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On a property of neighborhood hypergraphsKonrad Pi�oroAbstra
t. The aim of the paper is to show that no simple graph has a proper subgraphwith the same neighborhood hypergraph. As a simple 
onsequen
e of this result weinfer that if a 
lique hypergraph G and a hypergraph H have the same neighborhoodhypergraph and the neighborhood relation in G is a subrelation of su
h a relation in H,then H is ins
ribed into G (both seen as 
overings). In parti
ular, if H is also a 
liquehypergraph, then H = G.Keywords: graph, neighbor, neighborhood hypergraph, 
lique hypergraphClassi�
ation: 05C99, 05C69, 05C65Re
all (see e.g. [1℄) that a hypergraph G = (V, E) 
onsists of a �nite set V of ver-ti
es and a �nite sequen
e E of hyperedges, where ea
h hyperedge is a non-emptysubset of V , and the union of all hyperedges is V (note that a hypergraph mayhave multiple hyperedges). A hypergraph is simple, if no hyperedge is 
ontainedin another hyperedge.With an ordinary graph G at least two hypergraphs 
an be asso
iated. The�rst 
onsists of all maximal 
liques of G and is 
alled the 
lique hypergraph.These hypergraphs form an important sub
lass of hypergraphs. For example,they are related with the Helly property (see [1℄), and they also appear in the
lique-transversal problem (see [4℄), and 
onsequently in graph 
oloring problems(see e.g. [5℄).The se
ond hypergraph asso
iated with G is formed by neighborhoods of ver-ti
es. Re
all (see [1℄) that two verti
es of G are neighbors if they are adja
ent orequal. The set of all neighbors of a vertex v is denoted by NG(v) and 
alled theneighborhood of v. Next, we take all pairwise di�erent neighborhoods in G toobtain a new hypergraph N (G) on the vertex set of G, 
alled the neighborhoodhypergraph of G. N (G) has no multiple hyperedges, but, in general, N (G) isnot simple. Of 
ourse, hypergraphs N (H)max (
onsisting of all maximal hyper-edges of N (G) with respe
t to in
lusion) and N (G)min (
onsisting of all minimalhyperedges of N (G)) are simple, but they play no important role here.Theorem 1. Let G be a simple graph and H its subgraph. If N (H) = N (G),then H = G.



150 K.Pi�oroProof: Take a vertex v of H su
h that NH(v) is maximal up to in
lusion. Let
XH be the set of all verti
es w of H su
h that NH(w) = NH(v), and XG be theset of all verti
es w of G su
h that NG(w) = NH(v).Sin
e NH(v) 
orresponds to a maximal (up to in
lusion) hyperedge of N (H) =
N (G) and H is a subgraph of G, we infer that

XH ⊆ XG,in parti
ular NH(v) = NG(v).Assume that there is a vertex w ∈ XG \ XH . Sin
e NG(w) = NH(v) and
w ∈ NG(w) (by the de�nition), the verti
es v and w are adja
ent in H , thus alsoin G.Sin
e NH(w) ⊆ NG(w) = NH(v) and NH(w) 6= NH(v) (by the assumption),there exists a vertex u su
h that

u ∈ NH(v) = NG(w) and u /∈ NH(w).Then
NH(u) 6= NG(u).Hen
e and by the equality N (H) = N (G), there is a vertex u′ su
h that
NH(u) = NG(u′).Then v ∈ NH(u) = NG(u′), i.e. the verti
es v and u′ are adja
ent in G.On the other hand,

w /∈ NH(u) = NG(u′),so
u′ /∈ NG(w) = NH(v) = NG(v),i.e. the verti
es u′ and v are not adja
ent in G. This 
ontradi
tion implies

