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EXOTIC TOPOLOGIES FOR LINEAR SPACES 

V. KLEE 

Seattle1) 

0. Introduction 

This is an elementary study of the structure of topological linear spaces (t. 1. s.), 
with special emphasis on those which are not locally convex (1. a ) . It was motivated 
in part by the following question of ALEX and WENDY ROBERTSON: If a t. 1. s. 
admits a separating family of continuous linear functional, is the same true of its 
completion? We hoped also to discover some sort of "structure theorems" about ge­
neral t. 1. s. Those t. 1. s. which are not 1. c. are generally regarded as mathematical 
curiosities rather than as objects of serious interest, probably because they have so 
little connection with interesting problems in analysis.2) But even though they may 
be quite "pathological" as 1.1. s., surely they are unusually "smooth" as topological 
groups, and thus it is irritating (at least to the author) that so little is known about 
them. The present approach is not conspicuously successful and the irritation is only 
slightly ameliorated. Several unsolved problems are posed. We are able to answer 
(negatively) the Robertsons'question, and in doing so are led to the amusing notion 
of the orthogonality of two topologies. (Two topologies TX and T2 for the same set 
aresaidtobeOrthOgOtta/ provided every nonempty Tx-open set meets every nonempty 
T2-open set.) 

The prefix "/?-" before a topology or uniformity will indicate that it fulfills the 
Hausdorff separation axiom. A topology T for a (real) linear space L will be called 
admissible provided (L, T) is a t. 1. s. For technical reasons, it is convenient here to 
consider all admissible topologies rather than merely the admissible h-topologies. 
Seven types of admissible topology seem especially worthy of study, and these will 
now be defined. 

An admissible topology will be called weak provided every neighborhood of the 
origin 0 contains a linear subspace of finite deficiency, convex provided every neigh­
borhood of 0 contains a convex neighborhood of 0, and nearly convex provided each 
point of L ~ cl {0} can be separated from 0 by a continuous linear functional. It will 

*) Research supported in part by a fellowship from the Alfred P. Sloan Foundation and in 
part by a grant from the National Science Foundation, U. S. A. (NSF-G18975). 

2) A conspicuous exception is the space S of all measurable functions on [0, 1], in the metric 
topology corresponding to convergence in measure — d(f,g) = fh\f ~~ gj/O + \f — 9 |). There 
are a few other exceptions. 
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be called nearly exotic provided Ladmits no nontrivial continuous linear functional, 
and exotic provided no proper closed neighborhood of 0 contains an absorbing con­
vex set. We follow IVES [5] in calling a s e t l c L p-convex provided X is starshaped 
from 0([0, 1] X = X) and p(X 4- X) cz 2X; a set is semiconvex provided it is /?-
convex for some ft > 0. (Alternatively, we could use a similar notion due to M. LANDS-

BERG [11, 12]). An admissible topology will be called semiconvex provided every 
neighborhood of 0 contains a semiconvex neighborhood of 0, and strongly exotic 
provided no proper closed neighborhood of 0 contains an absorbing semiconvex set. 
These are the seven types of topology to be studied here, and the terms are applied to 
the space (L, t) as well as to the topology T. Since an admissible topology is nearly 
convex if and only if each point of L ~ cl {0} can be separated from 0 by a convex 
neighborhood of 0, we might define analogously the notion of a nearly semiconvex 
topology, but this seems to be of only marginal interest while the other types of topo­
logy do appear in connection with well-known 1.1. s. 

Note that for every linear space L, the concrete topology {0, L} has all the pro­
perties mentioned above except that of being an h-topology. Every infinite-dimen­
sional normed linear space is convex but not weak. For 0 < p < 1, the space lp is 
nearly convex and semiconvex but not convex and the space IF is semiconvex and 
exotic but not strongly exotic. (These spaces are discussed in [3, 5, 10,11,12, 14].) The 
space S is strongly exotic, as can be seen by adapting the proof of S. MAZUR and W. 
ORLICZ [14] that S is nearly exotic. (Ives [5] has a more detailed discussion of the space 
S and a related example.) If J is an X0-dimensional dense subspace of Lp(0 < p < 1) 
or of S, then J (in the relative topology) is nearly exotic but it is not exotic and in fact 
admits no nonconcrete exotic topology, for the finest admissible topology in an 
K0-dimensional space is known to be convex [7]. The space J is semiconvex in the 
first case (for IF) but not in the second (for S). 

