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EXOTIC TOPOLOGIES FOR LINEAR SPACES

V. KLEE

Seattle1)

0. Introduction

This is an elementary study of the structure of topological linear spaces (t. . s.),
with special emphasis on those which are not locally convex (. c.). It was motivated
in part by the following question of ALEx and WENDY ROBERTSON: If a t. I s.
admits a separating family of continuous linear functionals, is the same true of its
completion? We hoped also to discover some sort of “‘structure theorems’ about ge-
neral t. 1. s. Those t. I. s. which are not I. ¢. are generally regarded as mathematical
curiosities rather than as objects of serious interest, probably because they have so
little connection with interesting problems in analysis.?) But even though they may
be quite “pathological” as t. 1. s., surely they are unusually “smooth” as topological
groups, and thus it is irritating (at least to the author) that so little is known about
them. The present approach is not conspicuously successful and the irritation is only
slightly ameliorated. Several unsolved problems are posed. We are able to answer
(negatively) the Robertsons’ question, and in doing so are led to the amusing notion
of the orthogonality of two topologies. (Two topologies 7, and 7, for the same set
aresaid to be orthogonal provided every nonempty 7,-open set meets every nonempty
T,-open set.)

The prefix “h-" before a topology or uniformity will indicate that it fulfills the
Hausdorff separation axiom. A topology 7 for a (real) linear space L will be called
admissible provided (L, 7) is a t. 1. s. For technical reasons, it is convenient here to
consider all admissible topologies rather than merely the admissible h-topologies.
Seven types of admissible topology seem especially worthy of study, and these will
now be defined.

An admissible topology will be called weak provided every neighborhood of the
origin 0 contains a linear subspace of finite deficiency, convex provided every neigh-
borhood of 0 contains a convex neighborhood of 0, and nearly convex provided each
point of L ~ ¢l {0} can be separated from 0 by a continuous linear functional. It will

1y Research supported in part by a fellowship from the Alfred P. Sloan Foundation and in
part by a grant from the National Science Foundation, U. S. A. (NSF-G18975).

2) A conspicuous exception is the space S of all measurable functions on [0, 1], in the metric
topology corresponding to convergence in measure — d(f, 9) = [§|f — g|/(1 +|f — g|). There
are a few other exceptions.
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be called nearly exotic provided Ladmits no nontrivial continuous linear functional,
and exotic provided no proper closed neighborhood of 0 contains an absorbing con-
vex set. We follow Ives [5] in callinga set X = L f-convex provided X is starshaped
from 0([0,1] X = X) and B(X + X) = 2X; a set is semiconvex provided it is f-
convex for some > 0. (Alternatively, we could use a similar notion due to M. LANDSs-
BERG [11, 12]). An admissible topology will be called semiconvex provided every
neighborhood of 0 contains a semiconvex neighborhood of 0, and strongly exotic
provided no proper closed neighborhood of 0 contains an absorbing semiconvex set.
These are the seven types of topology to be studied here, and the terms are applied to
the space (L, t) as well as to the topology t. Since an admissible topology is nearly
convex if and only if each point of L ~ cl {0} can be separated from 0 by a convex
neighborhood of 0, we might define analogously the notion of a nearly semiconvex
topology, but this seems to be of only marginal interest while the other types of topo-
logy do appear in connection with well-known t. L. s.

Note that for every linear space L, the concrete topology {0, L} has all the pro-
perties mentioned above except that of being an h-topology. Every infinite-dimen-
sional normed linear space is convex but not weak. For 0 < p < 1, the space I” is
nearly convex and semiconvex but not convex and the space IP is semiconvex and
exotic but not strongly exotic. (These spaces are discussed in [3, 5, 10, 11,12, 14].) The
space S is strongly exotic, as can be seen by adapting the proof of S. MAZUR and W.
ORrLICZ [ 14] that Sis nearly exotic. (Ives [ 5] has a more detailed discussion of the space
S and a related example.) If J is an Ny-dimensional dense subspace of I?(0 < p < 1)
or of S, then J (in the relative topology) is nearly exotic but it is not exotic and in fact
admits no nonconcrete exotic topology, for the finest admissible topology in an
No-dimensional space is known to be convex [7]. The space J is semiconvex in the
first case (for I7) but not in the second (for S).

