisfies H1 and H2. Then (13) has a stationary
point y ∈ H .

�����. The set H = L(U, b) ∩ �n
�0 is the subset of �

n containing all points
y = col[y1, . . . , yn] such that

u11y1 + . . .+ u1nyn = b1,

ud1y1 + . . .+ udnyn = bd,

y1 � 0, . . . , yn � 0.
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Therefore H is a bounded closed convex set. Moreover, ∂H ⊂ ∂L(U, b) ∪ ∂�n
�0 and

due to Assertion 2.1 and Lemma 2.2 the points of ∂H are not egress points with
respect to the system (13). By Lemma 3.2 there is a stationary point y ∈ H . �

4. Asymptotic properties

In the previous section the problem of existence of nonnegative stationary points
of the system

(15) ẏ = AG(y)

was solved without any discussion of their properties. This section concerns asymp-
totic properties of the system

(16) ẏ = AG(t, y).

At the beginning we outline a rather smaller class of kinetical systems fulfilling the
principle of detailed balance and point out some of the basic properties of such
systems. The main results we will obtain for autonomous detailed balanced systems
by using the invariance principle. In the whole section we suppose H1, H2, that is
we are interested in asymptotic properties of the system

(17) ẏ = AG(t, y), (t, y) ∈ [t0,∞)×H,

or

(18) ẏ = AG(y), (t, y) ∈ [t0,∞)×H,

in the autonomous case. These systems are correct due to Assertion 2.1 and
Lemma 2.2. In this sense we speak of critical points of (17)—that is of critical points
of (16) belonging to the integral manifold H , of the stability of solutions of (17), that
is of the stability of solutions with respect to the solutions belonging to the integral
manifold H , similarly for the concepts of an isolated point, closure, boundary and
so on.
Instead of H3 we use a stronger hypothesis:

H4 ri(t), di(t) � ξi > 0 for i = 1, . . . , m.

Some of the theorems also involve the following assumption:

H5 if y = [y1, . . . , yn] is a nonnegative solution of (17), then yi �≡ 0 on the right
maximal interval of existence [t0,∞) for i = 1, . . . , n.
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It follows from H5 that any nonnegative critical point y of (17) should be in fact
included in �n

>0 . Due to Remark 2 this hypothesis is no strong restriction.
As rank(A) = L < n and the columns col1(A), . . . , colL(A) of the matrix A are

linearly independent, there exists a unique real L×m matrix Z = [zij ] such that

(19) colj(A) =
L∑

i=1

coli(A)zij , j = 1, . . . , m,

obviously

(20) zij =

det




a11 . . . a1i−1 a1j a1i+1 . . . a1L
...

...
...

...
...

aL1 . . . aLi−1 aLj aLi+1 . . . aLL




det




a11 . . . a1L
...

...
aL1 . . . aLL




,

i = 1, . . . , L, j = 1, . . . , m .

Definition 4.1. System (3) is detailed balanced if

(21)
L∏

i=1

[
di(t)
ri(t)

]zij

=
dj(t)
rj(t)

, j = 1, . . . , m,

where zij are the constants introduced in (19).

Of course, for m = L every kinetical system (3) is detailed balanced trivially.

Definition 4.2. A critical point y0 of a kinetical system (3) is said to be
balanced if Gi(t, y0) = 0 for each i ∈ {1, . . . , m}.

The previous definitions may appear to be a bit cumbersome but as we will see
detailed balanced kinetical systems have very nice and natural properties especially
from the point of view of applications, e.g. if the “chemical system” S described
by a detailed balanced kinetical system is in a “state of equilibrium”, then all its
“reactions” are in a “state of equilibrium” as well.
Balanced critical points are in strong correspondence with detailed balanced sys-

tems. This connection is expressed in the following algebraic lemmas.

Lemma 4.3. Suppose that (16) satisfies H1, H2, H4. If (16) possesses a balanced
critical point y ∈ �n

>0 , then it is detailed balanced.
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�����. Let y ∈ �n
>0 be a balanced critical point of (16) and let L = rank(A).

If L = m, the lemma is trivially satisfied. Let L < m, then from the assumption
Gj(t, y) = 0, j = 1, . . . , m we obtain

0 = Gj(t, y) = −rj(t)
n∏

k=1

y
ckj

k +dj(t)
n∏

k=1

y
c′

kj

k =

[
−rj(t)

n∏

k=1

y
c′

kj

k

] [
n∏

k=1

y
akj

k − dj(t)
rj(t)

]
,

hence
n∏

k=1

y
akj

k =
dj(t)
rj(t)

, j = 1, . . . , m.

