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Some relative properties on normality and

paracompactness, and their absolute embeddings

Shinji Kawaguchi∗, Ryoken Sokei

Dedicated to Professor Takao Hoshina on his 60th birthday.

Abstract. Paracompactness (= 2-paracompactness) and normality of a subspace Y in a

space X defined by Arhangel’skii and Genedi [4] are fundamental in the study of relative
topological properties ([2], [3]). These notions have been investigated by primary using of
the notion of weak C- or weak P -embeddings, which are extension properties of functions
defined in [2] or [18]. In fact, Bella and Yaschenko [8] characterized Tychonoff spaces
which are normal in every larger Tychonoff space, and this result is essentially implied
by their previous result in [8] on a corresponding case of weak C-embeddings. In this
paper, we introduce notions of 1-normality and 1-collectionwise normality of a subspace
Y in a space X, which are closely related to 1-paracompactness of Y in X. Furthermore,
notions of quasi-C∗- and quasi-P -embeddings are newly defined. Concerning the result
of Bella and Yaschenko above, by characterizing absolute cases of quasi-C∗- and quasi-
P -embeddings, we obtain the following result: a Tychonoff space Y is 1-normal (or
equivalently, 1-collectionwise normal) in every larger Tychonoff space if and only if Y

is normal and almost compact. As another concern, we also prove that a Tychonoff
(respectively, regular, Hausdorff) space Y is 1-metacompact in every larger Tychonoff
(respectively, regular, Hausdorff) space if and only if Y is compact. Finally, we construct
a Tychonoff space X and a subspace Y such that Y is 1-paracompact in X but not 1-
subparacompact in X. This is a negative answer to a question of Qu and Yasui in [25].

Keywords: 1-paracompactness of Y in X, 2-paracompactness of Y in X, 1-collectionwise
normality of Y in X, 2-collectionwise normality of Y in X, 1-normality of Y in X,
2-normality of Y in X, quasi-P -embedding, quasi-C-embedding, quasi-C∗-embedding,
1-metacompactness of Y in X, 1-subparacompactness of Y in X
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1. Introduction

Throughout this paper all spaces are assumed to be T1 and the symbol γ
denotes an infinite cardinal.
As central notions in the study of relative topological properties which has

been posed by Arhangel’skii and Genedi [4], and also in the subsequent articles
[2], [3] by Arhangel’skii, we can mention those on relative normality and relative
paracompactness.

∗Corresponding author.
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Let X be a space and Y a subspace of X . A subspace Y is said to be normal
(respectively, strongly normal) in X if for each disjoint closed subsets F0, F1
of X (respectively, of Y ), there exist disjoint open subsets G0, G1 of X such
that Fi ∩ Y ⊂ Gi for i = 0, 1. A subspace Y is said to be 1- (respectively, 2-)
paracompact in X if for every open cover U of X , there exists a collection V of
open subsets of X with X =

⋃

V (respectively, Y ⊂
⋃

V) such that V is a partial
refinement of U and V is locally finite at each point of Y . Here, V is said to be
a partial refinement of U if for each V ∈ V , there exists a U ∈ U containing V .
The term “2-paracompact” is often shortened to “paracompact”. In the definition
of 2-paracompactness of Y in X above, when we replace “open cover of X” by
“collection of open subsets of X with Y ⊂

⋃

U”, Y is said to be Aull-paracompact
in X ([3], [5]). The 1-paracompactness and Aull-paracompactness of Y in X need
not imply each other ([5]), but each of them clearly implies 2-paracompactness of
Y in X .

On the other hand, Hoshina and Yamazaki ([18]) introduced two relative no-
tions called collectionwise normality and strong collectionwise normality of Y
in X (see Section 2 for the definition), which imply normality and strong norma-
lity of Y in X , respectively. It is known that in case X is regular (more strictly,
Y is strongly regular in X ([2])), 2-paracompactness of Y in X implies normality
of Y in X ([4]); in fact, 2-paracompactness of Y in X implies collectionwise nor-
mality of Y in X (see Section 2). It will be also shown that in case Y is Hausdorff
in X , Aull-paracompactness of Y in X implies strong collectionwise normality of
Y in X (Lemma 2.6).

In view of these results, it is suggested to define suitable notions on rela-
tive normality and relative collectionwise normality which are closely related to
1-paracompactness. For this purpose, in Section 2 we define the notions of 1-
normality and 1-collectionwise normality of Y in X , and prove several results
including relations between these notions and those mentioned above. In partic-
ular, we show that in case of Y being strongly regular in X , 1- (respectively, 2-)
paracompactness of Y in X implies 1- (respectively, 2-) collectionwise normality
of Y in X (Proposition 2.5).

In Section 3, we are concerned to describe spaces that are 1-normal or 1-
collectionwise normal in every larger space (that is, in every space containing
Y as a subspace). Bella and Yaschenko [8] and Matveev et al. [24] proved a
related theorem, where a Tychonoff space Y being normal in every larger Ty-
chonoff (or every regular) space was characterized (Theorem 2.10). This result
was implied by another theorem in [8] which describes a Tychonoff space Y be-
ing weakly C-embedded in every larger Tychonoff space (Theorem 2.8), where
weak C-embedding is due to Arhangel’skii [2]. In [18], a characterization of weak
C-embedding was given by extending collections of subsets.

Being motivated by this result, we define a new extension property called quasi-
C∗-embedding for a subspace Y of a spaceX . We characterize Tychonoff spaces Y
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which are quasi-C∗-embedded in every larger Tychonoff space (Theorem 3.11). By
virtue of this result, we establish a theorem that a Tychonoff space Y is 1-normal
in every larger Tychonoff space if and only if Y is normal and almost compact.
We also introduce “quasi-P -embedding” and give a similar characterization for
1-collectionwise normality of Y in X (Corollary 3.12).
In Section 4, we consider 1-metacompactness defined by Kočinac [20]. Extend-

ing [16, Corollary 27] essentially, we obtain the following theorems; a Tychonoff
(respectively, regular, Hausdorff) space Y is 1-metacompact in every larger Ty-
chonoff (respectively, regular, Hausdorff) space X if and only if Y is compact
(Theorems 4.2 and 4.3).
In the final section, on 1-subparacompactness defined by Qu and Yasui [25],

we obtain a Tychonoff space X and a subspace Y such that Y is 1-paracompact,
but not 1-subparacompact in X . This is a negative answer to a question in [25].
Other undefined notations and terminology are used as in [12].