In the sequel, L will always denote a (real) linear space, E a t. 1. s., and E* the
space of all continuous linear functionals on E. The real number space will be denoted
by R. The symbol I’ will denote the set of indices {a, w, ¢, sc, nc, ne, e, se}, with I =
= 1" ~ {a}. For ve I, T', will denote the class of all t. I. s. which are (in order) weak,
convex, semiconvex, nearly convex, nearly exotic, or strongly exotic. For a linear
space Land ¢ €1, ¢,L will denote the supremum of all topologies t for which (L, t) €
€ I';; o,L is the supremum of all admissible topologies for L.

Proofs will sometimes be abbreviated or omitted. For basic results on t. L. s.,
sometimes employed here without specific reference, N. BOURBAKI [2] and G. KOTHE
[10] are recommended; for topology, N. Bourbaki [1].

1. Some characterizations

Forat.l s. E, E, will denote the corresponding h. 1. s. The following obvious fact
can often be used to reduce considerations to h. I. s.:
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1.1. Remark. For each tel, E€ T, if and only if E, €T,.
The following characterization is hardly surprising:

1.2. Proposition. A t. [. s. E is weak if and only if every neighborhood of 0
contains a set of the form N} fi ']—1, 1] for f; € E*.

Proof. For the “only if” part, consider an arbitrary neighborhood U of 0. Let V
be a neighborhood of 0 such that V + ¢l V < U, F a subspace of finite deficiency in V,
and ¢ the natural homomorphism of E onto the quotient space Q = E/cl F. Then Q
is finite-dimensional and ¢V is a neighborhood of the origin in Q, so there exist
g; € 0* such that N{g; ']—1, 1] = ¢V. With f; = g, we have f; € E* and

Nifit]l-1,1[ce eV V+cdFcU.

The next result was stated by MACKEY [13], and can be deduced almost at once
from the fact that dim E* > N, when E is an infinite-dimensional normed linear
space.

1.3. Proposition. If E is convex and dim E* < N, then E is weak.

The following remark is useful:

1.4. Lemma. In a t. l. s. E of the second category, a closed absorbing set X has
nonempty interior; if X is semiconvex, 0 € int X.

Proof. Since E = |J,~, nX and each set nX is closed, some nX has an interior
point p and then n~!'p eint X. Now suppose further that X is semiconvex, whence
B(X + X) < X forsome f > 0,andlet Y = X n — X. Then Y has an interior point q
and 0 = Bg + B(—q)eP(int Y +int Y)cint (Y + Y) = B(X + X) = X.

Using 1.2, 1.4, and the Hahn-Banach theorem, we find

1.5. Proposition. Every weak topology is convex; every convex topology is
semiconvex and nearly convex. Every strongly exotic topology is exotic and every
exotic topology is nearly exotic. Every nearly exotic topology of the second category
is exotic.

In connection with 1.5, recall the examples in the Introduction. For 1.6 below,
recall the definition of orthogonality of two topologies.

[ nearly exotic
1.6. Theorem. An admissible topology for L is { exotic if and only
weak ] l strongly exotic
if it is orthogonal to every { convex topology for L.
semiconvexl

Proof. For the “only if” part for I',,, suppose L admits a weak topology 7,
which fails to be orthogonal to the admissible topology t,. Then there exist nonempty
disjoint 7,-open sets U; in Lwith 0 € U,. Let F be a subspace of finite deficiency con-
tained in U,, F, the t,-closure of F, and G a subspace supplementary to F, in L.
Then Gisah.ls., 0 < dim G < N, and (L, t,) is the direct sum of F, and G. This
implies that t, is not nearly exotic.

It is easily seen that if 7, is not exotic, then it is not orthogonal to the convex
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topology a.L. Now assume, on the other hand, the existence of a convex topology 7,
for L not orthogonal to 7,. Let U; be nonempty disjoint 7,-open sets with 0 € U,, let C
be a convex t,-neighborhood of 0 such that C = U,, let V| be a nonempty t,-open
set whose t,-closure lies in U;, and let W denote the 7,-closure of the set L~ V.
Then W is a t,-closed neighborhood of 0 and 0 e C =« W #* L, so 7, is not exotic.
This takes care of I',, and the argument for I',, is essentially the same.