According to (19) akj =
L∑

i=1
zijaki, j = 1, . . . , m; k = 1, . . . , n, hence for j = 1, . . . , m

dj(t)
rj(t)

=
n∏

k=1

y
akj

k =
n∏

k=1

L∏

i=1

y
akizij

k =
L∏

i=1

(
n∏

k=1

yaki

k

)zij

=
L∏

i=1

[
di(t)
ri(t)

]zij

,

which means that (16) is detailed balanced. �

Lemma 4.4. Let (16) be detailed balanced, satisfies H1, H2, H4, and let a matrix
B consist exactly of the first L columns of the matrix A. If a point y ∈ �

n
>0 is a

critical point of the system

(22) ẏ = BG(t, y),

then it is also the critical point for the system (16).

�����. In accordance with Remark 1 the principal minor detA(1, . . . , L) of the
matrix A is not equal zero. If y ∈ �n

>0 is a critical point of (22), then 0 = BG(t, y)
for t � t0 and consequently G1(t, y) = . . . = GL(t, y) = 0 or

n∏

k=1

yaki

k =
di(t)
ri(t)

, i = 1, . . . , L.

For j = L+ 1, . . . , m we obtain

Gj(t, y) = −rj(t)

(
n∏

k=1

y
c′

kj

k

)[
n∏

k=1

y
akj

k − dj(t)
rj(t)

]

= −rj(t)

(
n∏

k=1

y
c′

kj

k

)[
n∏

k=1

(
L∏

i=1

y
zijaki

k

)
− dj(t)

rj(t)

]

= −rj(t)

(
n∏

k=1

y
c′

kj

k

){
L∏

i=1

[
di(t)
ri(t)

]zij

− dj(t)
rj(t)

}

= 0.

Altogether, Gi(t, y) = 0 for t � t0, i = 1, . . . , m and y is a critical point of (15). �
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Our next aim will be to show when it is possible to turn the Lemma 4.3. Therefore
we shall assume that the conditions (21) are satisfied. We shall restrict ourselves to
the autonomous case where LaSalle’s invariance principle will demonstrate its power.
At the same time we shall obtain useful information about asymptotic properties of
(18).
We start our considerations with the description of properties of an auxiliary

function V .

������ 3. Let hi : � → �, i = 1, . . . , n be C1 functions and let Ṽ : �×�n →
� be a continuous function defined by Ṽ : (t, y) �→

n∑
i=1

Ṽi(t, yi) where Ṽi : �×� → �

is such that

Ṽi(t, x) :=

{
x[hi(t) + ln |x|] if x �= 0
0 if x = 0

for i = 1, . . . , n. Let f : �×�n → �
n be a continuous mapping and (t0, y0) ∈ �×�n

a fixed chosen point. Without loss of generality it is possible to suppose that there is
a 0 � k � n such that y0 = [y01 , . . . , y

0
k, 0, . . . , 0]T and y0i �= 0 for i = 1, . . . , k. Then

for h > 0

lim
h→0+

1
h
[Ṽ (t0 + h, y0 + hf(t0, y0))− Ṽ (t0, y0)]

=





n∑
i=1

y0i ḣi(t0) +
n∑

i=1
[hi(t0) + 1 + ln |y0i |]fi(t0, y0) if k = n

−∞ if k < n.

If hi(t) ≡ hi ∈ �, i = 1, . . . , n then the restriction of Ṽ to the set �n
�0 is a strictly

convex function as follows from the fact that Ṽi as a function of yi is strictly convex
on [0,∞).

4.0.1. Construction and properties of V (y)
Let us consider an n-parametric system of functions

(23)

V : �n
�0 → �,

V : y �→ V (y) :=
n∑

i=1

yi(hi + ln yi), hi ∈ �, i = 1, . . . , n,

where as in Remark 3 the terms yi(hi + ln yi) are replaced by 0 if yi = 0, with
parameters hi ∈ � chosen in such a way that

(24)
n∑

i=1

aijhi = −
n∑

i=1

aij − ln
dj

rj
for j = 1, . . . , m.
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Remark 1 and the fact that (18) is detailed balanced, imply solvability of (24).
From (24) we get for the derivative of V along a solution of (18)

V̇ (y) =
n∑

i=1

[(hi + 1) + ln yi]ẏi

=
m∑

j=1

[(
rj

n∏

k=1

y
c′

kj

k

)(
dj

rj
−

n∏

k=1

y
akj

k

)(
ln

n∏

k=1

y
akj

k − ln dj

rj

)]
� 0

for y ∈ �n
>0 . With respect to Remark 3 it is possible to extend the domain of V̇ to

�
n
�0 with V̇ (y) = −∞ if y ∈ ∂�n

>0 . In addition

(25) V̇ (y) = 0⇐⇒ Gj = 0, j = 1, . . . , m.

Indeed, if there is an index j ∈ {1, . . . , m} such that Gj(y) �= 0, then

V̇ (y) �
(

rj

n∏

k=1

y
c′

kj

k

)(
dj

rj
−

n∏

k=1

y
akj

k

)(
ln

n∏

k=1

y
akj

k − ln dj

rj

)
< 0.

The other implication is obvious.
From (25) the theorem inverse to Lemma 4.3 and Lemma 4.4 follows.