2. Preliminaries and 1- or 2- (collectionwise) normality of a subspace
in a space

Throughout this paper symbols R, N and I denote the set of real numbers, the
set of natural numbers and the closed unit interval, respectively.
First let us recall some preliminary notions and facts. Let Y be a subspace of

a space X . As is known, Y is said to be C∗- (respectively, C-) embedded in X if
every bounded real-valued (respectively, real-valued) continuous function on Y is
continuously extended over X . A subspace Y is said to be P γ - (respectively, P -)
embedded in X if every continuous γ-separable (respectively, continuous) pseudo-
metric on Y is extended to a continuous pseudo-metric onX ([1]); a pseudo-metric
d on Y is γ-separable if the pseudo-metric space (Y, d) has weight ≤ γ. It is known
that Pω-embedding is equal to C-embedding ([1]).
By [2], Y is said to be weakly C-embedded in X if for every real-valued con-

tinuous function f on Y there exists a real-valued function on X which is an
extension of f and continuous at each point of Y . By [18], Y is said to be weakly
P γ- (respectively, weakly P -) embedded in X if every continuous γ-separable (re-
spectively, continuous) pseudo-metric on Y is extended to a pseudo-metric on X
which is continuous at each point of Y ×Y . Weak Pω-embedding is equal to weak
C-embedding ([18]). A space X is γ-collectionwise normal if for every discrete
collection {Eα |α < γ} of closed subsets there exists a pairwise disjoint collection
{Gα |α < γ} of open subsets such that Eα ⊂ Gα for each α < γ. Clearly, X is
collectionwise normal if X is γ-collectionwise normal for every γ.
A subspace Y is said to be Hausdorff in X if for every two distinct points

y1, y2 of Y , there are disjoint open subsets U1, U2 of X such that yi ∈ Ui for
i = 0, 1. A subspace Y is said to be strongly regular in X if for each x ∈ X and
each closed subset F of X with x /∈ F , there exist disjoint open subsets U, V of
X such that x ∈ U and F ∩ Y ⊂ V .
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Following [18], Y is said to be γ-collectionwise normal (respectively, strongly γ-
collectionwise normal) in X if for every discrete collection {Eα |α < γ} of closed
subsets ofX (respectively, Y ), there is a pairwise disjoint collection {Uα |α < γ} of
open subsets ofX such that Eα∩Y ⊂ Uα (respectively, Eα ⊂ Uα) for every α < γ.
As is easily seen, in case γ = ω it is equivalent to say that Y is normal (respectively,
strongly normal) in X . When Y is γ-collectionwise normal (respectively, strongly
γ-collectionwise normal) in X for every γ, we say Y is collectionwise normal
(respectively, strongly collectionwise normal) in X ; we see that collectionwise
normality (respectively, strongly collectionwise normality) of Y in X is equal to
being α − CN (respectively, γ − CN) of Y in the sense of Aull [7].
Let XY denote the space obtained from the space X , with the topology gener-

ated by a subbase {U |U is open in X or U ⊂ X \Y }. Hence, points in X \Y are
isolated and Y is closed in XY . Moreover, X and XY generate the same topology
on Y ([12]). As is seen in [2], the space XY is often useful in discussing several
relative topological properties. It is easy to see that Y is Hausdorff in X if and
only if XY is Hausdorff. The following results given in [2], [18] are fundamental
in the present paper; (a)⇔(c)⇔(e) in Lemma 2.1 have been already shown in [2].

Lemma 2.1 ([2], [18]). For a subspace Y of a space X the following statements
are equivalent.

(a) Y is strongly normal in X .
(b) Y is normal in G for every open subset G of X with Y ⊂ G.
(c) XY is normal.

(d) Y is normal in XY .

(e) Y is normal itself and weakly C-embedded in X .

Lemma 2.2 ([18]). For a subspace Y of a space X the following statements are
equivalent.

(a) Y is strongly γ-collectionwise normal in X .
(b) Y is γ-collectionwise normal in G for every open subset G of X with

Y ⊂ G.
(c) XY is γ-collectionwise normal.
(d) Y is γ-collectionwise normal in XY .

(e) Y is γ-collectionwise normal itself and weakly P γ-embedded in X .

We now introduce notions of 1- or 2- (collectionwise) normality of Y in X . We
say that a subspace Y of a space X is 1- (respectively, 2-) normal in X if for each
disjoint closed subsets F0, F1 of X there exist open subsets G0, G1 of X such
that Fi ∩ Y ⊂ Gi for i = 0, 1 and {G0, G1} is discrete in X (i.e. G0 ∩ G1 = ∅)
(respectively, discrete at each point of Y in X (i.e. G0 ∩ G1 ∩ Y = ∅)).
A subspace Y of a space X is 1-γ- (respectively, 2-γ-) collectionwise normal in

X if for each discrete collection {Fα |α < γ} of closed subsets of X there exists
a collection {Gα |α < γ} of open subsets of X such that Fα ∩ Y ⊂ Gα for each
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α < γ and {Gα |α < γ} is discrete in X (respectively, discrete at each point of Y
in X). If Y is 1- (respectively, 2-) γ-collectionwise normal in X for every γ, Y is
said to be 1- (respectively, 2-) collectionwise normal in X .
In the above definitions of 2-normality and 2-γ-collectionwise normality of Y

in X , it is easy to see that both {G1, G2} and {Gα |α < γ} can be taken to be
disjoint. Therefore, 2- (collectionwise) normality of Y inX implies (collectionwise)
normality of Y in X .
As was mentioned in the introduction, we have

Proposition 2.3. Suppose Y is strongly regular in X . If Y is 1-paracompact
in X , then Y is 1-collectionwise normal in X .

Proof: Assume Y is 1-paracompact in X . Let {Fα |α ∈ Ω} be a discrete
collection of closed subsets of X . Since Y is strongly regular in X , for each
x ∈ X we can choose an open neighborhood Ux of x in X such that

∣

∣{α ∈

Ω |Ux ∩ Y ∩ Fα 6= ∅}
∣

∣ ≤ 1. Set U = {Ux |x ∈ X}. Since U is an open cover of
X and Y is 1-paracompact in X , there exists an open cover V of X such that V
refines U and is locally finite at each point of Y in X . We put for α ∈ Ω

Gα = X \
⋃

{V ∈ V |V ∩ Y ∩ Fα = ∅}.