By 1.6, a weak topology for L must be orthogonal to every nearly exotic topology
for L. We have been unable to decide in general whether this property characterizes
the weak topologies. To prepare for a partial result in that direction, we recall two
notions of D. T. FINKBEINER and O. M. NikobyM [4]. 4 set C = L is a Hamel body
provided there is a basis B = L such that C = conv (B U — B). A set is linearly
bounded provided its intersection with each line lies in some segment.

1.7. Proposition. A linear space L is of countable dimension if and only if every
symmetric linearly bounded convex body in Lis contained in a Hamel body.
Proof. Suppose first that dim L > N,. Let X be a basis for L and let U be the set

of all points of the form ) (fx) x where f is a finitely supported real-valued function
xeX

on X and ) (fx)* £ 1. Then U is a symmetric linearly bounded convex body in L, and
xeX

we claim that no Hamel body contains U.

Suppose U lies in a Hamel body C determined by a basis B for L. Let L, denote
the space L as normed by the gauge functional of C, L, the same space as normed
by the gauge functional of U, and note that the identity mapping Tin L isacontinuous
linear transformation of L, onto L,. Since the set B is uncountable, there exists a finite
number n for which the set B n nU is infinite. Let M denote the linear extension of
B n nU and let M; denote the normed linear space obtained by restricting to M the
norm of L;. Since C = conv (B U — B), wehave C n M < nU and thus the restricti-
on T’ of Tto M is a linear homeomorphism of M, onto M,. Then of course T can
be extended to a linear homeomorphism which carries the completion of M, onto that
of My, and this is impossible for the first completion is reflexive (being an 1> space) and
the second is not (being an [' space). The “only if” part of 1.7 has been established.

To complete the proof of 1.7, we must show that if E is an N,-dimensional nor-
med linear space with unit cell U = {x e E : |[x|| < 1}, then U is contained in some
Hamel body in E. Let the sequence x, form a Hamel basis for E. It is not difficult to
produce a sequence f, in E* such that f;x; = 0 for i # j, and always f;x; > 0 and
sup f;C = 27" Let G denote the linear space of all eventually-zero sequences of real
numbers and for each x € E let

ox = (fix,fx,...)€G.

Then ¢ is an algebraic isomorphism of E onto G, and since always sup f;U = 27" it
is easy to see that the set U lies in the Hamel body C determined by the natural basis
{6,}7 of G. Thus ¢ ~*C is a Hamel body containing U and the proof of 1.7 is complete.

16 Symposium
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1.8. Theorem. A convex topology for a linear space Lis weak if and only if it is
orthogonal to every nearly exotic topology for L.

Proof. Only the “if” part requires discussion. Suppose the convex topology 7 is
not weak, whence there is a symmetric closed convex neighborhood U of 0 which
contains no subspace of finite deficiency. The union L of all lines through 0 which lie
in U is a subspace of infinite deficiency, and thus there are supplementary linear
subspaces L, and L, of Lfor which L = L, and dim L, = X,. Itis easily verified that
U c L, + (Un L,) and that the set U N L, is a symmetric linearly bounded convex
body in L,, whence by 1.7 it lies in some Hamel body C in L,.

Let n be a nearly exotic h-topology for an N,-dimensional space J and V a non-
empty n-open subset of J whose closure misses 0. Since the finest admissible topology
o,J for J is convex [7], there exists an absorbing convex set Win J such that Wn
NV = 0.1t is evident that W must contain a Hamel body C’ in J [4] and that there is
an algebraic isomorphism T of J onto L, which carries C’ onto C. Now let { be the
family of all subsets of L of the form L, + TY for n-open Y < J. Then { is nearly
exotic because 7 is nearly exotic. However, the set L, + TV is {-open and misses the
t-open set U, so 7 is not orthogonal to every nearly exotic topology for L and the proof
of 1.8 is complete.