Theorem 4.5. Suppose that (15) satisfies H1, H2, H4, H5, then:

1. Every stationary point of a detailed balanced system (15) is balanced.
2. If w ∈ H is a stationary point of a detailed balanced autonomous system (15),
then it is also a stationary point of

ẏ = BG(y),

where the integer n×rank(A)matrix B consists of linearly independent columns
of the matrix A.

It follows from (25) that positive stationary points of (18) do not depend on the
values of the constants rj , dj for j = 1, . . . , n but only on their ratios. From this
point of view it is possible to make a decomposition of the class of all systems (18)
into equivalence classes where two systems are equivalent iff their stationary points
are identical.
It follows from § 3 that there exists at least one stationary point of (18) even if

(18) is not a detailed balanced system. In the case when (18) is a detailed balanced
system it is possible to obtain stronger results by using much simpler tools than
Brouwer’s fixed point theorem.
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Assertion 4.6. Suppose that (18) satisfies H1, H2, H4, H5. If (18) is a detailed
balanced system, then (18) has at least one balanced stationary point z ∈ H .

�����. If (18) has a stationary point z then by Theorem 4.5 this point is
balanced. Therefore it is sufficient to prove the existence.

Since the set H = L(U, b)∩�n
�0 is compact and convex, the continuous and strictly

convex function V assumes exactly one minimum at a point z = [z1, . . . , zn] ∈ H .

It follows from the Remark 3 that the point z �∈ ∂(�n
>0 ), hence z > 0 and

h1 + 1+ ln z1 +
d∑

i=1

λiui1 = 0,

...

hn + 1 + ln zn +
d∑

i=1

λiuin = 0,

u11z1 + . . .+ u1nzn = b1,

...

ud1z1 + . . .+ udnzn = bd,

where λ1, . . . , λd ∈ � are Lagrange multipliers. Using the first n equations we obtain

zk = exp

(
−1− hk −

d∑

i=1

λiuik

)
, k = 1, . . . , n.

From (24) we derive

n∏

k=1

z
akj

k =
n∏

k=1

exp

[(
−1− hk −

d∑

k=1

λiuik

)
akj

]

= exp

[
−

n∑

k=1

akj −
n∑

k=1

akjhk −
n∑

k=1

akj

d∑

i=1

λiuik

]

= exp

[
ln

dj

rj
−

d∑

i=1

λi

n∑

k=1

uikakj

]

=
dj

rj
.

Therefore Gj(z) = 0 for every j ∈ {1, . . . , m} and z is a balanced stationary point.
�
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The knowledge of the function V gives us the possibility to answer questions of
asymptotic properties of solutions of (18) in a neighbourhood of stationary points.
The easiest way is to use the well known Chetaev’s theorem [3, p. 19, 21—autonomous
case]:

Theorem 4.7. Let Ω ⊂ �
n be an open connected set containing the origin. Let

f : Ω → �
n be smooth enough in order that through every x0 ∈ Ω there passes

one and only one solution of ẋ = f(x) and let f(0) = 0. If there exist ε > 0 (with
B

p

n(0, ε) ⊂ Ω), an open set Ψ ∈ Bn(0, ε) and a C1 function V : Bn(0, ε) → � such
that

i) V (x) > 0 on Ψ,

ii) V̇ (x) > 0 on Ψ;

iii) the origin of the x-space belongs to ∂Ψ,

iv) V (x) = 0 on ∂Ψ ∩Bn(0, ε), then the origin is unstable.

Theorem 4.8. Suppose that the detailed balanced system (18) satisfies H1, H2,
H4, H5. If the stationary points of (18) are isolated, then (18) has exactly one
stationary point uniformly stable with respect to the set H , the other stationary
points (if they exist) are unstable.

�����. There exists exactly one point z∗ ∈ H such that V (z∗) < V (z) for
z ∈ H \ {z∗}. Evidently z∗ is a balanced stationary point of (18). The stationary
solution y(t) ≡ z∗ is (uniformly) asymptotically stable, since for sufficiently small
ε1 > 0 there is no other stationary point in BH(z∗, ε1) := B(z∗, ε1) ∩H , V ∈ C1 on
BH(z∗, ε1), V̇ (z∗) = 0, V̇ < 0 on H \ {z∗} and V is convex on H .

If z �= z∗ is another stationary point of (18), let us consider the function

W : H → �,

W : y �→ W (y) := V (z)− V (y).

For ε > 0 sufficiently small there is no other stationary point in the closed ball
BH(z, ε) := B(z, ε) ∩H and Ψ := {y ∈ H : W (y) > 0}, then Ψ is an open set in H

and for y ∈ Ψ we have W (y) > 0, Ẇ (y) > 0 and W (y) = 0 for y ∈ ∂Ψ ∩ BH(z, ε)
where the boundary is determined with respect to the set H . Therefore according
to Theorem 4.7 z is an unstable stationary point. �
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