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A note on the paper “Smoothness

and the property of Kelley”

Gerardo Acosta, Álgebra Aguilar-Mart́ınez

Abstract. Let X be a continuum. In Proposition 31 of J.J. Charatonik and W.J. Chara-
tonik, Smoothness and the property of Kelley, Comment. Math. Univ. Carolin. 41

(2000), no. 1, 123–132, it is claimed that L(X) =
T

p∈X S(p), where L(X) is the set

of points at which X is locally connected and, for p ∈ X, a ∈ S(p) if and only if X is
smooth at p with respect to a. In this paper we show that such equality is incorrect
and that the correct equality is P (X) =

T
p∈X S(p), where P (X) is the set of points

at which X is connected im kleinen. We also use the correct equality to obtain some
results concerning the property of Kelley.

Keywords: connectedness im kleinen, continuum, hyperspace, local connectedness, pro-
perty of Kelley, smoothness

Classification: 54B20, 54F15, 54F50

1. Introduction

The purpose of this paper is to correct an inconsistency made in [3]. Namely,
in that paper it is claimed that, for a continuum X ,

L(X) =
⋂

p∈X

S(p),

where L(X) is the set of points at which X is locally connected and, for p ∈ X ,
a ∈ S(p) if and only if X is smooth at p with respect to a. As we show in
Theorem 3.3, the correct equality is the following one:

P (X) =
⋂

p∈X

S(p),

where P (X) is the set of points at which X is connected im kleinen. In this paper,
we also present consequences of the previous equality that involve conditions, un-
der which, the union of two continua with the property of Kelley has the property
of Kelley.
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2. General notions and results

All spaces considered in this paper are assumed to be metric. For a space X ,
a point x ∈ X and a positive number ε, we denote by BX(x, ε) the open ball in
X centered at x and having radius ε. If A is a subset of a space X , we define
NX(A, ε) =

⋃
a∈A BX(a, ε). We use the symbols clX(A), intX (A) and bdX (A)

to denote the closure, the interior and the boundary of A in X , respectively. The
letter I stands for the unit interval [0, 1] in the real line R, and the letter N

represents the set of positive integers.
A space X is connected im kleinen at p ∈ X (cik at p) if for any open set U of

X such that p ∈ U , there is a connected subset V of X such that p ∈ intX(V ) ⊂
V ⊂ U .
A continuum is a nonempty, compact, connected, metric space. The hyperspace

of subcontinua of a given continuum X is denoted by C(X). We consider that
C(X) is metrized by the Hausdorff metric H ([5, Definition 0.1]). If A, B ∈ C(X)
and ε > 0, then it is not difficult to see that H(A, B) < ε if and only if A ⊂
NX(B, ε) and B ⊂ NX(A, ε).
If A, B ∈ C(X) are such that A ( B, then an order arc from A to B in

C(X) is a continuous function λ: I → C(X) such that λ(0) = A, λ(1) = B and
λ(s) ( λ(t) if s < t ([5, Definitions 1.2 and 1.7]). For a sequence (An)n in C(X),
the symbol An → A means that (An)n converges to A (in the Hausdorff metric).
If P ∈ C(X) we put

C(P, X) = {A ∈ C(X) : P ⊂ A}.

If P = {p} is a one-point set we write C(p, X) instead of C({p}, X).

3. Smoothness and the property of Kelley

A continuum X has the property of Kelley at a point a ∈ X if for each sequence
(an)n in X such that an → a and each A ∈ C(a, X), there is a sequence (An)n
in C(X) such that An → A and an ∈ An, for each n ∈ N. We say that X has the
property of Kelley if it has this property at each of its points. It is well known
that locally connected continua have the property of Kelley. Moreover, if X is a
continuum and X is cik at p ∈ X , then X has the property of Kelley at p. As a
kind of converse of this result we have the following theorem.

Theorem 3.1 ([2, Theorem 2.1]). Let X be a continuum with the property of
Kelley at p ∈ X . If p is a cut point of X , then X is cik at p.

A continuum X is smooth at a point p ∈ X with respect to a point a ∈ X
provided that for each sequence (an)n in X such that an → a and any A ∈ C(X)
such that a, p ∈ A, there is a sequence (An)n in C(X) such that An → A and
an, p ∈ An, for each n ∈ N. We say that X is smooth at p ∈ X if X is smooth at
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p with respect to any point a ∈ X . For a continuum X consider the sets:

I(X) = {p ∈ X :X is smooth at p},

L(X) = {p ∈ X :X is locally connected at p},

P (X) = {p ∈ X :X is cik at p},

K(X) = {p ∈ X :X has the property of Kelley at p}.