Are there characterizations of convex or semiconvex topologies which have a
similar relationship to 1.7? Of course there exist nonconvex admissible topologies
which are orthogonal to every exotic topology, for an N,-dimensional space admits no
nonconcrete exotic topologies. However, it may be that an admissible topology 7 is
coarser than a convex topology if and only if 7 is orthogonal to every exotic topology.
This would imply that an admissible topology of the second category is convex if and
only if it is orthogonal to every exotic topology, and weak if and only if it is orthogo-
nal to every nearly exotic topology. '

2. Preservation of type

The following two assertions are easily verified:

2.1. Proposition. For each te€l, if the t. I. s. E is the direct sum or product of
thet. l.s. E,,then E€I', if and only if E, € I', for all a.

2.2. Proposition. Let o denote the supremum of admissible topologies 1, for a
linear space L. If tel ~ {ne} and (L,t,) € I, for all «, then (L, 6) € T,.

In particular, (L, o,L)e T, for each ¢ € I ~ {ne}. This fails for ¢ = ne, and it seems
conceivable even that o¢,,L = o,L when L is infinite-dimensional. We have been
unable to settle this, but shall prove the following:

2.3. Theorem. If L is infinite-dimensional, the topology o,.L is finer than the
topology o,,L.

Proof. Let f be a nontrivial linear functional on L. We wish to show that f is
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continuous for the topology o,.L, and shall in fact describe two nearly exotic h-topo-
logies {; and {, for Lsuch that f is continuous for the topology sup ({4, ;).

Note that an N,-dimensional linear space admits a nearly exotic h-topology,
whence the sameis true of every infinite-dimensional linear space (for it may be regar-
ded as the direct sum of a family of its Ny-dimensional subspaces).

Let 7 be a nearly exotic h-topology for the space L under consideration. Let
y € Lwith fy = 2 and consider the following two topologies t, and t, for the space
L x R:asetis ty-open (resp. t,-open) provided it has the form U x {0} + R(0,1) =
= U x R(resp. U x {0} + R(y, 1)) for some 1-open set U = L. Then 7, and 1, are
both nearly exotic topologies for L x R. For each x € L, let é&x = (x, fx)e L x R and
let {; be the topology for Lwhich is determined by specifying that & shall be a homeo-
morphism of Lonto &L in its relative topology {; induced by ;. Since £Lis dense in
L x R under the topology t;, each topology {; is a nearly exotic topology for L. Alth-
ough the 7; are not h-topologies, it is easily verified that the topologies {; (and hence
¢;) do satisfy the separation axiom. To show that f is continuous for the topology
sup ({4, {,), it suffices to produce t-neighborhoods V; of 0 in L x R such that
(x, r)e V; n V, implies r # 1, for then the functional f£™! fails to assume the value 1
on the set ¥; NV, N EL, the same must be true of f on the set ¢~ '(V;n L)n
n &7V, A L), and since the latter set is a sup ({;, {,)-neighborhood of 0 in L it
follows readily that f is continuous. Let U be a t-neighborhood of 0 in L such that
y¢ U — U, and suppose

(z,1)e(U x {0} + R(0,1))n (U x {0} + R(y, 1)).

Then wehaveze Uandze U + y, whence y € U — U and the contradiction comple-
tes the proof of 2.3.

2.4. Theorem. For1 < j £ 5, let A;denote the set of all L€ I such that whenever
F is a subspace of at. l. s. E

1) then E€ T, implies FeT;

2) and F is dense in E, then E€ I', implies FeI',;

3) and dim E[F < R, then E€ T, implies FeT,;

4) and F is dense in E, then FeI', implies EeT';;

5) and dim E/[F < N, then FeI, implies E€T,.

Then Ay = {w,c,sc,nc}, Ay = AU {ne} =1 ~ {e,se}, Ay =1, Ay =1 ~ {nc},
and As = {w, ¢, sc}.

Proof. The assertion about A, is obvious, as is the fact that 4, U {ne} < 4,. To
see that {e, se} = I ~ A,, recall that the space S is strongly exotic and admits a dense
subspace J of countable dimension, but J cannot be exotic for the topology ¢,J is
convex [7]. .