In the sequel, Lwill always denote a (real) linear space, £ a t. 1. s., and L* the 
space of all continuous linear functional on E. The real number space will be denoted 
by R. The symbol V will denote the set of indices {a, w, c, sc, nc, ne, e, se}, with / = 
= I' ~ {a}. For eel, T L will denote the class of all 1.1. s. which are (in order) weak, 
convex, semiconvex, nearly convex, nearly exotic, or strongly exotic. For a linear 
space Land i el, crtLwill denote the supremum of all topologies x for which (L, T) G 
e TL\ aaL is the supremum of all admissible topologies for L. 

Proofs will sometimes be abbreviated or omitted. For basic results on t. 1. s., 
sometimes employed here without specific reference, N. BOURBAKI [2] and G. KOTHE 

[10] are recommended; for topology, N. Bourbaki [1]. 

1. Some characterizations 

For a 1.1. s. E, Eh will denote the corresponding h. 1. s. The following obvious fact 
can often be used to reduce considerations to h. 1. s.: 
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1.1. Remark. For each t el, E e FL if and only if Eh e FL. 
The following characterization is hardly surprising: 

1.2. Proposition. A t. 1. s. E is weak if and only if every neighborhood of 0 
contains a set of the form fYi/71] ~~ -> ̂ \_for ft e E*-

Proof. For the "only if" part, consider an arbitrary neighborhood U of 0. Let V 

be a neighborhood of 0 such that V + cl V c U, F a subspace of finite deficiency in V, 
and cp the natural homomorphism of E onto the quotient space Q = £/cl F. Then Q 

is finite-dimensional and cpV is a neighborhood of the origin in Q, so there exist 
gt e Q* such that HigT*] ~~ *> 1 [ ^ <pV- With ft = g,(p we have f{ e £* and 

n ! . / ? 1 ] - - ! , ![<= <P~l<pVa V + clFcz U. 

The next result was stated by MACKEY [13], and can be deduced almost at once 
from the fact that dim F* > K0 when E is an infinite-dimensional normed linear 
space. 

1.3. Proposition. If E is convex and dim F* ^ K0, then E is weak. 
The following remark is useful: 

1.4. Lemma. In a t. I. s. E of the second category, a closed absorbing set X has 
nonempty interior; if X is semiconvex, 0 e int X. 

Proof. Since E = \Jn=i
 n% a n d e a c h set nX is closed, some nX has an interior 

point p and then n~1p e int X. Now suppose further that X is semiconvex, whence 
P(X + X) a X for some /? > 0, and let Y = X n — X. Then Yhas an interior point q 
and 0 = Pq + jS(-g) e j5(int Y + int Y) c int jS(Y + Y) c p(X + X)cz X. 

Using 1.2, 1.4, and the Hahn-Banach theorem, we find 

1.5. Proposition* Every weak topology is convex; every convex topology is 
semiconvex and nearly convex. Every strongly exotic topology is exotic and every 
exotic topology is nearly exotic. Every nearly exotic topology of the second category 
is exotic. 

In connection with 1.5, recall the examples in the Introduction. For 1.6 below, 
recall the definition of orthogonality of two topologies. 

nearly exotic 
1.6. Theorem. An admissible topology for Lis 

weak 
if it is orthogonal to every 

exotic 
strongly exotic 

topology for L. 

if and only 

convex 
semiconvex 

Proof. For the "only if" part for F„e, suppose L admits a weak topology T2 

which fails to be orthogonal to the admissible topology r1. Then there exist nonempty 
disjoint Tropen sets Ut in Lwith 0 e L72. Let F be a subspace of finite deficiency con­
tained in 172, F! the ^-closure of F, and G a subspace supplementary to Ft in L. 
Then G is a h. 1. s., 0 < dim G < K0, and (L, TX) is the direct sum of Ft and G. This 
implies that z1 is not nearly exotic. 

