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Baireness of Ck(X) for ordered XMi
hael Granado, Gary GruenhageAbstra
t. We show that if X is a subspa
e of a linearly ordered spa
e, then Ck(X) is aBaire spa
e if and only if Ck(X) is Choquet i� X has the Moving O� Property.Keywords: Baire, linearly ordered spa
e, 
ompa
t-open topology, Choquet, Moving O�PropertyClassi�
ation: Primary 54F05; Se
ondary 54C35, 54E521. Introdu
tionLet Ck(X) denote the spa
e of 
ontinuous real-valued fun
tions on X endowedwith the 
ompa
t-open topology. G. Gruenhage and D. Ma [GM℄ de�ned theMoving O� Property (MOP), and showed that, for lo
ally 
ompa
t spa
es X ,

Ck(X) is Baire if and only if X has MOP. This result holds more generally forthe 
lass of q-spa
es, whi
h in
ludes all lo
ally 
ompa
t and all �rst-
ountablespa
es.It is an open question whether the Gruenhage-Ma result holds for all 
ompletelyregular X . We provide some eviden
e of an aÆrmative answer to the questionby showing that it holds whenever X is a GO-spa
e (i.e., a subspa
e of a linearlyordered spa
e).It is also an unsolved problem to �nd any internal property P of topologi
alspa
es su
h that X has P i� Ck(X) is Baire. A key to our result that P=MOPworks for GO-spa
es is to �rst obtain a stru
tural result whi
h 
hara
terizes whena GO-spa
e has the MOP. We then use this result to obtain our main theorem.In the �nal se
tion, we apply our results to some spe
ial 
ases.All spa
es are assumed to be 
ompletely regular.2. De�nitions and ba
kground resultsRe
all that a 
olle
tion J of subsets of a spa
e X is dis
rete if every point of Xhas a neighborhood meeting at most one member of J . We say J has a dis
reteopen expansion if for every J ∈ J , there is an open superset UJ of J su
h that
{UJ : J ∈ J } is a dis
rete 
olle
tion.The se
ond author a
knowledges support from National S
ien
e Foundation grant DMS-0405216.



104 M.Granado, G.GruenhageA 
olle
tion K of nonempty 
ompa
t subsets of a spa
e X is said to be amoving o� 
olle
tion if for ea
h 
ompa
t subset M of X there exists a K ∈ Kwith M ∩K = ∅. A spa
e X is said to have the Moving O� Property (MOP) ifevery moving o� 
olle
tion K in X 
ontains an in�nite sub
olle
tion K′ whi
h hasa dis
rete open expansion.A spa
e X is said to have the Weak Moving O� Property (WMOP) if ev-ery moving o� 
olle
tion in X 
ontains an in�nite dis
rete sub
olle
tion. Thisproperty, whi
h we mention here primarily for 
ompleteness, was 
onsidered byA. Bouziad [B℄. The WMOP is equivalent to the MOP in lo
ally 
ompa
t or nor-mal spa
es; in parti
ular, the 
on
epts 
oin
ide in the 
lass of GO-spa
es. Whilethe WMOP seems more elegant than the MOP, it 
annot serve to 
hara
terizeBaireness of Ck(X). Example 4.8 of [G2℄ gives a 
ompletely regular spa
e X withthe WMOP but not the MOP, hen
e by the next theorem, Ck(X) is not Baire.Theorem 2.1 ([GM℄). If Ck(X) is Baire, then X has the MOP.We will also make use of the following results.Theorem 2.2 ([GM℄). Suppose X has the MOP. Then:(a) if X has a 
ountable lo
al base at p, then X is lo
ally 
ompa
t at p;(b) if X is 
ountably 
ompa
t, then X is 
ompa
t.Theorem 2.3 ([G1℄). If a spa
e X is para
ompa
t and lo
ally 
ompa
t, then Xhas the MOP.Let X be a nonempty topologi
al spa
e. The Choquet game GX of X isde�ned as follows: Players Empty (E) and Nonempty (NE) take turns in 
hoosingnonempty open subsets of X . Player E starts by 
hoosing U0 ⊂ X and NEresponds with V0 ⊂ U0. In the nth round, n ≥ 1, E and NE 
hoose in turnnon-empty open sets Un and Vn, with Vn ⊂ Un ⊂ Vn−1. We say that E wins thegame if ⋂
n Un = ∅; otherwise NE wins.It is well-known that a spa
e X is a Baire spa
e i� E has no winning strategy inthe Choquet game. If NE has a winning strategy, then X is said to be a Choquetspa
e1. Choquet spa
es are also 
alled weakly α-favorable spa
es .Ma [Ma℄ proved the following 
hara
terization of Choquetness of Ck(X) forlo
ally 
ompa
t X :Theorem 2.4. Suppose X is lo
ally 
ompa
t. Then Ck(X) is Choquet i� X ispara
ompa
t.We will use the following 
hara
terization of para
ompa
tness in GO-spa
es([EL℄):1We are following the terminology of Ke
hris [Ke℄.