Note that if F is a dense subspace of E and U is a neighborhood of 0 in F, then
cl U is a neighborhood of 0 in E. It follows at once that {c, sc} = A,. To see that
we A,, recall the characterization 1.2 and the fact that every continuous linear

16*
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functional on F can be extended to one on E. That {ne, e, se} = A, follows at once
from the relevant definitions. Thus 4, o I ~ {nc}. In § 3 we give an example of
a dense subspace F, of a h. I. s. E; such that F is nearly convex but E, is not, thereby
showing that nc ¢ A, and completing the discussion of A,. Let x € E, ~ F, with
fx = 0 for all f e E*; then the pair F, F + Rx shows that nc ¢ As.

For A5 and A; it suffices to consider the case in which dim E/F = 1. Then F
must be dense or closed in E, and in the latter event E is the direct sum of F and a line.
Thus the remaining assertions about A5 are evident and for A; it remains only to
show that {e, se} = A;.

Suppose E is exotic and F is a (necessarily dense) hyperplane in E but F is not
exotic. By 1.6, the topology of F cannot be orthogonal to every convex topology for F,
and hence there exist a neighborhood U of 0 in E and a nonempty convex set C =
< F ~ U such that C is equal to its own core relative to F. Let V be a symmetric
starshaped neighborhood of O in E such that V + V< Uand letve V ~ F. Then

C+]-vofcC+Vcec(F~U)+VcE~V.

Since the set C + |—wv, v[ is convex and equal to its own core relative to E, it follows
from 1.6 that E is not exotic and the contradiction implies that e € A;. A similar
argument shows that se € 4; and completes the proof of 2.4.

The relationship of a t. I. s. to its Nj-dimensional subspaces seems worthy of
study. A. Pelczyniski has asked whether every infinite-dimensional metric linear
space has an Nj,-dimensional subspacez which admits a nontrivial continuous
linear functional, and in the other direction we inquire whether a nearly exotic space
must have a nearly exotic N,-dimensional subspace. We may ask also whether mem-
bership of E in I', is implied by that of every N,-dimensional subspace of E. This is
trivially the case for ¢ = ne, and also for ¢ = ¢ and ¢ = se since the only exotic topo-
logies of countable dimension are concrete. It is not the case for ¢ = ¢ or ¢ = sc, for
if dim L > N, the topology g,Lis not semiconvex even though its restriction to each
N,-dimensional subspace is convex. The question is of interest for ¢ € {w, nc}, and
also for ¢ € {c, sc} under additional restrictions on the space. We can report only the
following partial results:

2.5. Proposition. A semiconvex space is weak if and only if all its ¥,-dimen-
sional subspaces are weak.

2.6. Proposition. Suppose N is an infinite cardinal number, N' is the first
cardinal > ¥ which is the limit of a sequence of its predecessors, and E is a metric
linear space with X £ dim E < N'. Then E is convex, semiconvex, or nearly convex
if and only if all its N-dimensional subspaces have the corresponding property.

Proofs. For 2.5, we consider a symmetric semiconvex neighborhood U of 0 in E
and denote by F the union of all lines through 0 which lie in U. It can be verified
(using semiconvexity) that F is a linear subspace of E and hence admits a supplement-
ary subspace M. Since U n M contains no lines through 0, either M is finite-dimen-
sional or M is not weak, and this completes the proof of 2.5.



For 2.6, let Z denote the interval [N, N'[ of cardinal numbers, and for te
€ {c, sc, nc} let Z, denote the set of all { € Z such that whenever E is a metric linear
space of dimension { and all N-dimensional subspaces of E are members of I',, then
E e I',. We wish in each case to show that Z, = Z. Suppose Z ~ Z, is nonempty and
let § be the first member of Z ~ Z,. Let E be a metric linear space of dimension 9, all
of whose N-dimensional subspaces are members of I',, and let B be a Hamel basis
for E. Let B be well-ordered in such a way that for each b € B, the set P, of all prede-
cessors of b in Bis of cardinality < §, and for each be B let E, denote the linear exten-
sion of P, in E. From the definition of § it follows that E, € I', for each b € B, and also
that no countable set is cofinal in B.