Since Y ∩
⋃

{V ∈ V |V ∩ Y ∩ Fα = ∅} = Y ∩ (
⋃

{V ∈ V |V ∩ Y ∩ Fα = ∅}), we
have Fα ∩ Y ⊂ Gα for each α ∈ Ω. Note that for V ∈ V , V ∩ Y ∩ Fα 6= ∅ if
Gα ∩ V 6= ∅. Hence {Gα |α ∈ Ω} is discrete in X . Thus, Y is 1-collectionwise
normal in X . This completes the proof. �

Proposition 2.4.† Suppose Y is strongly regular in X . If Y is 2-paracompact
in X , then Y is 2-collectionwise normal in X .

Proof: Assume Y is 2-paracompact in X . Let {Fα |α ∈ Ω} and U be the same
as in the proof of Proposition 2.3. Take a collection V of open subsets of X such
that V partially refines U , V is locally finite at each point of Y in X and Y ⊂

⋃

V .
Put

Gα = St(Fα ∩ Y,V) \
⋃

{V ∈ V |V ∩ Y ∩ Fα = ∅}

for each α ∈ Ω. Then {Gα |α ∈ Ω} is the desired collection. Hence Y is 2-
collectionwise normal in X , which completes the proof. �

These propositions and definitions above admit the following result; for brevity
“cw-normal” means collectionwise normal. Moreover, the symbols “H” and “SR”
mean the assumptions that “Y is Hausdorff in X” and “Y is strongly regular
in X”, respectively. “T2” means “Hausdorff”.

†This was independently proved by E. Grabner, G. Grabner, K. Miyazaki and J. Tartir,
assuming that all spaces are Hausdorff.
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Proposition 2.5. For a subspace Y of a space X the following implications hold.

Y is para
ompa
t?XY is para
ompa
t6?Y isAull-para
ompa
tin X
6Y is2-para
ompa
tin X?

Y is1-para
ompa
tin X?X is para
ompa
t

-Y is T2-XY is T2-H
-SR -SR -X is T2

Y is 
w-normal?XY is 
w-normal6?Y isstrongly 
w-normalin X
6Y is2-
w-normalin X?

Y is1-
w-normalin X?X is 
w-normal

--
-
--
-

Y is
w-normalin X -��R

Y is normal?XY is normal6?Y isstrongly normalin X
6Y is2-normalin X?

Y is1-normalin X?X is normal

Y isnormalin X��R

Proof: The implication “Y is 1- (respectively, 2-) paracompact in X ⇒ Y is
1- (respectively, 2-) collectionwise normal in X” is Proposition 2.3 (respectively,
Proposition 2.4).

The facts “Y is Aull-paracompact in X ⇔ XY is paracompact”, “Y is strongly
collectionwise normal in X ⇔ XY is collectionwise normal” and “Y is strongly
normal in X ⇔ XY is normal” were proved in [29], [18] and [2], respectively; the
last two equivalences are available to prove immediately “Y is strongly collec-
tionwise normal in X ⇒ Y is 2-collectionwise normal in X” and “Y is strongly
normal in X ⇒ Y is 2-normal in X”, respectively.

For the implication “Y is Aull-paracompact inX ⇒ Y is strongly collectionwise
normal”, see Proposition 2.7 below.

Other implications are obvious. �
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The reverse implications in Proposition 2.5 will be discussed later (see Re-
mark 3.5).
Corresponding to Lemmas 2.1 and 2.2 we have the following lemma: (a)⇔(c)

was recently obtained in [29], and (c)⇔(e) for Y being Hausdorff in X was proved
in [18, Lemma 4.6]. Other equivalences are easy to prove.

Lemma 2.6. For a subspace Y of a space X , the following statements from (a)
to (d) are equivalent. If Y is Hausdorff in X , these are equivalent to (e).

(a) Y is Aull-paracompact in X .
(b) Y is 2-paracompact in G for every open subset G of X with Y ⊂ G.
(c) XY is paracompact.

(d) Y is 2-paracompact in XY .

(e) Y is paracompact itself and weakly P -embedded in X .

Combining Lemmas 2.2 and 2.6, we have

Proposition 2.7. Suppose Y is Hausdorff in X . If Y is Aull-paracompact
in X , then Y is strongly collectionwise normal in X .

A space X is almost compact if for every pair of disjoint zero-sets Z0, Z1 in X ,
either Z0 or Z1 is compact. Note that a Tychonoff space X is almost compact if
and only if |βX \X | ≤ 1, where βX is the Stone-Čech compactification of X . As
was mentioned in the introduction, Bella and Yaschenko [8] proved the following
theorem.

Theorem 2.8 ([8]). For a Tychonoff space Y , the following statements are equiv-
alent.

(a) Y is weakly C-embedded in every larger Tychonoff (or equivalently,
regular) space.

(b) Y is weakly C-embedded in every larger Tychonoff (or equivalently,
regular) space containing Y as a closed subspace.

(c) Y is either Lindelöf or almost compact.

Theorem 2.8 was improved to the following.

Theorem 2.9 ([18]). For a Tychonoff space Y , the following statements are
equivalent.

(a) Y is weakly P γ-embedded in every larger Tychonoff (or equivalently,
regular) space.

(b) Y is weakly P γ-embedded in every larger Tychonoff (or equivalently,
regular) space containing Y as a closed subspace.

(c) Y is either Lindelöf or almost compact.

Using Theorem 2.8, Bella and Yaschenko [8] further proved the following the-
orem, which was independently proved by Matveev et al. [24]. As was pointed
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out in [18], with Lemma 2.1, Theorem 2.10 directly follows from Theorem 2.8
for the case when Y is Tychonoff. For the case when Y is regular, since each of
conditions from (a) to (d) induces normality of Y itself, Theorem 2.10 also follows
from Lemma 2.1 and Theorem 2.8.

Theorem 2.10 ([8], [24]). For a Tychonoff (respectively, regular) space Y , the
following statements are equivalent.

(a) Y is strongly normal in every larger Tychonoff (respectively, regular)
space.

(b) Y is normal in every larger Tychonoff (respectively, regular) space.
(c) Y is normal in every larger Tychonoff (respectively, regular) space con-
taining Y as a closed subspace.

(d) Y is either Lindelöf or normal and almost compact.

Similarly, Theorem 2.9 and Lemma 2.2 imply the following theorem. Notice
that spaces satisfying (d) are collectionwise normal.

Theorem 2.11 ([18]). For a Tychonoff (respectively, regular) space Y , the fol-
lowing statements are equivalent.

(a) Y is strongly collectionwise normal in every larger Tychonoff (respectively,
regular) space.