If p ∈ X we also consider the set

S(p) = {a ∈ X :X is smooth at p with respect to a}.

Note that I(X) ⊂ L(X) ⊂ P (X) ⊂ K(X). Note also that I(X) = X if and
only if X is locally connected [4, Corollary 3.3], and p ∈ I(X) if and only if
S(p) = X .

Theorem 3.2. Let X be a continuum. If p ∈ S(p), then p ∈ P (X).

Proof: If p /∈ P (X) then there is an open subset U of X with the following
properties: p ∈ U and no connected neighborhood of p is contained in U . Thus if
C is the component of U that contains p, then p /∈ intX (C). Then p ∈ bdX(C), so
there is a sequence (xn)n in X−C such that xn → p. Since X is smooth at p with
respect to p, there is a sequence (Kn)n in C(X) such that Kn → {p} and p, xn ∈
Kn, for any n ∈ N. Let ε > 0 be such that BX(p, ε) ⊂ U . SinceKn → {p}, there is
m ∈ N such that H(Km, {p}) < ε. Then p ∈ Km ⊂ NX({p}, ε) = BX(p, ε) ⊂ U ,
so Km ⊂ C and then xm ∈ C. This contradiction shows that p ∈ P (X). �

For a continuum X put C2(X) = C(C(X)). For a given p ∈ X consider a
function Fp defined on X by letting

Fp(a) = {A ∈ C(X) : a, p ∈ A}.

In [3, p. 124] it is shown that, for any a ∈ X , Fp(a) is a closed and arcwise

connected subset of C(X). Thus Fp(a) ∈ C2(X) and we can write Fp:X →

C2(X). Some other properties of this function are discussed in [3]. For example,
in [3, Corollary 8] it is shown that Fp is continuous at a ∈ X if and only if
a ∈ S(p). Thus Fp is continuous if and only if p ∈ I(X).

Theorem 3.3. If X is a continuum, then

(3.1) P (X) =
⋂

p∈X

S(p).

Proof: Assume first that x ∈
⋂

p∈X S(p). Then, in particular, x ∈ S(x) so, by

Theorem 3.2, x ∈ P (X). Thus
⋂

p∈X S(p) ⊂ P (X).
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Assume now that x ∈ P (X). Take a point p ∈ X . In order to show that
x ∈ S(p), take a sequence (xn)n in X such that xn → x and K ∈ C(X) such that
p, x ∈ K. Given n ∈ N

Fx(xn) = {M ∈ C(X) : xn, x ∈ M}

is a closed subset of C(X), so there is Mn ∈ Fx(xn) such that

H(Mn, {x}) = min{H(A, {x}) : A ∈ Fx(xn)}.

Note that (Mn)n is a sequence in C(X) such that x, xn ∈ Mn, for any n ∈ N. We
claim that

1) Mn → {x}.

To show 1) let ε > 0 and U be an open subset of X such that x ∈ U ⊂ clX(U) ⊂
BX (x, ε). Since X is cik at x, there is a connected subset V of X such that
x ∈ intX (V ) ⊂ V ⊂ U . Put A = clX(V ) and note that A ⊂ clX (U) ⊂ BX(x, ε) =
NX({x}, ε). Since the inclusion {x} ⊂ NX(A, ε) also holds, we have H(A, {x}) <
ε. Now, since xn → x, there is N ∈ N such that xn ∈ intX(V ) for any n ≥ N .
Thus A ∈ Fx(xn) for any n ≥ N , so H(Mn, {x}) ≤ H(An, {x}) < ε, for any
n ≥ N . This shows 1).
Given n ∈ N, put Kn =Mn ∪K. Note that (Kn)n is a sequence in C(X) such

that p, xn ∈ Kn, for any n ∈ N. Moreover, by 1), Kn =Mn ∪K → {x}∪K = K.
This shows that p ∈ S(p). Thus P (X) ⊂

⋂
p∈X S(p). �

Corollary 3.4. Let X be a continuum and p ∈ X . Then p ∈ P (X) if and only
if p ∈ S(p).

Proof: If p ∈ P (X) then, by equality P (X) =
⋂

p∈X S(p), we have p ∈ S(p).

On the other hand, if p ∈ S(p) then, by Theorem 3.2, p ∈ P (X). �

Let X be a continuum. In [3, Proposition 31] it is claimed that

(3.2) L(X) =
⋂

p∈X

S(p).

Using equation (3.2), in [3, Corollary 32] it is claimed that

(*) p ∈ L(X) if and only if p ∈ S(p).

