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ON SOME STABILITY PROBLEMS 

I. VRKOČ, Praha 

The presented paper consists of two different parts. In the first part those problems of 
the Lyapunov theory will be dealt with which arise in the study of some notions of 
stability in which persistent perturbations are taken in account. In the second part an 
estimate of the probability that the solutions of a differential equation with random 
perturbations exceed a given bound in a special case will be given. 

1 

At the outset a well-known definition of stability under persistent perturbations will 
be mentioned. 

The solution x == 0 of the vector differential equation 

(1) x' = F(t,x) 

will be called stable under persistent perturbations, if to every positive e > 0 there 
exist positive numbers 8 > 0, rj > 0 such that for every solution y(t) of the differential 
equation 

(2) y'= F(t, y) + S(t, y) 

\\y(t)\\ < e for t ^ t0 whenever ||y(f0)|| < 8 a n d 

(3) \\s(t,y)\\<n. 
If the magnitude of the disturbing terms S(t, y) will be measured in a different way, 
i.e. if (3) is replaced by 

(3') ("sup \\S(t,y)\\dt<ri, 
Jo y 

one obtains the definition of integral stability. In the case of integral stability the per­
turbations may be large in a small interval, whereas in the case of stability under 
persistent perturbations they have to be small, but they may be persistent. The proper­
ties of both these types are possessed by stability under persistent perturbations 
bounded in the mean value; for the sake of brevity, in what follows, this will be called 
stability in the mean. Stability in the mean was studied by C. Corduneanu, V. E. Ger-
maidze, N. N. Krasovskii [1]. 

This type of stability is obtained, if instead of (3) one puts 

(3") r + T s u p | | S ( t , y ) | | d t < ^ ( T ) 

6 and t\ depending in general on T. 
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In stability theory a great attention is paid to the second method of Lyapunov. In 
this method functions V(t, x) are sought fulfilling some given conditions. The existence 
of such a function is sufficient for the stability of the solution x = 0. 

In a recently published paper [2] I showed that stability under persistent pertur­
bations can be characterized by means of the Lyapunov functions, which is stated in the 
following theorem: 

The solution x = 0 is stable under persistent perturbations, if and only if there 
exists a function V(t, x) with continuous partial derivatives fulfilling the following 
conditions: 

i) V(t, x) is positive definite; 

ii) V(t, x) is bounded uniformly with respect to t; 

hi) there exists a continuous function U(x) which is positive except at the point 
n 

x = 0, and the function Q(t,x) = dV/dt + U(x) ^J Yj^Vjdx^2 is less than or 
i=\ 

equal to zero. 

This theorem is proved under the assumption that F{(t, x) are continuous. In [3] 
I proved that integral stability can be characterized by means of the Lyapunov func­
tions: 

The solution x = 0 is integrally stable, if and only if there exists a function 
V(t, x) with continuous partial derivatives fulfilling the following conditions: 

i) V(t, x) is positive definite; 

ii) V(t, x) fulfils a Lipschitz condition with a constant independent of t; 

iii) dV/dt is less than or equal to zero. 

Also this theorem is proved under the assumption that the functions Ft(t, x) are 
continuous. 

In the case of stability in the mean only sufficient conditions are known at present. 
In the theory of stability an important role is played by the notion of asymptotic 

stability which implies that the solution tends to a desired position after it was affected 
by a perturbation. For the above mentioned types of stability analogous concepts can 
be introduced. 

Definition. The solution x = 0 is asymptotically stable under persistent pertur­
bations, if it is stable under persistent perturbations and if to any sufficiently small 
numbers 8 > 0, r\ > 0 (i.e. 5 ^ K, r\ ^ K) there exist numbers T(5, rj) > 0, 
y(5, rj) > 0 such that for every solution y(t) of equation (2) 

11X011 <n for t = t0 + T(5,rj) 
whenever 

\\y(t0)\\<5, \\S(t,y)\\<y(8,r,). 

218 



If one requires that the perturbations S(t, y) are smaller than y in the sense of in­
equalities (3'), (3") one obtains the asymptotic analogues of the respective above men­
tioned concepts of stability. 

Asymptotic stability under persistent perturbations can be characterized in the 
same manner as stability under persistent perturbations except that in condition iii) 
it is necessary to assume that Q(t, x) is negative definite. An analogous theorem holds 
for asymptotic integral stability. 

Also these theorems are proved under the hypothesis that the functions Ft(t,x) are 
continuous. 

It is of interest to compare the introduced concepts of stability: 

Asymptotic integral 
stability 

I 
Asymptotic stability 

under persist. 
perturbations 

Stability 
under persist, 
perturbations 

-x-x-

4 
-X-X-

\ 

Asymptotic stability 
in the mean 

Stability 
in the mean 

Integral stability 

In the presented scheme the arrows represent implications and crossed arrows mean 
that the implication does not hold. 