(b) Y is collectionwise normal in every larger Tychonoff (respectively, regular)
space.

(c) Y is collectionwise normal in every larger Tychonoff (respectively, regular)
space containing Y as a closed subspace.

(d) Y is either Lindelöf or normal and almost compact.

Remark 2.12. Combining Proposition 2.5 and Theorems 2.10, 2.11, it is clear
that “strongly normal” (respectively, “strongly collectionwise normal”) can be
replaced by “2-normal” (respectively, “2-collectionwise normal”) in Theorem 2.10
(respectively, Theorem 2.11).

Moreover, Theorem 2.9 and Lemma 2.6 imply the following theorem: (b)⇔
(c)⇔(d) was actually obtained by Arhangel’skii and Genedi [4] and Gordienko
[15] (see also [2, Theorems 52 and 53] or [3, Theorem 7.10]), (a)⇔(d) was pointed
out by Yamazaki in [29]. Note that almost compact paracompact Hausdorff spaces
are Lindelöf.

Theorem 2.13 ([4], [15], [29]). For a Tychonoff space Y , the following statements
are equivalent.

(a) Y is Aull-paracompact in every larger Tychonoff (or equivalently, regular)
space.

(b) Y is 2-paracompact in every larger Tychonoff (or equivalently, regular)
space.



Some relative properties on normality and paracompactness 483

(c) Y is 2-paracompact in every larger Tychonoff (or equivalently, regular)
space containing Y as a closed subspace.

(d) Y is Lindelöf.

Remark 2.14. Yamazaki [28] showed that the following are equivalent for a
Hausdorff space Y :

(a) Y is weakly C-embedded (or equivalently, weakly P -embedded) in every
larger Hausdorff space.

(b) Y is weakly C-embedded (or equivalently, weakly P -embedded) in every
larger Hausdorff space containing Y as a closed subspace.

(c) Y is either compact or every continuous real-valued function on Y is con-
stant.

Hence, applying Lemmas 2.1 and 2.2, if we replace all “Tychonoff” in Theo-
rems 2.10, 2.11 and 2.13 by “Hausdorff”, the conditions (d) of each theorems are
replaced by “Y is compact” (see also [28], [29]).

3. Quasi-C∗-, C- and Pγ-embeddings

Let us introduce extension properties called quasi-C∗-, C- and P -embeddings,
which will play basic roles in study of 1- (collectionwise) normality.

Let X be a space and E = {Eα |α ∈ Ω} a collection of subsets of X . Then E
is said to be uniformly discrete in X if there exist a collection {Zα |α ∈ Ω} of
zero-sets of X and a discrete collection {Gα |α ∈ Ω} of cozero-sets of X such that
Eα ⊂ Zα ⊂ Gα for each α ∈ Ω ([9]).
Let us now define that a subspace Y of a space X is quasi-C∗-embedded in X

if for each pair Z0, Z1 of disjoint zero-sets of Y , there exist open subsets G0, G1
of X such that {G0, G1} is discrete in X and Zi ⊂ Gi for i = 0, 1.

A subspace Y of a space X is said to be quasi-P γ -embedded in X if for each
uniformly discrete collection {Zα |α < γ} of zero-sets of Y , there exists a discrete
collection {Gα |α < γ} of open subsets of X such that Zα ⊂ Gα for each α < γ.
A subspace Y is quasi-P -embedded in X if Y is quasi-P γ-embedded in X for
every γ. In case γ = ω, quasi-Pω-embedding is called quasi-C-embedding.

Definitions of quasi-C∗-embedding and quasi-P γ-embedding should be com-
pared with the following results obtained in [9], [18] and [19].

Lemma 3.1 ([9]). A subspace Y of a space X is P γ-embedded in X if and only
if every uniformly discrete collection of subsets of Y of cardinality ≤ γ is also
uniformly discrete in X .

Lemma 3.2 ([18]). A subspace Y of a space X is weakly C-embedded in X if
and only if for each pair Z0, Z1 of disjoint zero-sets of Y , there exist disjoint open
subsets G0, G1 of X such that Zi ⊂ Gi for i = 0, 1.
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Lemma 3.3 ([19]). A subspace Y of a space X is weakly P γ-embedded in X if
and only if for each uniformly discrete collection {Eα |α < γ} of zero-sets of Y
there exists a pairwise disjoint collection {Gα |α < γ} of open subsets of X such
that Eα ⊂ Gα for each α < γ.

By Lemmas 3.1, 3.2 and 3.3, we have the following implications.

P //

��

C //

��

C∗

��

quasi-P //

��

quasi-C // quasi-C∗

��

weak P // weak C

The following examples show that none of reverse implications above is true.

Example 3.4. (1) Let X be the Tychonoff plank (ω1 + 1)× (ω + 1) \ {〈ω1, ω〉}
and Y the right edge {〈ω1, n〉 |n < ω} of X . Then Y is weakly P -embedded,
closed, but not quasi-C∗-embedded in X .

(2) Let Xi =
(

(ω1 + 1) × (ω1 + 1) \ {〈ω1, ω1〉}
)

× {i} for i = 0, 1. Let X be the
space obtained from X0 ⊕ X1 by identifying two points 〈ω1, α, 0〉 and 〈ω1, α, 1〉
for each α < ω1, and let q : X0 ⊕ X1 → X be the resulting quotient map. Let
Y = q(ω1 × {ω1} × {0, 1}).
To prove that Y is quasi-P -embedded in X , let {Eα |α ∈ Ω} be a uniformly

discrete collection of zero-sets of Y . Let Ei
α = {t ∈ ω1 | 〈t, ω1, i〉 ∈ Eα} for each

α ∈ Ω and i = 0, 1. Since Y is countably compact, we may assume Ω is finite.
Since ω1 is normal, for i = 0, 1, there is a discrete collection {V i

α |α ∈ Ω} of open
subsets of ω1 such that Ei

α ⊂ V i
α for every α ∈ Ω and i = 0, 1. Set for every

α ∈ Ω,

Uα = q(
⋃

i=0,1((V
i
α × (ω1 + 1)× {i}) ∩ {〈β1, β2, i〉 |β1 < β2 ≤ ω1})).

It is easy to see that {Uα |α ∈ Ω} is a discrete collection of open subsets of X
satisfying Eα ⊂ Uα for every α ∈ Ω. This shows Y is quasi-P -embedded in X .
On the other hand, Y is not C∗-embedded in X .