XH = XG.Observe now that the verti
es of X = XH = XG form a 
lique in both the graphs
H and G and the sets of neighbors of every vertex of X in the rest of the graphs Hand G are the same. Thus to end the proof it is suÆ
ient to apply the indu
tion(on the order of graph) to the pair of graphs H \ X and G \ X (note that theymay have isolated verti
es, but it is not a problem). �Re
all that a simple hypergraph G is said to be a 
lique hypergraph, if it is the
lique hypergraph of some graph G. Observe that neighborhoods of ea
h vertex
v in G and G are the same, in parti
ular N (G) = N (G) (where neighbors ina hypergraph are de�ned analogously as for a graph). Moreover, G is uniquely



On a property of neighborhood hypergraphs 151determined (therefore it will be sometimes denoted by GG). Be
ause two di�erentverti
es of G are adja
ent if and only if they are both 
ontained in a hyperedgeof G. Hen
e it also easy follows (see [1℄) that a simple hypergraph G = (V, E) isa 
lique hypergraph if and only if for ea
h subset A of V , the following 
onditionholds:(C2) if every pair of verti
es of A belongs to some hyperedge of G, then A is
ontained in a hyperedge of G.(Hypergraphs satisfying (C2), not ne
essarily simple, were 
alled 
onformal byBerge in [1℄. However, today the 
on
ept of 
onformality has a slightly di�erentmeaning (see e.g. [6℄).)(C2) is related with the Helly property (see [1℄). More pre
isely, a hypergraph
G = (V, E) has the Helly property (i.e. for any F ⊆ E , if any two hyperedges in
F have a non-empty interse
tion, then the interse
tion of F is also non-empty)if and only if its dual G∗ satis�es (C2). G∗ = (E , V ∗) is the hypergraph whoseverti
es are hyperedges of G and the set of hyperedges is V ∗ = {G(v): v ∈ V },where G(v) = {E ∈ E : v ∈ E}. Gilmore's Theorem (see Chapter 1, §7 in [1℄) givesthe following ne
essary and suÆ
ient 
ondition for a hypergraph G to satisfy (C2):for every three hyperedges E1, E2, E3 of G, there is a hyperedge of G 
ontainingthe set (E1 ∩E2)∪ (E2 ∩E3)∪ (E3 ∩E1). The 
ondition 
an be easily translatedinto the Helly property (see [1℄). This result have been generalized by Berge andDu
het in [3℄ (see also [1℄) to hypergraphs with the k-Helly property (i.e. for anyfamily F of hyperedges of G, if every subfamily of F with at most k elements has anon-empty interse
tion, then F also has a non-empty interse
tion). The k-Hellyproperty 
orresponds with the 
ondition (Ck) obtained from (C2) by repla
ing\every pair" with \every subset with at most k verti
es".We say that a hypergraph H is ins
ribed into a hypergraph G if for any hy-peredge F of H there is a hyperedge E of G su
h that F ⊆ E. It is just areformulation of the well-known notion for 
overing in the 
ase of hypergraphs.Theorem 2. Let G be a 
lique hypergraph and H be an arbitrary hypergraphwith the same vertex set su
h that(∗) NG(v) ⊆ NH(v) for ea
h vertex v,(∗∗) N (G) = N (H).Then H is ins
ribed into G.Proof: Take an auxiliary graph H with the same vertex set as H su
h that twodi�erent verti
es of H are adja
ent if and only if they are 
ontained in a 
ommonhyperedge of H. Then NH(v) = NH(v) for any vertex v. Hen
e and by (∗) we�rst infer that the graph GG is a subgraph of H . Se
ondly, N (GG) = N (H)by (∗∗). Thus by Theorem 1 we obtain GG = H , i.e. G is the 
lique hypergraphof H . It easily implies that H is ins
ribed into G. �By the above proof we obtain in parti
ular that for any hypergraph H thereexists exa
tly one 
lique hypergraph H′ with the same vertex set su
h that H is