Now for the case ¢ = nc, we wish to show that each point p € E ~ {0} can be
separated from 0 by a continuous linear functional, whence E€I',., d € Z,, and the
contradiction shows that Z = Z,. For each b € B, let @b denote the supremum of the
set of all numbers r > 0 such that conv (N, n E,) € E ~ {p}, where N, = {x€ E :
d(x, 0) < r}. Then ¢ is an antitone mapping of B into [0, o], and always @b > 0
since E, € I',,.. Since B admits no cofinal sequence it is clear that inf 9B = 2¢ > 0 and
then conv N, = E ~ {p}, whence the Hahn-Banach theorem guarantees the existence
of fe E* with fp # 0. This completes the discussion for I',.. For I', the reasoning
is similar, with the set E ~ {p} replaced by an arbitrary neighborhood of 0.

For I',., we consider an arbitrary neighborhood U of 0 in E, and for each b € B
let b denote the set of all (8, r)e]0, 1] x ]0, oo[ such that conv, (N, n E,) = U,
where conv, denotes the f-convex hull [5]. Each set yb is nonempty, for E, € I',,, and
it is clear that if (8, r) e yb, ' € ]0, ], and r’ € ]0, r], then (', ¥') € Yb. Choose se-
quences f8, and r, in ]0, 1] such that 8, ~ 0 and r, . 0. We claim that for sufficiently

large i, (B, r;) € N\ ¥b. (Then of course convy, N,, = U and the semiconvexity of E
beB

is established.) Suppose the contrary, whence for each i there exists b; having (B;, r;) ¢
¢ Wb. Then with b’ € B and b; < b’ for all i, it follows that yb’ is empty, a contra-
diction completing the proof of 2.6.

2.7. Theorem. Forj = 1,2, let B; denote the set of all eI such that whenever n
is a continuous linear transformation of the t. l. s. E onto the 1. l.s. F

l. then E€I', implies Fe T,

2. and n is open or F of the second category, then E€ ', implies Fe I',.
Then B, = {w, ne, e, se} and B, =1 ~ {nc}.

The relevant proofs and examples are rather straightforward and will be left for
the reader. Use 1.4 when F is of the second category. In [8] there are described a se-
parable metric linear space E and supplementary closed linear subspaces M, and M,
of E such that E is nearly convex but both the quotient spaces E/M are nearly exotic.
Of course this cannot happen if E is complete. However, we do not know (in the
setting of 2.7) whether near convexity of E implies that of F when 7 is continuous and
open and F is of the second category. Note that if E is convex and n continuous, then
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F cannot be exotic unless its topology is concrete, but F can be a nearly exotic t. L. s.,
as we see by letting J be an NX,-dimensional dense subspace of S, n the identity map-
pingon J, E = (J, 0,J), and F the space J in the relative topology inherited from S.

3. Orthogonality and completeness

Two uniform structures for the same set will be called orthogonal provided
the topologies which they generate are orthogonal.

3.1. Proposition. Suppose %, and %, are orthogonal uniformities for a set X
such that (X, sup (%, %,)) is a compl ete uniform space. Then for any two points x,
and x, of X, the U -closure of {x,} meets the U,-closure of {x,}.

Proof. Let # be the family of all sets of the form U,|x,| n U,|x,| for U;e ..
Since %, and %, are orthogonal, each member of # is nonempty and it
follows that 2 is the base of a filter # . We claim that & is a Cauchy filter for the
uniformity sup (%,, %,). Indeed, consider an arbitrary member V of sup (%,, %,),
containing the set V; n V, for certain V, e %;. Let W; be a member of %; such that
W, = W' and WW,W,W; = V;, and let pe Z = W,|x,| n W,|x,|. For each g€ Z
we have (p, x;) € W; and (x;, ) € W,, whence (p, q) € W;W,. It follows that

ZxZc WWWW, <V,

i

whence Z x Z = V; n V,. Thus & is a Cauchy filter for sup (%, %,) and by hypo-
thesis must converge to a point z € X. Since each neighborhood U;|z| (for U; e ;)
must contain U |x;| for some U; € %, it is clear that z lies in the % -closure of {x;} and
this completes the proof.