It is easily seen that if rt is not exotic, then it is not orthogonal to the convex 
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topology ocL. Now assume, on the other hand, the existence of a convex topology T2 

for L not orthogonal to xt. Let Ut be nonempty disjoint Tropen sets with 0 e U2, let C 
be a convex T2-neighborhood of 0 such that C c= [72, let Vl be a nonempty T ropen 
set whose Trclosure lies in C/l5 and let W denote the ^-closure of the set L~ \\. 
Then W is a Trclosed neighborhood of 0 and O e C c H/ 4- L, so TX is not exotic 
This takes care of Te, and the argument for Tse is essentially the same. 

By 1.6, a weak topology for L must be orthogonal to every nearly exotic topology 
for L. We have been unable to decide in general whether this property characterizes 
the weak topologies. To prepare for a partial result in that direction, we recall two 
notions of D . T. FINKBEINER and O. M. NIKODYM [4]. A set C c= L is a Hamel body 
provided there is a basis B a L such that C = conv (B u — B). A set is linearly 
bounded provided its intersection with each line lies in some segment. 

1.7. Proposition. A linear space L is of countable dimension if and only if every 
symmetric linearly hounded convex body in Lis contained in a Hamel body. 

Proof. Suppose first that dim L > K0. Let X be a basis for L and let U be the set 
of all points of the form £ (fx) x where f is a finitely supported real-valued function 

xeX 

on X and ]T (fx)2 rg 1. Then U is a symmetric linearly bounded convex body in L, and 
xeX 

we claim that no Hamel body contains U. 

Suppose U lies in a Hamel body C determined by a basis B for L. Let Lx denote 
the space Las normed by the gauge functional of C, L2 the same space as normed 
by the gauge functional of (7, and note that the identity mapping Tin Lisa continuous 
linear transformation of L2 onto Lt. Since the set B is uncountable, there exists a finite 
number n for which the set B n nU is infinite. Let M denote the linear extension of 
B n nU and let M{ denote the normed linear space obtained by restricting to M the 
norm of Lh Since C = conv (B u — P), we have C n M c nU and thus the restricti­
on T' of Tto M is a linear homeomorphism of M2 onto Mx. Then of course T' can 
be extended to a linear homeomorphism which carries the completion of M2 onto that 
of M l 5 and this is impossible for the first completion is reflexive (being an I2 space) and 
the second is not (being an ll space). The "only if" part of 1.7 has been established. 

To complete the proof of 1.7, we must show that if E is an K0-dimensional nor­
med linear space with unit cell U = {x e E : ||x|| ^ 1}, then U is contained in some 
Hamel body in E. Let the sequence xa form a Hamel basis for E. It is not difficult to 
produce a sequence fa in E* such that ftXj = 0 for / =j= j , and always f.X; > 0 and 
supfjC = 2~\ Let G denote the linear space of all eventually-zero sequences of real 
numbers and for each x e E let 

<px - (fi-x,f2x, ...)eG . 

Then <p is an algebraic isomorphism of E onto G, and since always sup ftU = 2~l it 
is easy to see that the set q>U lies in the Hamel body C determined by the natural basis 
{(5JJ0 of G. Thus <p -1Cisa Hamel body containing U and the proof of 1.7 is complete. 
16 Symposium 
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1.8. Theorem. A convex topology for a linear space Lis weak if and only if it is 
orthogonal to every nearly exotic topology for L. 