Baireness of Ck(X) for ordered X 105Theorem 2.5. Let X be a GO-spa
e. Then X is not para
ompa
t if and onlyfor some regular un
ountable 
ardinal κ, there exists a 
losed subspa
e T of Xwhi
h is homeomorphi
 to a stationary subset S of κ; furthermore, when su
h Tand S exist, one may assume that there is a homeomorphism h : S → T that iseither order-preserving or order-reversing.We follow Kunen [Ku℄ for set-theoreti
 terminology. A subset A of an orderedset X is 
o�nal (resp., 
oinitial) in X if for every x ∈ X , there is a ∈ A with x ≤ a(resp., a ≤ x). A 
ardinal κ is regular if there is no 
o�nal subset A of κ with
|A| < κ. A subset C of an un
ountable regular 
ardinal κ is 
losed unbounded(
.u.b.) in κ if it is 
o�nal in κ and 
losed in the order topology, and a subset S of
κ is stationary in κ if S∩C 6= ∅ whenever C is 
.u.b. in κ. The main set-theoreti
fa
t that we will use about stationary sets is the so-
alled Pressing Down Lemma:Theorem 2.6. Let S be a stationary subset of a regular un
ountable 
ardinal κ.Suppose f : S → κ is su
h that f(α) < α for every α ∈ S, α > 0. Then there issome β ∈ κ and a stationary (hen
e unbounded) subset T of S su
h that f(α) = βfor every α ∈ T .We also use the more elementary fa
t that for any stationary set S, the set S′of limit points in S is stationary as well.3. Chara
terization of the MOP for ordered spa
esLet X be a GO-spa
e. Then there exists a 
ompa
t ordered spa
e X∗ 
ontain-ing X as a dense subspa
e ([L℄). Elements of X∗\X are 
alled gaps in X . For
A ⊂ X , we will denote by supA and inf A the obvious elements of X∗ (whi
hmay or may not be in X).A subset C of X is 
alled 
onvex in X , if for all a, b ∈ C, {x ∈ X : a < x <
b} ⊆ C.Let X be a GO spa
e, and let p ∈ X . Then X is said to be left �rst-
ountable(resp., left lo
ally 
ompa
t) at p if p is a point of �rst-
ountability (resp., lo
al
ompa
tness) in (←, p℄. The terms right �rst-
ountable and right lo
ally 
ompa
tare de�ned analogously.De�ne an equivalen
e relation on a GO-spa
e X by a ∼ b i� [a, b℄ or [b, a℄ is
ompa
t, and let J be the 
olle
tion of equivalen
e 
lasses. Note that J is apairwise-disjoint 
olle
tion of 
onvex subsets of X . It is also easy to see that ea
h
J ∈ J is a lo
ally 
ompa
t subspa
e of X . The following theorem is the mainresult of this se
tion.Theorem 3.1. Let X be a GO-spa
e. Then X has the MOP i� the followingtwo properties hold:(I) every J ∈ J is σ-
ompa
t;(II) for any point p ∈ X , if X is left �rst-
ountable at p, then X is left lo
ally
ompa
t at p, and if X is right �rst-
ountable at p, then X is right lo
ally
ompa
t at p.