152 K.Pi�oroins
ribed into H′ and NH′(v) = NH(v) for ea
h vertex v (it is suÆ
ient to takethe graph H for H as above and its 
lique hypergraph).This fa
t and Theorem 2 (be
ause the relation \to be ins
ribed into" is a partialorder for simple hypergraphs) imply that G is a 
lique hypergraph if and only iffor ea
h simple hypergraph H with the same vertex set, if G is ins
ribed into Hand N (H) = N (G), then H = G. In parti
ularCorollary 3. Let G and H be 
lique hypergraphs with the same vertex set sat-isfying (∗) and (∗∗). Then G = H.By Theorem 2 we obtain also that if a 
lique hypergraph G is a subhypergraphof a hypergraph H and N (G) = N (H), then H is ins
ribed into G. In parti
ular,if H is simple, then G = H.Now we translate the above results for hypergraphs having the Helly property.Observe that Theorem 2 holds also for hypergraphs satisfying (C2). Be
ause if G issu
h a hypergraph, then Gmax is a 
lique hypergraph, and also NGmax(v) = NG(v)for any vertex v.For hypergraphs G = (V, (E1, . . . , En)) and H = (W, (E′1, . . . , E′
n)) we will\assume" in the results below that G∗ and H∗ (and also N (G∗) and N (H∗)) havethe same vertex set {E1, . . . , En}. Say more formally, we identify hyperedges

Ei and E′
i, i.e. the equality G∗ = H∗ denotes that the natural 
orresponden
e

Ei 7−→ E′
i forms an isomorphism between these hypergraphs.Corollary 4. Let G = (V, (E1, . . . , En)) be a hypergraph with the Helly prop-erty. Let H = (W, (E′1, . . . , E′

n)) be a hypergraph satisfying(∗) for any 1 ≤ i, j ≤ n, Ei ∩ Ej 6= ∅ =⇒ E′
i ∩ E′

j 6= ∅,(∗∗) N (H∗) = N (G∗).Then for ea
h w ∈ W , there is v ∈ V su
h that for any 1 ≤ i ≤ n,
w ∈ E′

i =⇒ v ∈ Ei.Proof: (∗) implies NG∗(Ei) ⊆ NH∗(E′
i) for ea
h i = 1, 2, . . . , n. Hen
e, H∗ isins
ribed into G∗. This implies the thesis. �The impli
ation in the above result 
annot be repla
ed by the equivalen
e.Take the following two hypergraphs G = (

{1, 2, 3, 4}, ({1, 2}, {2, 3}, {3, 4})) and
H = (

{1, 2, 3, 4}, ({1, 2}, {2, 3, 5}, {3, 4})). Then G and H satisfy the 
onditions(∗) and (∗∗), and G has the Helly property. On the other hand,H(5) = {

{2, 3, 5}},and G(2) = {

{1, 2}, {2, 3}}, G(3) = {

{2, 3}, {3, 4}}.Take a hypergraph G = (V, (E1, . . . , En)) and note that G∗ is simple if andonly if for ea
h verti
es v, w ∈ V , the following 
ondition holds:(DS) {Ei: v ∈ Ei} ⊆ {Ej :w ∈ Ej} =⇒ v = w.Thus by Corollary 3 we obtain (be
ause (G∗)∗ = G):



On a property of neighborhood hypergraphs 153Corollary 5. Let hypergraphs with the Helly property G = (V, (E1, . . . , En))and H = (W, (E′1, . . . , E′
n)) satisfy (DS) and (∗), (∗∗) of Corollary 4. Then