Proof. Only the "if" part requires discussion. Suppose the convex topology T is 
not weak, whence there is a symmetric closed convex neighborhood U of 0 which 
contains no subspace of finite deficiency. The union L' of all lines through 0 which lie 
in U is a subspace of infinite deficiency, and thus there are supplementary linear 
subspaces Lx and L2 of L for which L' c: Lt and dim L2 = K0. It is easily verified that 
U c Lt + (U n L2) and that the set U n L2 is a symmetric linearly bounded convex 
body in L2, whence by 1.7 it lies in some Hamel body C in L2. 

Let t] be a nearly exotic /z-topology for an X0-dimensional space J and F a non­
empty fl-open subset of J whose closure misses 0. Since the finest admissible topology 
aaJ for J is convex [7], there exists an absorbing convex set Win J such that Wn 
n V = 0. It is evident that Wmust contain a Hamel body C in J [4] and that there is 
an algebraic isomorphism T of J onto L2 which carries C onto C. Now let ( be the 
family of all subsets of Lof the form Li + TYfor r/-open Ycz J. Then £ is nearly 
exotic because r\ is nearly exotic. However, the set Lx + TV is £?open and misses the 
T-open set U9 so T is not orthogonal to every nearly exotic topology for L and the proof 
of 1.8 is complete. 

Are there characterizations of convex or semiconvex topologies which have a 
similar relationship to 1.7? Of course there exist nonconvex admissible topologies 
which are orthogonal to every exotic topology, for an K0-dimensional space admits no 
nonconcrete exotic topologies. However, it may be that an admissible topology % is 
coarser than a convex topology if and only if x is orthogonal to every exotic topology. 
This would imply that an admissible topology of the second category is convex if and 
only if it is orthogonal to every exotic topology, and weak if and only if it is orthogo­
nal to every nearly exotic topology. 

2. Preservation of type 

The following two assertions are easily verified: 

2.1. Proposition. For each iel9 if the t. I. s. E is the direct sum or product of 
the t. I. s. Ea9 then E e TLif and only if Ea e Tt for all a. 

2.2. Proposition. Let a denote the supremum of admissible topologies xafor a 
linear space L. If tel ~ {ne} and (L, Ta) e Tt for all a, then (L, a) e Ft. 

In particular, (L, aLL)ert for each i e I ~ {ne}. This fails for i = ne, and it seems 
conceivable even that aneL = aaL when L is infinite-dimensional. We have been 
unable to settle this, but shall prove the following: 

2.3. Theorem. If Lis infinite-dimensional, the topology aneL is finer than the 
topology awL. 

Proof. Letf be a nontrivial linear functional on L. We wish to show thatf is 
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continuous for the topology oneL, and shall in fact describe two nearly exotic /i-topo-
logies Ci and £2 for Lsuch thatfis continuous for the topology sup (d , (2). 

Note that an K0-dimensional linear space admits a nearly exotic ft-topology, 
whence the same is true of every infinite-dimensional linear space (for it may be regar­
ded as the direct sum of a family of its X0-dimensional subspaces). 

Let T be a nearly exotic h-topology for the space L under consideration. Let 
y e Lwithfy = 2 and consider the following two topologies xt and T2 for the space 
L x R: aset isT ropen (resp. T2-open) provided it has the form U x {0} 4- #(0,1) = 
= U x R (resp. U x {0} -f R(y, 1)) for some T-open set U c L. Then xt and T2 are 
both nearly exotic topologies for L x R. For each xeL, let £x = (x,fx) e L x R and 
let d be the topology for Lwhich is determined by specifying that £ shall be a homeo-
morphism of L onto (L in its relative topology (• induced by x(. Since £Lis dense in 
Lx R under the topology x{, each topology £; is a nearly exotic topology for L. Alth­
ough the Xi are not /i-topologies, it is easily verified that the topologies Ct (and hence 
Ci) do satisfy the separation axiom. To show that f is continuous for the topology 
SUP ((1,(2)5 1t suffices to produce ^-neighborhoods V{ of 0 in L x R such that 
(x, r)eVtn V2 implies r =)= 1, for then the functionalfcj"1 fails to assume the value 1 
on the set Vt n V2 n £L, the same must be true off on the set ^~1(V1 n L) r\ 
n £~*{V2 C> L), and since the latter set is a sup (£-_, (2)-neighborhood of 0 in L it 
follows readily that f is continuous. Let U be a T-neighborhood of 0 in L such that 
y £U — U, and suppose 

(z, 1) e (U x {0} + R(0, 1)) n (U x {0} + R(y, 1)) . 