(3) Let Λ = βR \ (βN \ N). It is well-known that the subspace N of the space
Λ is C∗-embedded closed, but not C-embedded in Λ (see [13]). In fact, N is not
quasi-C-embedded in Λ.

(4) Bing’s example G [10] gives a normal space X containing a closed discrete
subset F = {fα |α < ω1} which admits no disjoint collection {Uα |α < ω1} of
open subsets of X such that fα ∈ Uα for every α < ω1. Hence, F is C-embedded,
but not weakly P -embedded in X ([18]).
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Remark 3.5. Using Example 3.4, let us return to discuss reverse implications
given in Proposition 2.5. First, observe Lemmas 2.1, 2.2 and also Proposition 3.6
below. A non-normal subspace Y of a paracompact Hausdorff space X is 1-
paracompact, but not strongly normal in X .
In (1) of Example 3.4, Y is Aull-paracompact, but not 1-normal in X . Hence,

Y is 2-paracompact, but not 1-collectionwise normal in X . In (3) of Example 3.4,
N is 1-normal but not 1-ω-collectionwise normal in Λ. In (4) of Example 3.4, F
is 1-normal and strongly normal, but not collectionwise normal in X . Examples
for other reverse implications are easy to see.
Yamazaki [30] constructed a T1-space X and a subspace Y such that Y is

normal in X , but not 2-normal in X . We do not know similar examples un-
der higher separation axioms. Furthermore, it is unknown whether 2-normality
implies 2-ω-collectionwise normality, or whether collectionwise normality implies
2-collectionwise normality.

Proposition 3.6. For a subspace Y of a space X , the following statements hold.
If Y is closed in X , each of them reverses.

(a) If Y is itself γ-collectionwise normal and quasi-P γ-embedded in X , then
Y is 1-γ-collectionwise normal in X .

(b) If Y is itself normal and quasi-C∗-embedded in X , then Y is 1-normal
in X .

The proof of Proposition 3.6 is easy and omitted. Trivially, the reverse impli-
cations need not be true unless Y is closed.

In [6], Aull defined that a subspace Y of a space X is α-paracompact in X if
for every collection U of open subsets of X with Y ⊂

⋃

U , there exists a collection
V of open subsets of X such that Y ⊂

⋃

V , V is a partial refinement of U and
V is locally finite in X . Note that α-paracompactness of Y in X implies Aull-
paracompactness of Y in X , and the converse does not necessarily hold.
Related to α-paracompactness, let us recall the following results in [21] and

[22, Theorem 1.3].

Theorem 3.7 ([21]). A Hausdorff (respectively, regular, Tychonoff) space Y is
α-paracompact in every larger Hausdorff (respectively, regular, Tychonoff) space
containing Y as a closed subspace if and only if Y is compact.

Theorem 3.8 ([22]). For a closed subspace Y of a regular space X , Y is 1-
paracompact in X if and only if Y is α-paracompact in X .

Theorems 3.7 and 3.8 immediately induce the following:

Corollary 3.9. For a Tychonoff (respectively, regular) space Y , the following
statements are equivalent.

(a) Y is 1-paracompact in every larger Tychonoff (respectively, regular) space.
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(b) Y is α-paracompact in every larger Tychonoff (respectively, regular) space.
(c) Y is 1-paracompact in every larger Tychonoff (respectively, regular) space
containing Y as a closed subspace.

(d) Y is α-paracompact in every larger Tychonoff (respectively, regular) space
containing Y as a closed subspace.

(e) Y is compact.

Lemma 3.10. Let Y be an almost compact Tychonoff space. If Y is contained
in a regular space X , then Y is quasi-P -embedded in X .

Proof: Let {Zα |α ∈ Ω} be a uniformly discrete collection of zero-sets of Y . We
may assume that Ω = {0, 1} and Z0 is compact since Y is almost compact. Since
X is regular, there exist open subsets G, H of X such that Z0 ⊂ H ⊂ H ⊂ G
and G ∩ Z1 = ∅. Then {H, X \ G} is discrete in X . �

Theorem 3.11. For a Tychonoff space Y , the following statements are equiva-
lent.

(a) Y is quasi-P -embedded in every larger Tychonoff space.
(a′) Y is quasi-P -embedded in every larger Tychonoff space containing Y as

a closed subspace.

(b) Y is quasi-C-embedded in every larger Tychonoff space.
(b′) Y is quasi-C-embedded in every larger Tychonoff space containing Y as

a closed subspace.

(c) Y is quasi-C∗-embedded in every larger Tychonoff space.

(c′) Y is quasi-C∗-embedded in every larger Tychonoff space containing Y as
a closed subspace.

(d) Y is almost compact.

In the above conditions from (a) to (c′), “Tychonoff” can be replaced by
“regular”.

Proof: Assume that Y is Tychonoff. Then, the implications (a)⇒(a′)⇒(b′)⇒
(c′) and (a)⇒(b)⇒(c)⇒(c′) are obvious. To complete the proof, we show the
implications (c′)⇒(c)⇒(d)⇒(a).

(c′)⇒(c). Let X be a Tychonoff space containing Y as a subspace, and let

Z0, Z1 be disjoint zero-sets of Y . Let D(2|X|) denote the discrete space of

cardinality 2|X|, and A(2|X|) the one-point compactification of D(2|X|). Put

W =
(

X × A(2|X|)
)

\
(

(X \ Y ) × {∞}
)

, where ∞ is the non-isolated point of

A(2|X|). Then Y is homeomorphic to Y × {∞} which is a closed subset of W .
By (c′), there exist open subsets G0, G1 ⊂ W with {G0, G1} discrete such that
Zi ⊂ Gi for i = 0, 1. For every a ∈ Z0 and b ∈ Z1, take finite subsets Ea, Fb of

D(2|X|) such that

{a} × (D(2|X|) \ Ea) ⊂ G0 and {b} × (D(2|X|) \ Fb) ⊂ G1.
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Since the cardinality of (
⋃

a∈Z0
Ea) ∪ (

⋃

b∈Z1
Fb) is less than 2

|X|, we can take

α∗ ∈ D(2|X|) \ (
⋃

a∈Z0
Ea ∪

⋃

b∈Z1
Fb) so that Zi × {α∗} ⊂ (X × {α∗}) ∩ Gi for

i = 0, 1. Then, the collection {(X × {α∗}) ∩ G0, (X × {α∗}) ∩ G1} is discrete
in W . Define G′

i = {x ∈ X | 〈x, α∗〉 ∈ Gi} for i = 0, 1. Then, {G′
0, G

′
1} is a

discrete collection of open subsets in X and Zi ⊂ G′
i for i = 0, 1.