3.2. Corollary. If a linear space L is complete under the supremum of two
orthogonal admissible topologies t, and t,, then L is the linear sum of the t,-closure
of {0} and the t,-closure of {0}.

3.3. Proposition. Two convex topologies for a linear space are orthogonal if
and only if there is no nontrivial linear functional which is continuous in both
topologies.

The result 3.3 follows at once from the separation theorem for convex bodies.
The result 3.4 below is well-known and can be proved in simpler ways (cf. Theorem 15
of Mackey [13]), but the reader may find it instructive to base a proof on 3.1 and 3.3.

3.4. Proposition. A weak h. l. s. E is complete if and only if no proper subspace
of E* separates the points of E.

For a uniform space (X, %), the corresponding h-uniform space will be denoted
by (X, %), and the completion of (X, %), by (X, %)..

3.5. Theorem. [f %, and %, are orthogonal uniformities for a set X, the space
(X, sup (%, %,)). is uniformly isomorphic with the product space (X, %,). %
X (X’ %Z)C'

Proof. Let %, = sup (%, %,) and for i = 0, 1, or 2 let X, X}, and X! denote
respectively the spaces (X, % ) (X, %), and (X, %;).. Let £; denote the natural map-



V. KLEE 247

ping of X' onto X; and n; the natural mapping of X| into X.. For each point y =
= (y1, y2) € X} x XZand forj = i or 2 let #] denote the trace on 7,X}, of the filter-
base consisting of all open neighborhoods of y; in X7, and let (fj denote the image of
2} under the transformation &7 'n;'. Then % is a filter-base consisting of % -open
subsets of X, and since the uniformities %, and %, are orthogonal, the set %, of all
intersections G; N G, with G; e @; must also be a filter-base, and in fact clearly a
U ,-Cauchy filter-base for g; is % j-Cauchy. Thus the image of &, under the mapping
no&, is a filter-base in n, X7 converging to a unique point @y € X°. Since each % -
Cauchy net is both %,-Cauchy and %,-Cauchy, it is evident that ¢ is a biunique
transformation of X! x X2 onto X?. Itis a routine matter to check that ¢ is a uniform
isomorphism and this completes the proof of 3.5. Further, if X is a linear space and
the orthogonal uniformities %, and %, are generated by admissible topologies for X,
then ¢ turns out to be a linear transformation, whence —

3.6. Corollary. If t, and 7, are orthogonal admissible topologies for a linear
space L, the h. I. s. (L,sup (ty, 1)) is linearly homeomorphic with the h. I. s.
(L, 7y)e x (L, t5)..

Now for the example needed in connection with 2.4, observe that if dim L > 2%
then L admits both a convex h-topology 7, and an exotic h-topology z,. By 3.6, the
space (L, sup (ty, 7,)). is linearly homeomorphic with the product space (L, 7). x
x (L, 15).. Of course the space (L, sup (ty, 7,)) is nearly convex, but from 2.4 (A,) it
follows that (L, 7,), is exotic and hence every continuous linear functional on the
product space must vanish everywhere on {0} x (L, 7,).. Note that the topologies t;
can be chosen to be separable and metrizable and then the same will be true of their
supremum. These examples can.be described more briefly by following the same ideas
but suppressing some of the machinery employed above.

Now for te I’ = I L {a}, let C, denote the class of all cardinal numbers N such
that the space (L, o,L) is complete for N-dimensional L. It has been proved by L.
NaMIOKA (unpublished) that C, includes all cardinals. It follows from 3.4 that C,,
consists only of finite cardinals. A result of S. KAPLAN [6] is that C, includes all
cardinals, which implies that C,, C,., and C, include all countable cardinals. Of cour-
se the same is true of C, and C,,, though in a trivial fashion. We conjecture that
No € C,., but this is not known and may be connected with the question as to whether
o,.Lis finer than o L when dim L = X,. For X > ¥, nothing is known except in the
cases of C,, C,, and C.. To what extent can arbitrary admissible topologies be re-
presented in terms of the seven types studied here? Note that by Namioka’s result
in conjuction with 3.2, g,L is not the supremum of an admissible h-topology and
an admissible non-concrete topology which is orthogonal to t.