106 M.Granado, G.GruenhageProof: We �rst show the reverse dire
tion. Assume (I) and (II) hold; we willshow that X has the MOP.Claim. If K is a 
ompa
t subset of X, then J (K) = {J ∈ J : J ∩K 6= ∅} is�nite.To see this, suppose by way of 
ontradi
tion that there is a 
ompa
t set Kand a 
ountably in�nite J ′ ⊂ J su
h that, for every J ∈ J ′, J ∩K 6= ∅. Thenthere is a point p in K su
h that every neighborhood of p meets in�nitely many
J ∈ J ′. W.l.o.g., ea
h J ∈ J ′ falls to the left of p. It follows that X is left�rst-
ountable at p, hen
e by (II), is left lo
ally 
ompa
t at p. But then somepoint y < p is in the same equivalen
e 
lass as p, yet [y, p℄ meets in�nitely manydistin
t equivalen
e 
lasses; this is a 
ontradi
tion whi
h proves the 
laim.Let K be a moving o� 
olle
tion of 
ompa
t sets. Ea
h J ∈ J is σ-
ompa
tand lo
ally 
ompa
t, so we 
an write J = ⋃

n∈ω Jn, where ea
h Jn is 
ompa
tand every 
ompa
t subset of J is 
ontained in some Jn.Now 
hoose K0 ∈ K. If Ki ∈ K has been 
hosen for ea
h i < n, 
hoose Kn ∈ Kdisjoint from (⋃

i<n

Ki) ∪⋃
{Ji : i ≤ n, J ∈

⋃

i<n

J (Ki)}.We show that {Ki}i∈ω is a dis
rete sub
olle
tion of K. Suppose p is a limitpoint. W.l.o.g., p is a limit from the left. In the same way as in the proof of theClaim, there is y < p su
h that [y, p℄ is 
ompa
t. Then [y, p℄ ⊂ J for some J ∈ J ,and [y, p℄∩Kn 6= ∅ for some n. So J ∈ J (Kn), and [y, p℄ ⊂ Jm for some m. Thenif l > max{m, n}, by the 
onstru
tion Kl∩Jm = ∅. Thus [y, p℄ meets only �nitelymany Ki, a 
ontradi
tion. This 
ompletes the proof of the reverse dire
tion.Now we prove the forward dire
tion. Suppose X has the MOP. Then so doesany 
losed subset of X , in parti
ular, 
losed intervals. By Theorem 2.2(a), pointsof �rst-
ountability must be points of lo
al 
ompa
tness. It follows that left (resp.,right) �rst-
ountable implies left (resp., right) 
ompa
t at any point, so (II) holds.To see that (I) holds, let J be a ∼ equivalen
e 
lass, and suppose J is not σ-
ompa
t. Then J either has no 
ountable 
o�nal subset or no 
ountable 
oinitialsubset. Suppose w.l.o.g. that J has no 
ountable 
o�nal subset. Then sup J /∈ J ,hen
e sup J /∈ X , so J is 
losed (on the right) in X . Let κ be the minimal 
ardinalof a 
o�nal subset of J . Note that κ is regular. Sin
e [a, b℄ is 
ompa
t for every
a, b ∈ J , one sees that supA ∈ J for any subset of J of 
ardinality less than κ.It follows that one may 
onstru
t by indu
tion a 
ontinuous in
reasing mapping
f : κ→ J with sup J = sup ran(f). But then ran(f) is a 
losed in X 
opy of theordinal spa
e κ. Sin
e κ is 
ountably 
ompa
t but not 
ompa
t, this 
ontradi
tsTheorem 2.2(b) and 
ompletes the proof of the theorem. �4. Baireness of Ck(X) for ordered XIn this se
tion, we use the 
hara
terization of the MOP for GO-spa
es obtained
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tion to prove the following theorem:Theorem 4.1. Let X be GO-spa
e. The following are equivalent:(a) Ck(X) is Baire;(b) X has the MOP;(
) Ck(X) is Choquet.For the proof of the above result and for results in the next se
tion, it will behandy to have the following lemma.Lemma 4.2. Suppose X is a GO-spa
e, p ∈ X , and that S is a 
o�nal subsetof (←, p) whi
h is homeomorphi
 to a stationary subset of a regular un
ountable
ardinal. Suppose also that X is left lo
ally 
ompa
t at every point of S, andthat p is a limit point of S. Then X is left lo
ally 
ompa
t at p.Proof: Let S′ be the set of limit points of S inside S. Then for ea
h α in
S′, there is some βα ∈ S with βα < α su
h that the 
losed interval [βα, α℄ is
ompa
t. Sin
e S′ is stationary, by the Pressing Down Lemma there is β ∈ Sand an unbounded subset T of S′ su
h that [β, α℄ is 
ompa
t for every β ∈ T . Itfollows that [β, p℄ is 
ompa
t, and the lemma is proved. �Proof of Theorem 4.1: By Theorem 2.1, (a) implies (b) is true for anyspa
e X . That (
) implies (a) is immediate from the de�nitions. It remainsto prove (b) implies (
). To this end, suppose X has the MOP.We need to de�ne a winning strategy for NE in the Choquet game on Ck(X).W.l.o.g., we may assume both players restri
t their 
hoi
es to basi
 open sets ofthe form