Then we have zeU and z e U + y, whence y e U — U and the contradiction comple­
tes the proof of 2.3. 

2.4. Theorem. For 1 ^ j _. 5, let Aj deno te the set of all 1 e I such that whenever 

F is a subspace of a t. I. s. E 

1) then E e TL implies F e FL; 
2) and F is dense in E, then E e TL implies F e Ft; 
3) and dim EjF < X0, then EeFL implies F e TL; 
4) and F is dense in E, then F e FL implies E e TL; 
5) and dim EjF < X0, then F eFL implies E e Ft. 

Then At = {w, c, sc, nc}, A2 = A1 u {ne} = I ~ {e, se}, A3 = I, A4 = I ~ {nc}9 

and A5 = {w, c, sc}. 

Proof. The assertion about At is obvious, as is the fact that At u {ne} c A2. To 
see that {e, se} cz I ~ A2, recall that the space S is strongly exotic and admits a dense 
subspace J of countable dimension, but J cannot be exotic for the topology <raJ is 
convex [7]. 

Note that if F is a dense subspace of E and U is a neighborhood of 0 in F, then 
cl 17 is a neighborhood of 0 in E. It follows at once that {c, sc} c A4. To see that 
w e A4, recall the characterization 1.2 and the fact that every continuous linear 
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functional on F can be extended to one on E. That {ne, e, se} c= A4 follows at once 
from the relevant definitions. Thus A4 3 I ~ {nc}. In § 3 we give an example of 
a dense subspace F0 of a h. 1. s. F0 such that F0 is nearly convex but E0 is not, thereby 
showing that nc $ A4 and completing the discussion of A4. Let x e E0 ~ F0 with 
fx = 0 for allfe £*; then the pair F, F + Rx shows that nc $ A5. 

For A3 and A5 it suffices to consider the case in which dim EjF = 1. Then F 
must be dense or closed in E, and in the latter event E is the direct sum of F and a line. 
Thus the remaining assertions about A5 are evident and for A3 it remains only to 
show that {e, se] c= A3. 

Suppose E is exotic and F is a (necessarily dense) hyperplane in E but F is not 
exotic. By 1.6, the topology of F cannot be orthogonal to every convex topology for F, 
and hence there exist a neighborhood U of 0 in E and a nonempty convex set C c= 
c= F ~ U such that C is equal to its own core relative to F. Let V be a symmetric 
starshaped neighborhood of 0 in E such that V + V c= U and let v e V ~ F. Then 

C + ]-!>, t;[c= C + Vc= (F ~ [/) + Vc= E ~ V. 

Since the set C + ] — v, v[ is convex and equal to its own core relative to F, it follows 
from 1.6 that E is not exotic and the contradiction implies that ee A3. A similar 
argument shows that se e A3 and completes the proof of 2.4. 

The relationship of a t. 1. s. to its K0-dimensional subspaces seems worthy of 
study. A. PelcZyriski has asked whether every infinite-dimensional metric linear 
space has an K0-dimensional subspace which admits a nontrivial continuous 
linear functional, and in the other direction we inquire whether a nearly exotic space 
must have a nearly exotic K0-dimensional subspace. We may ask also whether mem­
bership of E in FL is implied by that of every K0-dimensional subspace of F. This is 
trivially the case for 1 = ne, and also for 1 = e and 1 = se since the only exotic topo­
logies of countable dimension are concrete. It is not the case for 1 = c or 1 = sc, for 
if dim L > K0 the topology craLis not semiconvex even though its restriction to each 
K0-dimensional subspace is convex. The question is of interest for 1 e {w, nc}, and 
also for 1 G {c, sc} under additional restrictions on the space. We can report only the 
following partial results: 