G = H (stri
tly formally, G and H are isomorphi
).Using the last 
orollary of Theorem 1 (i.e. its modi�ed version in whi
h we assumethat G satis�es (C2)) we 
an also show that if a hypergraph G having the Hellyproperty is a subhypergraph of a hypergraph H and N (G∗) = N (H∗), then Hhas also the Helly property. If H satis�es additionally (DS), then H = G.Observe that to a given hypergraph G = (V, (E1, . . . , En)) new verti
es 
an beadded in su
h a way that the obtained hypergraph has the Helly property. Morepre
isely, there is a hypergraph G′ = (V ′, (E′1, . . . , E′
n)) su
h that(i) Ei ⊆ E′

i for i = 1, . . . , n,(ii) for ea
h 1 ≤ i, j ≤ n, E′
i ∩ E′

j 6= ∅ ⇐⇒ Ei ∩ Ej 6= ∅,(iii) G′ has the Helly property.Take the dual hypergraph G∗, and the graph G with verti
es E1, . . . , En su
hthat Ei and Ej (i 6= j) are adja
ent if and only if they both belong to a hyperedgeof G∗. Next, take the hypergraph H 
onsisting of all maximal 
liques of G and allhyperedges of G∗. Then G∗ is ins
ribed into H, so Hmax is a 
lique hypergraph,whi
h implies that H satis�es (C2). Moreover, NH(Ei) = NG(Ei) = NG∗(Ei) forea
h i = 1, . . . , n. Thus it is suÆ
ient to take G′ = H∗.Now we show that the assumptions of Theorems 1 and 2 (thus also their 
orol-laries) are ne
essary. First, the following graphs G = (

{1, 2}, {2, 3}, {3, 4}, {1, 4})and H = (

{1, 3}, {3, 4}, {2, 4}, {1, 2}) are di�erent, but they have the same neigh-borhood hypergraph (be
auseN (G) andN (H) 
onsist of all three-element subsetsof {1, 2, 3, 4}). Further, the 
lique hypergraphs of G and H are equal to G and H ,respe
tively.Se
ondly, take the following hypergraphs G=({1, 5, 6, 7}, {1, 4, 5, 7}, {2, 3, 4, 7})and H = ({1, 5, 6, 7}, {1, 2, 4, 5, 7}, {2, 3, 4, 7}). It is easy to see that they are
lique hypergraphs. G and H satisfy (∗) of Theorem 2, and (∗∗) does not hold,sin
e NG(1) = {1, 4, 5, 6, 7} /∈ N (H). On the other hand, N (G)max = N (H)max(be
ause they have exa
tly one hyperedge NG(7) = NH(7) = {1, 2, . . . , 7})and N (G)min = N (H)min (be
ause they have exa
tly two hyperedges NG(3) =
NH(3) = {2, 3, 4, 7} and NG(6) = NH(6) = {1, 5, 6, 7}). Observe also that GG isa proper subgraph of GH (where GG and GH are the graphs 
orresponding to Gand H), although N (GH)max = N (GG)max and N (GH)min = N (GG)min.Finally observe that our results are not true for in�nite graphs and hypergraphs.Let A = {ai: i ∈ Z} and B = {bi: i ∈ Z} be two in�nite disjoint sets (where Z isthe set of all integers), and take

G1 = {

{ai, aj}: i 6= j
}

∪
{

{bi, bj}: i 6= j
}

∪
{

{ai, bj}: j ≤ i
}

,

G2 = {

{ai, aj}: i 6= j
}

∪
{

{bi, bj}: i 6= j
}

∪
{

{ai, bj}: j ≤ i − 1}.



154 K.Pi�oroThen �rst G2 is a proper subgraph of G1. Se
ondly, for ea
h i ∈ Z,
NG1(ai) = A ∪ {bj : j ≤ i}, NG1(bi) = B ∪ {aj : j ≥ i},

NG2(ai) = A ∪ {bj : j ≤ i − 1}, NG2(bi) = B ∪ {aj : j ≥ i + 1}.Hen
e, NG2(ai) = NG1(ai−1) ⊆ NG1(ai) and NG2(bi) = NG1(bi+1) ⊆ NG1(bi).In parti
ular, N (G1) = N (G2).By the above fa
ts we have also that the 
lique hypergraphs G1 and G2 of thegraphs G1 and G2 satisfy assumptions of Theorem 2. But they are not equal,be
ause G1 6= G2.A
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