B(f, K, ǫ) = {g ∈ C(X) : ∀x ∈ K(|f(x)− g(x)| < ǫ)}where f ∈ C(X), K is 
ompa
t, and ǫ > 0. Some ideas in the proof below aresimilar to those in Theorem 8.3 of [MN℄. Indeed, it is possible to prove in our
ase that II has a winning strategy in the game �2(X) de�ned in [MN℄, and quotetheir Theorem 8.3 to 
on
lude that Ck(X) is Choquet. However, there is a gapin their proof of Theorem 8.3; although that gap 
an be �xed, we 
hoose here togive instead a dire
t proof of (b) implies (
).As in the proof of Theorem 3.1, any 
ompa
t set K meets only a �nite 
olle
tion
J (K) of members of J , the family of ∼ equivalen
e 
lasses. And sin
e ea
hmember J of J is σ-
ompa
t and lo
ally 
ompa
t , we 
an write J = ⋃

n∈ω Jn,where J0, J1, . . . is an in
reasing sequen
e of 
ompa
t subsets of J su
h that every
ompa
t subset of J is 
ontained in Jn for some n.Now suppose B(fn, Kn, ǫn) is E's move in the nth round. Let NE respond with
B(fn, Ln, ǫ′n), where

Ln = Ln−1 ∪Kn ∪
⋃
{Jn : J ∈ J (Ln−1 ∪Kn)},



108 M.Granado, G.Gruenhageand ǫ′n = min{ǫn/2, 1/2n}.Note that by indu
tion, the Ln's are in
reasing, and Ln ⊃
⋃

i≤n Ki. Also, if
m < n < l, then fl ∈ B(fn, Ln, ǫ′n), so |fl(x) − fn(x)| < 1/2n for all x in Ln,hen
e for all x ∈ Lm. It follows that, for ea
h �xed m, {fn ↾ Lm : n ∈ ω} isa Cau
hy sequen
e in the topology of uniform 
onvergen
e, hen
e 
onverges to aunique gm : Lm → R. Note that gn ↾ Lm = gm for n ≥ m; thus if L = ⋃

n∈ω Ln,then g = ⋃
n∈ω gn is a fun
tion from L to R.We plan to show that L is 
losed in X and that g is 
ontinuous on L. Tothis end, we will show that if L′0 = L0 and L′

n = Ln\Ln−1 for n ≥ 1, then
{L′

n}n∈ω is a lo
ally �nite 
olle
tion. Suppose by way of 
ontradi
tion that everyneighborhood of a point p meets L′
n for in�nitely many n. W.l.o.g., p is a limitfrom the left of the L′

n's.Claim. X is left lo
ally 
ompa
t at p. If p is not a limit point from the left of L′
nfor any n, then (←, p) has 
ountable 
o�nality, so X must be left �rst-
ountableat p and hen
e by Theorem 3.1, X is left lo
ally 
ompa
t at p; thus the 
laimholds in this 
ase. Now assume p is a limit point from the left of L′

n for some�xed n. If there is a 
ountable subset of L′
n 
o�nal in (←, p), then again X is left�rst-
ountable at p and the 
laim holds as before. So suppose the 
o�nality of