(c)⇒(d). Assume that Y is not almost compact. There exist disjoint zero sets

Z0, Z1 in Y such that neither Z0 nor Z1 is compact. Pick xi ∈ Zi
βY

\ Zi for
i = 0, 1. Let X be the space obtained from βY by identifying two points x0
and x1, and let q : βY → X be the resulting quotient map. Then X is compact
Hausdorff and Y is obviously a subspace of X . By assumption (c), there exist

open subsets G0, G1 of X such that G0
X

∩ G1
X
= ∅ and Zi = q(Zi) ⊂ Gi for

i = 0, 1. We may assume q(x0) = q(x1) /∈ G0
X
. Then X \ G0

X
is an open

neighborhood of q(x0). Hence, x0 /∈ Z0
βY
, a contradiction.

(d)⇒(a) follows from Lemma 3.10.

In the case Y is embedded in every larger regular space, it suffices to show
(d)⇒(a), and this is obvious. �

By Proposition 3.6 and Theorem 3.11, we have

Corollary 3.12. For a Tychonoff (respectively, regular) space Y , the following
statements are equivalent.

(a) Y is 1-collectionwise normal in every larger Tychonoff (respectively,
regular) space.

(a′) Y is 1-collectionwise normal in every larger Tychonoff (respectively,
regular) space containing Y as a closed subspace.

(b) Y is 1-normal in every larger Tychonoff (respectively, regular) space.
(b′) Y is 1-normal in every Tychonoff (respectively, regular) space containing

Y as a closed subspace.
(c) Y is normal and almost compact.

In Corollary 3.12, (b′)⇔(c) also follows from the following result in [24].

Theorem 3.13 ([24]). For a Tychonoff space Y , the following statements are
equivalent.

(a) Any disjoint closed subsets of Y are completely separated in every larger
Tychonoff space.

(b) For any larger Tychonoff space X containing Y as a closed subspace and
any disjoint closed subsets F0, F1 of Y , there exist disjoint open subsets

G0, G1 of X such that Fi ⊂ Gi for i = 0, 1 and G0
X

∩ G1
X
= ∅.

(c) Y is normal and almost compact.

For the Hausdorff case, we have the following.
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Theorem 3.14. For a Hausdorff space Y , the following statements are equiva-
lent.

(a) Y is quasi-C∗-embedded in every larger Hausdorff space.

(b) Y is quasi-C∗-embedded in every larger Hausdorff space containing Y as
a closed subspace.

(c) Every continuous real-valued function on Y is constant.

In (a) and (b), “quasi-C∗-embedded” can be replaced by “quasi-P -embedded”
or “quasi-C-embedded”.

Proof: We only prove (b)⇒(c). Suppose that there exists a continuous real-
valued function f on Y such that f is not constant. Then we choose distinct
points y0, y1 in Y such that f(y0) 6= f(y1).

Let Xi =
(

(ω1+1)×(ω+1)\{(ω1, ω)}
)

×{i} and qi : Xi → Xi/({ω1}×ω×{i})
be the quotient map obtained by collapsing {ω1}×ω×{i} to one point, for i = 0, 1.
Let X be the space obtained from

(

X0/({ω1} × ω × {0})
)

⊕
(

X1/({ω1} × ω ×

{1})
)

⊕ Y by identifying two points 〈α, ω, 0〉 and 〈α, ω, 1〉 for each α < ω1 and
by identifying two points qi({ω1} × ω × {i}) and yi for i = 0, 1. Then X is
Hausdorff and Y is closed in X . Put Zi = f−1(f(yi)) for i = 0, 1. Then Z0, Z1
are disjoint zero-sets of Y . By (b), there exist open subsets G0, G1 ⊂ X with
{G0, G1} discrete such that Zi ⊂ Gi for i = 0, 1. But, by the construction of X ,

G0
X

∩ G1
X

6= ∅, a contradiction. �

By Theorem 3.14 and Proposition 3.6, we have

Corollary 3.15. For a Hausdorff space Y , the following statements are equiva-
lent.

(a) Y is 1-collectionwise normal (or equivalently, 1-normal) in every larger
Hausdorff space.

(b) Y is 1-collectionwise normal (or equivalently, 1-normal) in every larger
Hausdorff space containing Y as a closed subspace.

(c) |Y | ≤ 1.

Finally we consider a condition under which 2-paracompactness implies 1-
paracompactness. We say a subspace Y of a space X is T4- (respectively, T3-)
embedded in X if for every closed subset F of X disjoint from Y (respectively,
z ∈ X \Y ), F (respectively, z) and Y are separated by disjoint open subsets of X .
The idea of these notions already appeared in Aull [6].

The following result refines Theorem 3.8; the implication “(b) ⇒ Y is T4-
embedded in X” is due to Aull [6, Theorem 6]. By using this fact, Lupian̄ez and
Outerelo [22, Lemma 1.2 and Theorem 1.3] essentially proved the implications
(a)⇒(c)⇒(b)⇒(c)⇒(a).
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Proposition 3.16. Let X be a space and Y a subspace. Then the following
statements are equivalent.

(a) Y is 1-paracompact in X and T3-embedded in X .
(b) Y is α-paracompact in X and for every y ∈ Y and every closed subset

F of X with F ∩ Y = ∅, there exists an open subset U of X such that

y ∈ U ⊂ U
X

⊂ X \ F .
(c) Y is 2-paracompact in X and T4-embedded in X .

Corollary 3.17. A closed subspace Y of a regular space X is 1-paracompact in
X if and only if Y is 2-paracompact in X and T4-embedded in X .

Proposition 3.18. For a Tychonoff space Y , the following statements are equiv-
alent.

(a) Y is T4-embedded in every larger Tychonoff space.
(b) Y is T4-embedded in every larger Tychonoff space containing Y as a closed
subspace.

(c) Y is compact.

In (a) and (b), “Tychonoff” can be replaced by “regular”.