Note that if equation (3.2) is correct then, using equation (3.1) it follows that
P (X) = L(X), for any continuum X . This is a contradiction, since there exists
a continuum X which is cik at some point p ∈ X and it is not locally connected
at p (see Figure 5.22 of [6] on page 84). Thus equation (3.2) is wrong. The right
way of calculating

⋂
p∈X S(p) is the one presented in Theorem 3.3. By the same

reasons, claim (*) is wrong. The right claim is the one presented in Corollary 3.4.
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With respect to the setK(X) defined for a continuumX , in [3, Observation 35]
it is observed that

{p ∈ X : p ∈ S(p)} ⊂ K(X).

Combining this with Corollary 3.4, we have P (X) ⊂ K(X) (an assertion that can
be shown without using Corollary 3.4).
In [3, Proposition 39] it is claimed that, for a continuumX such that L(X) 6= ∅,

we have

(3.3) K(X) ⊂
⋂

p∈L(X)

S(p).

In this paper we show the following result.

Theorem 3.5. Let X be a continuum. If P (X) 6= ∅, then

(3.4) K(X) ⊂
⋂

p∈P (X)

S(p),

and if L(X) 6= ∅, then inclusion (3.3) holds.

Proof: We will show, simultaneously, that inclusions (3.3) and (3.4) hold. To
verify inclusion (3.3) we take a point p ∈ L(X) and, to verify inclusion (3.4), we
take a point p ∈ P (X). Since L(X) ⊂ P (X) in any case we have p ∈ P (X) so, by
Corollary 3.4, p ∈ S(p). To show that K(X) ⊂ S(p), consider a point a ∈ K(X),
a sequence (an)n in X such that an → a and a subcontinuum A of X such that
a, p ∈ A. Since X has the property of Kelley at a, there is a sequence (Ln)n in
C(X) such that Ln → A and an ∈ Ln, for any n ∈ N. Let (pn)n be a sequence
in X such that pn → p and pn ∈ Ln, for any n ∈ N. Since p ∈ S(p), there is a
sequence (Mn)n in C(X) such that Mn → {p} and p, pn ∈ Mn, for any n ∈ N.
Given n ∈ N, let An = Ln ∪ Mn. Then (An)n is a sequence in C(X) such that
An → A and p, an ∈ An, for any n ∈ N. Thus a ∈ S(p). �

Using inclusion (3.4) we can also prove the following result.

Theorem 3.6. Let X be a continuum with the property of Kelley and p ∈ X .
Then X is smooth at p if and only if X is cik at p.

Proof: The first part follows from the fact that I(X) ⊂ P (X). To show the
second part, assume that X is cik at p. Then p ∈ P (X) so, by Theorem 3.5,
X = K(X) ⊂ S(p). This implies that S(p) = X , so p ∈ I(X). �

In [3, Proposition 42] it is claimed that

(**) a continuum X having the property of Kelley is smooth at a point p ∈ X
if and only if X is locally connected at p.

Assertion (**) is correct and the proof of it uses inclusion (3.3) and the fact
that I(X) ⊂ L(X). Thus, combining the previous results we obtain the following
theorem.
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Theorem 3.7. Let X be a continuum with the property of Kelley and p ∈ X .
Then the following assertions are equivalent:

(1) X is smooth at p;
(2) X is locally connected at p;
(3) X is cik at p.

In other words, in the realm of continua with the property of Kelley, the point-
wise versions of smoothness, local connectedness and connectedness im kleinen
are all equivalent.

4. Property of Kelley and local connectedness at a point

On page 130 of [3] the following question if formulated.

Question 4.1. For which continua X the property of Kelley of X implies the
existence of a point at which X is locally connected?

In this section we present some partial answers to this question. As mentioned
in [3], for dendroids we have an affirmative answer to the previous question. As
a consequence of Theorems 3.1 and 3.7, we have the following result.

Theorem 4.2. Let X be a continuum with the property of Kelley. If X has a
cut point p, then X is locally connected at p.

For a continuum X , a point p ∈ X is called an end-point of X if for any open
subset U of X such that p ∈ U , there exists an open subset V of X such that
p ∈ V ⊂ U and bdX (V ) consists of precisely one point. It is known that every
end-point of a continuum X is a non-cut point of X . It is also known that if p is
an end-point of X , then X is cik at p. Using this and Theorem 3.7, we have the
following result.

Theorem 4.3. Let X be a continuum with the property of Kelley. If X has an
end-point p, then X is locally connected at p.

By Theorems 4.2 and 4.3, Question 4.1 can be reformulated as follows.

Problem 4.4. Classify all continua X with the following properties:

(a) X has the property of Kelley;
(b) no point of X is a cut point of X ;
(c) no point of X is an end-point of X ;
(d) X has a point at which it is cik.