L′
n ∩ (←, p) is un
ountable. Then for some un
ountable regular 
ardinal κ, thereis a 
ontinuous in
reasing fun
tion θ : κ → L′

n ∩ (←, p) whose range is 
o�nalin L′
n ∩ (←, p). Let S be the subset of κ 
onsisting of the limits of 
ountable
o�nality in κ. Then S is stationary in κ, and X is left �rst-
ountable, hen
eleft lo
ally 
ompa
t, at ea
h point of θ(S). Now the 
laim follows by applyingLemma 4.2 to θ(S).From the 
laim, we easily get a 
ontradi
tion. Let y < p su
h that [y, p℄ is
ompa
t. Then [y, p℄ ⊂ Ji some J ∈ J and i ∈ ω. Sin
e p is a limit from the leftof {L′
n}n∈ω, we have that Lm ∩ [y, p℄ 6= ∅ for in�nitely many m, and it followsfrom the 
onstru
tion that for suÆ
iently large n, Ln ⊃ Ji. This is easily seen tobe a 
ontradi
tion to the assumption that p is a limit from the left of the L′

n's.Now, sin
e we have shown that {L′
n}n∈ω is a lo
ally �nite 
olle
tion of 
losedsets, we have that L = ⋃

n∈ω L′
n is 
losed in X , and furthermore, sin
e g ↾ L′

n is
ontinuous for ea
h n, we also have that g is 
ontinuous on L. Hen
e g extends to a
ontinuous g∗ : X → R and it is straightforward to show that g∗ ∈ B(fm, Km, ǫm)for every m ∈ ω. This 
ompletes the proof. �5. Appli
ationsIn this se
tion, we apply our main result to get further results in some spe
ial
ases.Lemma 5.1. Let κ be a regular un
ountable 
ardinal.(a) Suppose S is a stationary 
o-stationary subset of κ. Then there is a 
.u.b.
C in κ su
h that S is not lo
ally 
ompa
t at any point of C ∩ S;



Baireness of Ck(X) for ordered X 109(b) If N is a non-stationary subset of κ, then κ\N does not have the MOP.Proof: For (a), let D = S ∩ κ\S, and let C be the set of non-isolated points ofthe subspa
e D. Then C is 
.u.b., and it is easy to 
he
k that no point of C ∩ Sis a point of lo
al 
ompa
tness in S.For (b), 
onsider a 
.u.b. C ⊂ κ\N . Then C is 
ountably 
ompa
t but not
ompa
t, hen
e 
annot have the MOP �We now get the following 
hara
terizations for GO-spa
es whi
h are lo
ally
ompa
t or �rst-
ountable:Theorem 5.2. Let X be a lo
ally 
ompa
t GO-spa
e. Then the following areequivalent:(a) X has the MOP;(b) X is para
ompa
t;(
) Ck(X) is Baire;(d) Ck(X) is Choquet.Proof: By Theorem 2.4, Ck(X) is Choquet i� X is para
ompa
t, and by Theo-rem 2.1, Baireness of Ck(X) implies X has the MOP.Thus it remains to show that for a lo
ally 
ompa
t GO-spa
e X , if X hasthe MOP, then X is para
ompa
t. Suppose X is not para
ompa
t. Then X
ontains a 
losed subset S homeomorphi
 to a stationary subset of a regularun
ountable 
ardinal κ. Sin
e S is lo
ally 
ompa
t, by Lemma 5.1(a), S 
annotbe 
o-stationary, hen
e must 
ontain a 
opy of a 
lub C in κ. But by 5.1(b), Cdoes not have the MOP, 
ontradi
tion. �Corollary 5.3. Let X be a �rst-
ountable GO-spa
e. Then the following areequivalent:(a) X has the MOP;(b) X is para
ompa
t and lo
ally 
ompa
t;(
) Ck(X) is Baire;(d) Ck(X) is Choquet.Proof: Re
all that �rst-
ountable implies lo
ally 
ompa
t for spa
es having theMOP. Hen
e this 
orollary is an immediate 
onsequen
e of the previous theorem.
�Now we apply our results to obtain a 
hara
terization for GO-spa
es with awell-order, or, equivalently, subspa
es of an ordinal. For a spa
e X , we denoteby LC(X) the points of lo
al 
ompa
tness. Note that LC(X) is an open lo
ally
ompa
t subspa
e of X .For X a subset of an ordinal, we say a point x ∈ X has 
ountable 
o�nalityrelative to X if there is a 
ountable subset of X whi
h is 
o�nal in X ∩ (←, x).