Proof: We only prove (b)⇒(c).
Assume that Y is T4-embedded in every larger Tychonoff space containing

Y as a closed subspace and Y is not compact. Then pick x0 ∈ βY \ Y . Let

D(2|βY |) denote the discrete space of cardinality 2|βY |, and A(2|βY |) the one-point

compactification of D(2|βY |). Put X = (βY ×A(2|βY |))\((βY \Y )×{∞}), where

∞ is the non-isolated point of A(2|βY |). Then Y is homeomorphic to Y × {∞}

which is a closed subset ofX . Put F = {x0}×D(2|βY |). Then F is a closed subset
of X disjoint from Y . By (b), there exist disjoint open subsets G0, G1 of X such

that Y ⊂ G0 and F ⊂ G1. For each y ∈ Y , take a finite subset Ey of D(2
|βY |)

such that {y} × (D(2|βY |) \ Ey) ⊂ G0. Since the cardinality of
⋃

y∈Y Ey is not

greater than 2|βY |, we can take α∗ ∈ D(2|βY |) \
⋃

y∈Y Ey so that Y × {α∗} ⊂

(βY ×{α∗})∩G0 and 〈x0, α
∗〉 ∈ (βY ×{α∗})∩G1. Then, (βY ×{α∗})∩G0 and

(βY × {α∗}) ∩ G1 are disjoint. Define G′
i = {x ∈ βY | 〈x, α∗〉 ∈ Gi} for i = 0, 1.

Then, G′
0, G′

1 are disjoint open subsets of βY with Y ⊂ G′
0 and x0 ∈ G′

1. This is
a contradiction. �

Theorem 2.13, Propositions 3.17 and 3.18 give an alternative proof of Corol-
lary 3.9.
In case Y is Hausdorff, we have

Proposition 3.19. For a Hausdorff space Y , the following statements are equiv-
alent.

(a) Y is T4-embedded in every larger Hausdorff space.
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(b) Y is T4-embedded in every larger Hausdorff space containing Y as a closed
subspace.

(c) Y = ∅.

Proof: We only prove (b)⇒(c). Assume Y 6= ∅. Take y ∈ Y and let T =
(ω1+1)× (ω+1)\{(ω1, ω)}. Consider the quotient space Z obtained from T ⊕Y
by identifying the right edge {ω1}×ω of T and y to one point. Let q : T ⊕Y → Z
be the natural quotient map. Then, Z is Hausdorff and Y is homeomorphic to
q(Y ) which is a closed subset of Z. But, Y is not T4-embedded in Z. Hence (b)
implies (c). �

A similar proof provides the following proposition, and this should be compared
with Theorem 3.7 and Corollary 3.9.

Proposition 3.20. For a Hausdorff space Y , the following statements are equiv-
alent.

(a) Y is 1-paracompact in every larger Hausdorff space.
(b) Y is 1-paracompact in every larger Hausdorff space containing Y as a
closed subspace.

(c) Y = ∅.

4. On 1-metacompactness of a subspace in a space

In this section, we prove an extension of Corollary 3.9.

A subspace Y of a space X is said to be 1-metacompact in X if for every open
cover U of X , there exists an open refinement V of U such that V is point-finite
at every y ∈ Y ([20]).
A space X satisfies the discrete finite chain condition (DFCC, for short) if

every discrete collection of non-empty open subsets of X is finite (see [23], for
example). Recall that a Tychonoff space X is pseudocompact if and only if X
satisfies the DFCC. It is also known that a Tychonoff space X is compact if and
only if X is pseudocompact and metacompact ([26], [27]). Furthermore, a regular
space X is compact if and only if X satisfies the DFCC and is metacompact ([26]).

According to [2], in [4], Arhangel’skii and Genedi remarked the following fact:
Let Y be a countable dense subset of a regular spaceX . Then Y is 1-metacompact
(or equivalently, 1-paracompact) in X if and only if X is Lindelöf .

The following result is based on this fact.

Lemma 4.1. Let Z be an arbitrary separable space and Y an arbitrary non-
DFCC space.

Let D = {dn |n ∈ N} be a countable dense subset of Z, {Un |n ∈ N} a
countable discrete collection of non-empty open subsets of Y and A = {yn |n ∈ N}
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a countable subset of Y such that yn ∈ Un for each n ∈ N. Let X be the quotient
space obtained from Y ⊕ Z by identifying yn with dn for each n ∈ N.

If Y is 1-metacompact in X , then Z is Lindelöf.
Moreover, if Y and Z are Tychonoff (respectively, regular), then X is also

Tychonoff (respectively, regular).

Proof: Let q : Y ⊕ Z → X be the quotient map. Since Y is homeomorphic to
q(Y ), Y is viewed as a subspace of X . Put pn = q(yn) = q(dn) for each n ∈ N,
and let P = {pn |n ∈ N}. Note that A is a closed discrete subset of Y .
Suppose Y is 1-metacompact in X . Let G be an open cover of Z. For each

G ∈ G, put VG = q (G ∪
⋃

{Un | dn ∈ G}). Define V = {VG |G ∈ G} ∪ {q(Y \A)}.
Then V is an open cover of X . Since Y is 1-metacompact in X , V has an open
refinement W which is point-finite at every x ∈ q(Y ). For each W ∈ W with
W ∩q(Z) 6= ∅, W must contain some element of P since D is dense in Z. Then, U
has a countable subcover because W is point-finite at pn for every n ∈ N. Hence,
Z is Lindelöf.
Let us prove that if Y and Z are Tychonoff, then X is also Tychonoff. Assume

Y and Z are Tychonoff. Let x ∈ X and U be a neighborhood of x in X .
If x ∈ q(Z), pick z ∈ q−1(x)∩Z. Then, there exists a neighborhoodW of z in Z

such that q(W ) ⊂ U . For everym ∈ N with dm ∈ W , there exists a neighborhood
Vm of ym in Y such that q(Vm) ⊂ U . Here, we may assume that Vm ⊂ Um. Define
G = q (

⋃

{Vm | dm ∈ W} ∪ W ). Since Z is Tychonoff, there exists a continuous
function f : Z → I such that f(z) = 1 and f(Z \ W ) ⊂ {0}. Because Y is
also Tychonoff, for each m ∈ N with dm ∈ W , there exists a continuous function
gm : Y → I such that gm(ym) = f(dm) and gm(Y \ Vm) ⊂ {0}. Then, define a
function h : X → I by

h(a) =











∑

dm∈W gm(q
−1(a)), if a ∈ q(Y ) \ P,

f(q−1(a)), if a ∈ q(Z) \ P,

f(dn), if a = pn ∈ P.

Then, h is continuous and h(x) = 1, h(X \ G) ⊂ {0}.
In case x /∈ q(Z), that is x ∈ q(Y ) \ P , since A is closed in Y , it is easy to

find a continuous function g : X → I such that g(x) = 1 and g(X \ U) ⊂ {0}.
Therefore, X is Tychonoff.
If Y and Z are regular, we can similarly prove that X is regular. �

Theorem 4.2. A Tychonoff (respectively, regular) space Y is 1-metacompact in
every larger Tychonoff (respectively, regular) space if and only if Y is compact.

