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QUANTUM WEYL GROUP AND SOME [1S APPLICATIONS

Ya.3 .S oibelman

1.This paper contains some results from author's talk at the

school "Geometry and Physics" (January,1990).

2.Let Y bea simple complex Lie algebra.Let us fix an inva-
riant scalar product (, ) on £* where F< 3 is acartan
subalgebra.We choose a basis of simple roots (0(5,{(:1 such that
6’(",&:)6@ .Let [/,,(-’7) be a quantized universal enveloping algeb-
ra.l recall that Uh {9j is a topological Hopf algebra over

Clth]] .1t contains 1 and generated by ix.ct) Ha'giz,l and

relations: )
' x : r v¥t velo <., ShlgH)
[HJ, XJ ]:t("(b,o(j))(\d‘ 3 [X.ﬁ, XJ'_]— SLJ -'T%é—)-“ ]

:if | 0" ( 14y )f" g‘;—x(z-@y-m (Xr )K Xf (X"r )1,,,{1;_K .

SN . --;le(dl‘d')
where ((4¢§))  is a Cartan matrix for ?, F- € T ) =
=52l (M = (g eus (0 .
Un(9)is a Hopf algebra with comultiplication A  defined

by : t t e MMt
AH)=H: @1+ LeHy, A(XS)= Xige™™ v e X7, @
3.Let G be a simply connected simple Lie group such

that Ke & =¥ .Hopf algebra CLe1, of regular functi-

ons on quantum- group G was introduced in (1] (see also[4-6]).

It is the algebra Of matrix elements of some finite dimensi-
onal representations of Ul.(‘.’f) .Following (4-6] we introduse

structure of Hopf *-algebra on CL&Ji  such that

£5(0) = €(S@¥) 3)

wherefem[‘]h,q‘(/hm), S is antipode, 4 is an antilinear 8°%~
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+ -
automorphism of algebra U (ej) defined by H”Hg_ (X-)l X "
4.1t is known ([4,6])that for every Schubert cell Xw < ';/6’

( 6/8 is flag manifold)there is the -irreducible *-rep-
resentation TTw of (f[G-];, in Hilbert space.Here w is
an arbitrary element of Weyl group \/\/ .Then we can define
(7} £or& = SL2(€) and [4,5]for general case)quantum Weyl
group.l recall that for every we¢ W one can to construct
some Gelfand-Naimark-Segal statewe @ECJ;,* (L4,5)).Let S¢
be a simple reflection which corresponds to i-th vertex of

Dynkin diagram.
THBONEM 1 (3])@Lif ¢4 then §:§;S:... =585

~my \—AT"TJ*———/
where @is'j)wf:f in usual Weyl group.
b)e rile g# commtes w ith algebra Uh (§€(2);) generated
y X: He .
Let Wa be the element of maximal len&q R.GU('}') ®4 be

the universal quantum R-matrix( D] §13) Let us choose an
orthonormal basis ‘(Ims in / and let ‘vT/cl- e !'/"zz“
1HEOTEM 2, h ey
a(we )= R (W' w.')
In the case 7=$€(h) theorem 2 is proved in[S].

LetWe=Sigas. SL',V be a reduced expansions.It is known that
set=1dly,,.., SéSwakifcoinsides with the set A+ of positive
roots.lhen we define a total order on A+ =2 {read D

from right to left).Let o -sus’:a, S¢p-1(£p) e define
Ed;Fc(C(/h{‘/) bs(—‘ ﬁr ‘e L,o.{(éif) /:(—/(ylt' (f.i('q/s)

E;, = X {’)(p( h/ﬁ) Fo= X e.xp(é.m))

To) = Sexdit

' -\ L > I,01
(HEO!EM 3. R ZQ,. XLy 2 (¢-¢2)E8F) et )
where %« = e%("d) ) EXf(x) = oo !

and product is taken according to our order.
In the case J=$€Mh) theorem3 is proved in[3}
Another application of quantum Weyl group is connected with

Hecke algebras.Let be a simply-laced Lie algebra such
that (4, 4¢)=J .I recall that Hecke algebra Hg(W) nas
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generators t§(=1 with relations:
rr'(: ’T"/‘[FL'-JJ = '7‘7’ ﬂ't(/,"" ) (17:'_?‘-1)(77(‘*1'):0
N — N —  —
'"‘,‘J‘ }7,‘:’:

We concider a simple L/h(ff-module L(A) with the highest
weight A such that A(HY “fmay ,4() where dmax is a maximal
root.Therefore L(A) is a quantum analogue of the adjoint
representations of V  .Let L{A)o-4xcL(A)[ax=0 Vae £ 1,
1THEOKEM 4.For every < &L142] we have:

a)  S(LN) = LN,

) - Ge-¢72)(Seey(ny, =0
where ¢ = e’
Therefore we can say that quantum Weyl gfoup acts on L(A)o
as Hecke algebra.lhis result is also obtained by G.lusztig

(2.
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