110 M.Granado, G.GruenhageTheorem 5.4. Let X be a subspa
e of an ordinal. Then X has the MOP i�LC(X) is para
ompa
t and 
ontains all points of 
ountable 
o�nality relativeto X .Proof: We �rst prove the forward dire
tion. Suppose X has the MOP. ThatLC(X) 
ontains all points of 
ountable 
o�nality relative to X is immediate fromTheorem 3.1. Suppose LC(X) is not para
ompa
t. Then there is a 
losed subset
Y of LC(X) su
h that Y is homeomorphi
 to a stationary subset S of a regularun
ountable 
ardinal κ. Sin
e X is well-ordered, we may assume that there is anorder-preserving homeomorphism h : S → Y . By Lemma 5.1, sin
e ea
h point of
Y is a point of lo
al 
ompa
tness, S 
annot be 
o-stationary, i.e., S 
ontains some
.u.b. C in κ. Sin
e h(C) 
annot have the MOP, h(C) 
annot be 
losed in X . Itfollows that p = sup(h(C)) = sup(Y ) is a point of X\LC(X) and is a limit pointof h(C). But sin
e ea
h point of Y is a point of lo
al 
ompa
tness, by Lemma 4.2,
p ∈ LC(X), whi
h is a 
ontradi
tion.For the reverse dire
tion, suppose LC(X) is para
ompa
t and 
ontains allpoints of 
ountable 
o�nality relative to X . Then 
ondition (II) of Theorem 3.1holds, so we need to show (I) holds. Let J be a ∼ equivalen
e 
lass. Then
J ⊂ LC(X). Note that J is σ-
ompa
t i� J has a 
ountable 
o�nal subset. Sup-pose J has no 
ountable 
o�nal subset. Then p = supJ /∈ J and there is a 
opy Kof a regular un
ountable 
ardinal in J su
h that sup(K) = sup(J). Sin
e LC(X)is para
ompa
t, K 
annot be 
losed in LC(X) by Theorem 2.5 , so p ∈ LC(X)and hen
e p ∈ J by Lemma 4.2, whi
h is a 
ontradi
tion. �Examples.(a) A subspa
e X of the spa
e ω1 of 
ountable ordinals has the MOP i� Xis lo
ally 
ompa
t and non-stationary.(b) Let Y be the set of ordinals in ω2 of un
ountable 
o�nality. Then Y hasthe MOP.(
) Let Y ∗ be Y above but with the reverse ordering, and let X be the linearlyordered spa
e 
onsisting of the ordinal spa
e ω1+1 followed a 
opy of Y ∗.Then X has the MOP, but LC(X) is not para
ompa
t.Proof: To see (a), note that in this situation we have LC(X) = X , and re
allthat a subset X of ω1 is para
ompa
t i� X is non-stationary. To see (b), note thatLC(Y ) is the set of isolated points of Y , hen
e LC(Y ) is para
ompa
t. Finally, for(
), note that the ∼ equivalen
e 
lasses 
onsist of ω1 + 1 and singletons y ∈ Y ∗.Thus X satis�es 
ondition (I) of Theorem 3.1. It is easy to see that X also satis�es
ondition (II), so X has the MOP. But LC(X) 
ontains the spa
e ω1 of 
ountableordinals as a relatively 
losed subspa
e, hen
e LC(X) is not para
ompa
t. �It follows from the last example that the 
hara
terization of the MOP in well-ordered GO-spa
es given by Theorem 5.4 does not hold for general GO-spa
es.
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