Proof: The “if” part is obvious.
To prove the “only if” part, assume that Y is 1-metacompact in every larger

Tychonoff (respectively, regular) space but not compact. Since Y itself is meta-
compact, Y does not satisfy the DFCC. Thus, there exists a countable discrete
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collection {Un |n ∈ N} of non-empty open subsets of Y . For each n ∈ N, take
yn ∈ Un, and let A = {yn |n ∈ N}. Then A is a discrete closed subset of Y .
Let Z be an arbitrary separable, non-Lindelöf Tychonoff (respectively, regular)

space, for example, Z is the Ψ-space in [13, 5I]. Let D = {dn |n ∈ N} be a
countable dense subset of Z. Now, let X be the space constructed in Lemma 4.1.
Then, X is Tychonoff (respectively, regular) and Y is not 1-metacompact in X
by Lemma 4.1. �

Theorem 4.2 extends the following result due to E. Grabner et al. [16]: A normal
space Y is 1-metacompact in every larger regular space if and only if Y is compact.

To prove the Hausdorff case, we need the following well-known fact: A Haus-
dorff space X is compact if and only if X is countably compact and metacompact.

Theorem 4.3. Let Y be a Hausdorff space. Then Y is 1-metacompact in every
larger Hausdorff space if and only if Y is compact.

Proof: The “if” part is obvious.
To prove “only if” part, assume that Y is 1-metacompact in every larger Haus-

dorff space but not compact. Then, Y is not countably compact. Hence, there
exists a countable discrete closed subset A = {an |n ∈ N} of Y . Let Z be an
arbitrary separable, non-Lindelöf Hausdorff space with a countable dense subset
D = {dn |n ∈ N}. Define X be the quotient space obtained from Y ⊕ Z by
identifying an with dn for each n ∈ N.
Then, it is easy to see that X is Hausdorff. Define Un = (Y \ A) ∪ {yn} for

each n ∈ N. Then, similarly to the proof of Lemma 4.1, Y is not 1-metacompact
in X . �

Remark 4.4. In contrast with (a)⇔(c) in Corollary 3.9, consider an analo-
gous statement that a Tychonoff (respectively, regular, Hausdorff) space Y is
1-metacompact in every larger Tychonoff (respectively, regular, Hausdorff) space
containing Y as a closed subspace. This means, however, nothing but that Y is
metacompact.

5. On 1-subparacompactness of a subspace in a space

It was defined in [25] that a subspace Y of a space X is 1-subparacompact in
X if for every open cover U of X , there exists a σ-discrete collection P of closed
subsets of X with Y ⊂

⋃

P such that P is a partial refinement of U .
In [25], Qu and Yasui asked a question as follows: Let X be a regular space

and Y a subspace of X . Is it true that if Y is 1-paracompact in X , then Y is
1-subparacompact in X?
The following theorem is a negative answer to this question.

Theorem 5.1. There exist a Tychonoff space X and a subspace Y of X such
that Y is 1-paracompact in X but not 1-subparacompact in X .



Some relative properties on normality and paracompactness 493

Proof: Let X be the set (ω2+1)× (ω1+1)\ {〈ω2, ω1〉}. For α ∈ ω1 and β ∈ ω2,
define Gα = (ω2 + 1) × {α} and Hβ = {β} × (ω1 + 1), respectively. Define a
topology on X as follows. For α ∈ ω1, a neighborhood base at 〈ω2, α〉 is the
family of all sets of the form Gα \ E, where E is a finite subset of ω2 × {α}. For
β ∈ ω2, a neighborhood base at 〈β, ω1〉 is the family of all sets of the form Hβ \F ,
where F is a finite subset of {β} × ω1. All other points of X are isolated in X .
The construction of X is based on a example in [11]. Let Y = ω2 × ω1 ⊂ X .
Let us prove that Y is 1-paracompact in X . To prove this, let U be any open

cover of X . For every α ∈ ω1, take a finite subset Eα of ω2 × {α} such that
〈ω2, α〉 ∈ Gα \ Eα and Gα \ Eα is contained some U ∈ U . Similarly, for every
β ∈ ω2, take a finite subset Fβ of {β} × ω1 such that 〈β, ω1〉 ∈ Hβ \ Fβ and
Hβ \ Fβ is contained some U ∈ U . Then, the collection

{Gα \ Eα |α ∈ ω1} ∪ {Hβ \ Fβ |β ∈ ω2} ∪ {{〈β, α〉} |α ∈ ω1, β ∈ ω2}

is an open refinement of U which is locally finite at every y ∈ Y in X . Hence, Y
is 1-paracompact in X .
Now, we shall show that Y is not 1-subparacompact in X . Let U = {Gα |α ∈

ω1} ∪ {Hβ |β ∈ ω2}. Then, U is an open cover of X . Assume that there is a
collection P =

⋃

n∈N
Pn of closed subsets of X with

⋃

P ⊃ Y such that P is a
partial refinement of U and Pn is discrete in X for every n ∈ N. For any n, let

P0n = {P ∈ Pn | (∃β ∈ ω2) P ⊂ Hβ}, P1n = {P ∈ Pn | (∃α ∈ ω1) P ⊂ Gα} \ P
0
n.

Note that Pn = P0n∪P1n. For each n ∈ N and each α ∈ ω1, {P ∈ P0n |P ∩Gα 6= ∅}
is finite. Since |P ∩ Gα| ≤ 1 for each P ∈ P0n, (

⋃

P0n) ∩ Gα is finite. Therefore,
(
⋃

n∈N

⋃

P0n)∩Gα is countable, and hence V 0α = {λ ∈ ω2 | 〈λ, α〉 ∈ (
⋃

n∈N

⋃

P0n)∩

Gα} is also countable. Therefore, we can take β∗ ∈ ω2 \
⋃

α∈ω1
V 0α . Since Hβ∗ ∩

Y ⊂
⋃

n∈N

⋃

P1n, we can take n ∈ N so that (
⋃

P1n) ∩ Hβ∗ is uncountable.

On the other hand, {P ∈ P1n |P ∩ Hβ∗ 6= ∅} is finite and |P ∩ Hβ∗ | ≤ 1 for

each P ∈ P1n. This is a contradiction. Hence, Y is not 1-subparacompact in X .
This completes the proof. �
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