2.5. Proposition. A semiconvex space is weak if and only if all its tt0-dimen-
sional subspaces are weak. 

2.6. Proposition. Suppose X is an infinite cardinal number, K' is the first 
cardinal >K which is the limit of a sequence of its predecessors, and E is a metric 
linear space with K ^ dim E < ii'. Then E is convex, semiconvex, or nearly convex 
if and only if all its tt-dimensional subspaces have the corresponding property. 

Proofs. For 2.5, we consider a symmetric semiconvex neighborhood U of 0 in E 
and denote by F the union of all lines through 0 which lie in U. It can be verified 
(using semiconvexity) that F is a linear subspace of £ and hence admits a supplement­
ary subspace M. Since U n M contains no lines through 0, either M is finite-dimen­
sional or M is not weak, and this completes the proof of 2.5. 
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For 2.6, let Z denote the interval [K, K'[ of cardinal numbers, and for i e 
e {c, sc, nc) let ZL denote the set of all ( e Z such that whenever £ is a metric linear 
space of dimension ( and all K-dimensional subspaces of £ are members of FL, then 
£ e FL. We wish in each case to show that ZL = Z. Suppose Z ~ Zt is nonempty and 
let 8 be the first member of Z ~ ZL. Let £ be a metric linear space of dimension 5, all 
of whose K-dimensional subspaces are members of ri9 and let B be a Hamel basis 
for £. Let B be well-ordered in such a way that for each b e B, the set Pb of all prede­
cessors of b in B is of cardinality < 5, and for each be B let Eb denote the linear exten­
sion of P{,in £. From the definition of 5 it follows that Eb e Ft for each b e B, and also 
that no countable set is cofinal in B. 

Now for the case t = nc, we wish to show that each point p e E ~ {0} can be 
separated from 0 by a continuous linear functional, whence £ e Fnc, 5 e ZL, and the 
contradiction shows that Z = Zt. For each b e B, let (pb denote the supremum of the 
set of all numbers r ^ 0 such that conv (Nr n Eb) a E ~ {p}, where Nr = {x e E : 
d(x, 0) ^ r}. Then cp is an antitone mapping of B into [0, oo], and always (pb > 0 
since Eb e Fnc. Since B admits no cofinal sequence it is clear that inf (pB = 2e > 0 and 
then conv N£ cz £ ~ { p}, whence the Hahn-Banach theorem guarantees the existence 
of fe £* with /p 4= 0. This completes the discussion for rnc. For Fc the reasoning 
is similar, with the set £ ~ {p} replaced by an arbitrary neighborhood of 0. 

For Fsc, we consider an arbitrary neighborhood U of 0 in £, and for each b e B 
let ij/b denote the set of all (/?, r) e ]0, 1] x ]0, oo[ such that conv^ (Nrn Eb) cz U, 
where conv^ denotes the ^-convex hull [5], Each set \\/b is nonempty, for Eb e Fsc, and 
it is clear that if (fi, r)e\jjb, /?' e ]0, jf\, and r' e ]0, r] , then (£', r') e ij/b. Choose se­
quences /?a and ra in ]0, 1] such that /ja \ 0 and ra \ 0. We claim that for sufficiently 
large /, (/?,, rL) e f) \j/b. (Then of course conv^. Nr. cz U and the semiconvexity of £ 

beB 

is established.) Suppose the contrary, whence for each i there exists bt having (/?,-, rt) $ 
£ \J/b. Then with bf e B and bt < bf for all i, it follows that \\fbf is empty, a contra­
diction completing the proof of 2.6. 