In [3, Example 45] it is shown that there exists an arcwise connected continuum
X with the property of Kelley and locally connected at none of its points. We
will show that this is not the case if we add atriodicity. Recall that for n ∈ N a
continuum X is an n-od if X contains a subcontinuum B such that X − B has
at least n components. Moreover, X is said to be atriodic if it contains no 3-ods.
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Theorem 4.5. Let X be an atriodic arcwise connected continuum with the pro-
perty of Kelley. Then X is an arc or a simple closed curve.

Proof: Since X has the property of Kelley and it is atriodic, by [2, Corollary 5.2],
X has the property of Kelley hereditarily, i.e., any subcontinuum of X has the
property of Kelley. Now, since X has the property of Kelley hereditarily and it is
arcwise connected, by [2, Theorem 1.1], X is hereditarily locally connected. Thus
X is atriodic and locally connected, so X is an arc or a simple closed curve (see
(b) of [6, 8.40]). �

5. Union of continua with the property of Kelley

Easy examples show that the union of continua with the property of Kelley
does not have the property of Kelley. However we have the following result.

Theorem 5.1 ([1, Theorem 3.1]). Let X and D be continua such thatX∩D 6= ∅.
Put Y = X ∪ D. If both X and D have property of Kelley and Y is smooth at
any point of X ∩ D, then Y has the property of Kelley.

Combining the previous results we obtain the following theorem.

Theorem 5.2. Let X andD be continua such thatX∩D = {p}. Put Y = X∪D.
Then Y has the property of Kelley if and only if both X and D have the property
of Kelley and Y is smooth at p.

Proof: Note first that, for any A ∈ C(Y ) we have A ∩ X ∈ C(X) and A ∩ D ∈
C(D). Now assume that Y has the property of Kelley. Since p is a cut point of Y ,
by Theorem 3.1, Y is cik at p. Thus, by Theorem 3.6, Y is smooth at p. Now we
show that X has the property of Kelley at p. Let (pn)n be a sequence in X such
that pn → p and A ∈ C(p, X). Since Y is smooth at p, there is a sequence (An)n
in C(Y ) such that An → A and p, pn ∈ An for any n ∈ N. Hence An ∩X ∈ C(X)
and An ∩ D ∈ C(D) for any n ∈ N. Moreover An ∩ D → {p} and An ∩ X → A.
Thus X has the property of Kelley at p. Now we show that X has the property
of Kelley at a ∈ X − {p}. Let (an)n be a sequence in X such that an → a and
A ∈ C(a, X). Since Y has the property of Kelley at a, there is a sequence (An)n
in C(Y ) such that An → A and an ∈ An, for any n ∈ N. Then An ∩ X ∈ C(X)
for any n ∈ N and An ∩X → A. This shows that X has the property of Kelley at
a, so X has the property of Kelley. Similarly D has the property of Kelley. This
completes the first part of the proof. The second part follows from Theorem 5.1.

�

As we show in the following result, in the previous theorem the condition of Y
being smooth at p can be replaced by the condition of Y being cik at p.

Theorem 5.3. Let X andD be continua such thatX∩D = {p}. Put Y = X∪D.
Then Y has the property of Kelley if and only if both X and D have the property
of Kelley and Y is cik at p.
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Proof: If Y has the property of Kelley then, by Theorem 5.2, both X and D
have the property of Kelley and Y is smooth at p. Thus, by Theorem 3.6, Y is
cik at p.
Assume now that both X and D have the property of Kelley and that Y is cik

at p. By Theorem 3.3, p ∈ S(p), so Y is smooth at p with respect to p. Take
a ∈ Y − {p}. We will show that Y is smooth at p with respect to a, so take
A ∈ C(Y ) such that a, p ∈ A and a sequence (an)n in Y such that an → a. Note
that A ∩ X ∈ C(p, X) and A ∩ D ∈ C(p, D). Without loss of generality, we can
assume that a ∈ X −D and an ∈ X−D for any n ∈ N. Since X has the property
of Kelley at a, there is a sequence (An)n in C(X) such that An → A ∩ X and
an ∈ An, for any n ∈ N. Let (pn)n be a sequence in X such that pn → p and
pn ∈ An, for any n ∈ N. Since Y is smooth at p with respect to p, there is a
sequence (Bn)n in C(Y ) such that Bn → A ∩ D and p, pn ∈ Bn for any n ∈ N.
Given n ∈ N, put Cn = An ∪ Bn. Then (Cn)n is a sequence in C(Y ) such that
Cn → A and an, p ∈ Cn, for any n ∈ N. This shows that Y is smooth at p so, by
Theorem 5.1, Y has the property of Kelley. �
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