Another limitation on the representation of admissible topologies is indicated
by 3.8 below. In preparation for its proof, we establish the following

3.7. Lemma. Suppose X, is a symmetric starshaped subset of R", X;,, = X; +
+ X, for all i, and M, is the union of all lines through O which lie in cl X;. Then
for some r £ n, the following three statements are true:
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(a) for each i < r, M; contains a linear subspace of dimension i,

(b) M, is an r-dimensional linear subspace;

(c) there is a compact set K such that X, = M, + K.

Proof. Let r be the largest integer for which (a) holds. Let L, bean r-dimensional
linear subspace contained in M, and let F be a subspace supplementary to L,. Let
| | be a norm for R", U = {xeR":|x|| <1}, and Z = {xe F: x| = 1}. For
each z € Z, let §, be the least upper bound of the set of all numbers ¢t > 0 such that
Xn (L, + Rz)c L, + tU. Let m = sup d, € [0, oo]. Since L, is a subspace and X is
symmetric and starshaped, it is easy to see that L, + |—4,,,[ z = L, + X for each
z € Z. Then if m = oo it follows from compactness of Z that L, + Rz, < cl (L, + X)
for some z, € Z, whence of course L, + Rz, is an (r + 1)-dimensional subspace of
M, .. This contradicts the definition of r, so we conclude that m <o and X < L, +
+ mU, thus establishing (c). The truth of (b) is now immediate and this completes the
proof. (Note, in addition, that M; = M, for all j > r.)

3.8. Proposition. The usual topology t of the space I” (0 < p < 1) is not the
supremum of a convex topology and a nearly exotic topology.

Proof. Suppose 7 is the supremum of a convex topology 7, and a nearly exotic
topology t,, and let y denote the admissible topology generated by the family of all
convex t-neighborhoods of 0. Then of course y is finer than 7,, and since the set
U={x=(x;,x,...)0el”:Y ||x)]” £1} is a t-neighborhood of O there exist a
y-neighborhood V' of 0 and a t,-neighborhood W’ of 0 such that V' n W' = U and
hence W' = U n (IP ~ V’). By atheorem of DAY [3], each continuous linear function-
al on I?is a linear combination of the coordinate functionals x; | x € [P, whence the
topology y is weak by 1.3 and consequently there exist ¢ > 0 and an integer n = 2
such that

VioV={xell:|x|]<efor 1 <i<n-—1}.

Let W, be a symmetric starshaped 7,-neighborhood of 0 such that W, < W’ (where
Wiry = Wi + W,). Then of course W, = U U (I” ~ V).

For each x e I, let nx = (xy, ..., x,) € R", whence nU = {xe R": Y |x,|? < 1}
1

and nV={xeR":|x;|] <e for 1 £i<n—1}. Let X, = nW,, whence X, is
symmetric and starshaped with X, = nU U (R" ~ V). Let the subspace M, of R" be
as in 3.7. Since clearly cl X, < cl X, + R", we see that M, & R" and then it follows
from (c) of 3.7 that conv X, # R". This implies that conv W; # [ and contradicts the
assumption of near exoticity for the topology 7,. The proof of 3.8 is now complete.

In connection with 3.8, note also that an Ny-dimensional linear space admits
a topology which cannot be represented as the supremum of a semiconvex, a nearly
convex, and an exotic topology. However, relative to any examples known to us at the
moment, each of the following hypotheses may be true:

each admissible topology is the supremum of a nearly convex topology and a
nearly exotic topology;
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each admissible topology is coarser than one which is the supremum of a convex
topology and a nearly exotic topology:

each t. 1. s. is linearly homeomorphic with a subspace of a t. 1. s. whose topology
is the supremum of a convex topology and an exotic topology.

In view of 2.1 and a result in [9]. it would suffice in the last instance to consider
metric linear spaces.
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