In the autonomous case, for asymptotic stability under persistent perturbations and 
for asymptotic integral stability it is possible to construct the functions Vindependent 
of t. 

For the non-asymptotic types of stability I succeeded only in constructing a function 
fulfilling locally a Lipschitz condition. 

Comparing the above presented concepts of stability (in the autonomons case) 
one obtains a very simple scheme, as all three asymptotic types of stability are equi­
valent to each other. Furthermore, stability under persistent perturbations is equi­
valent to stability in the mean. Finally, each of the presented types of stability implies 
integral stability. 

Deriving the sufficient conditions for stability, e.g. constructing a Lyapunov function, 
one has to respect the case when the perturbations in every point and in every moment 
of time tend to increase the distance of the solution from the origin at the greatest 
possible rate. Thus one is compelled to give too strict conditions for stability. Really, 
as usual at one moment the perturbations tend to increase the distance of the solution 
from the origin and at the other moment they tend to decrease it. To express exactly 
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this property it is convenient to use the apparatus of random variables. The pertur­
bations S are supposed to represent a stochastic process. Then the solution will also 
be a stochastic process and one can only speak about the probability P(\x(t, co)\ = v). 

The authors of papers [4], [5] defined by means of this expression the stability with 
respect to probability. These authors, however, are mostly interested in control 
problems. 

Now a scalar differential equation with random perturbations will be examined, 
which will be written as 

(4) x' = - Xx + S(t, co), X > 0 , 

co being an element of the probability space Q where a a-field of subsets of Q and a prob­
ability measure P are defined. The function S(t, co) and the initial value x(0, co) are 
assumed to be P-measurable and S(t, co) integrable with respect to t, co being fixed. 
Further it is necessary that the perturbations S are small in some sense. It will be sup­
posed that there exists a number 8 > 0 such that 

E(\S(t, co)\) = 5 , 
E denoting the expect value. 

Further assume that S(t, co) is symmetrically distributed for every t. However, this 
condition does not imply that the perturbations behave in the way mentioned above. 
It is possible to construct S(t, co) such that equation (4) is decomposed to two non-
random equations both of them holding with a given probability. Consequently the 
following condition will be introduced: 

There exists d > 0 such that random variables S(t, co), S(x, co) are independent, 
provided t, x belong to different intervals of type <kd, (k + 1) d) (k integer). 

Of course, S(t, co) is supposed to be bounded in its absolute value, since in the oppo­
site case one would obtain substantially weaker results. In the following, it will be as­
sumed that 

\S(t,co)\ = K, 

where K may be large and S very small. In fact it is the product 8K that plays an 
important role. 

Denote P^v, d, t, X) = sup P(\x(t, co)\ = v), where x(t, co) is a solution of equation 
S(t,a) 

(4) with the initial value x(0, co) = 0 and S(t, co) represents any element of the set of 
stochastic processes fulfilling the above conditions. 

For Px it is possible to prove an asymptotic formula. 

Let the sequences of positive numbers dn, tn, vn, Xn fulfil the following conditions: 
tjdn ->oo, Xndn -* 0, Xntn -> T> 0, vnj(XJdn) ~* a, then 

lim P,(vn, dn, tn, Xn) = /(-) f" e~±x2 dx . 
n-oo \J \nj J a 11 2 _\ 

J(5K) V \ l - e - 2 T / 
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The case X = 0 is to be examined especially. In this case it will be defined as above 

P2(v, d, t) = sup P(\x(t, co)\ = v) , 
S(t,<a) 

where x(t, co) is a solution of equation (4) where one puts X = 0. 

Let the sequence of positive numbers dn, tn, vn fulfil the following conditions: 
tjdn ->«>, Vnly/(tndn) -> <*> then 

limP2(vn,dn,0= l(?\r e-±*2dx. 
n^°° N W JalVW 

In the case X = 0 perturbations S may depend on x and it is not necessary to assume 
that S(t, x, co) is symmetrically distributed. In this case it is necessary to add another 
condition to avoid systematic errors; this condition is a generalization of the equation 

E(S(t, x, co)) = 0 . 

Moreover the following equation is true: 

sup P(sup \x(x, co)\ = v) = sup P(\x(t, co)\ ^ v) . 
S(t,x,io) x£t S(t,x,co) 

In much the same manner as above we will define 

P3(v, d, t) = sup P(sup |X(T, CO)\ ^ v) . 
«S(f,x,c») x£t 

If dn, tn, vn fulfil the same conditions as for P2, then 

lim P3(vn, dn, 0 = 1 - £ i — \ e-±xl dx . 

These formulae can be adapted even for the case that x(0,co) is a random variable. 
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