2.7. Theorem. For j = 1,2, let Bj denote the set of all t el such that whenever Y\ 
is a continuous linear transformation of the t. I. s. E onto the t. I. s. F 

1. then E e FL implies F e FL; 

2. and Y\ is open or F of the second category, then E e T\ implies F e FL. 
Then I^ = {w, ne, e, se} and B2 = I ~ {nc}-

The relevant proofs and examples are rather straightforward and will be left for 
the reader. Use 1.4 when F is of the second category. In [8] there are described a se­
parable metric linear space £ and supplementary closed linear subspaces Mx and M2 

of £ such that £ is nearly convex but both the quotient spaces EjMt are nearly exotic. 
Of course this cannot happen if £ is complete. However, we do not know (in the 
setting of 2.7) whether near convexity of £ implies that of F when rj is continuous and 
open and F is of the second category. Note that if £ is convex and rj continuous, then 
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F cannot be exotic unless its topology is concrete, but F can be a nearly exotic 1.1. s., 
as we see by letting J be an K0-dimensional dense subspace of S, r\ the identity map­
ping on J, E = (J, tfflJ), and F the space J in the relative topology inherited from S. 

3. Orthogonality and completeness 

Two uniform structures for the same set will be called orthogonal provided 
the topologies which they generate are orthogonal. 

3.1. Proposition. Suppose /yUl and ^2 are orthogonal uniformities for a set X 
such that (X, sup (ftll9 ^2)) is a complete uniform space. Then for any two points xx 

and x2 of X9 the Wrclosure of { x j meets the ^U^closure of {x2}. 
Proof. Let 39 be the family of all sets of the form E/Jx-Jn U2\x2\ for Ut e ^ . 

Since ^ and <$r2 are orthogonal, each member of 39 is nonempty and it 
follows that 39 is the base of a filter #". We claim that 3F is a Cauchy filter for the 
uniformity sup (%l9 <%2). Indeed, consider an arbitrary member V of sup (<%l9 W2), 
containing the set Vx n V2 for certain Vt e °UV Let W{ be a member of ^ f such that 
Wi = Wr1 and W^W^ <= Vi9 and let p e Z = W-JJC-J n W2\x2\. For each qeZ 
we have (p, xt) e W{ and (xh q) e Wh whence (p, q) e W^. It follows that 

Z x Zcz WiWiWiWiCi Vi9 

whence Z x Z c Vt n V2. Thus 3F is a Cauchy filter for sup (^1? ^ 2 ) and by hypo­
thesis must converge to a point z e X. Since each neighborhood U\\z\ (for [/• e ^ r ) 
must contain LF|xJ for some LF G ̂ ^ it is clear that z lies in the ̂ -closure of {x,} and 
this completes the proof. 

3.2. Corollary, i"/ a linear space L is complete under the supremum of two 
orthogonal admissible topologies xt and xl9 then L is the linear sum of the x^closure 
of {0} and the x2-closure of {0}. 

3.3. Proposition. Two convex topologies for a linear space are orthogonal if 
and only if there is no nontrivial linear functional which is continuous in both 
topologies. 

The result 3.3 follows at once from the separation theorem for convex bodies. 
The result 3.4 below is well-known and can be proved in simpler ways (cf. Theorem 15 
of Mackey [13]), but the reader may find it instructive to base a proof on 3.1 and 3.3. 

3.4. Proposition. A weak h. I. s. E is complete if and only if no proper subspace 
of E* separates the points of E. 

For a uniform space (K, CU)9 the corresponding h-uniform space will be denoted 
by (X, %\ and the completion of (X9 W\ by (X, <%\. 

3.5. Theorem. If <JU1 and °ll2 are orthogonal uniformities for a set X9 the space 
(X9 sup (<titi9 W2))c is uniformly isomorphic with the product space (X.^U^c x 
x (X91t2)e. 

Proof. Let ^ 0 = sup ( « t , °U2) and for i = 0, l, or 2 let X\ Xl
h9 and Xl

c denote 
respectively the spaces (X, ^»), (X9 ̂ i\, and (X9 °U^)C. Let ^ denote the natural map-
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ping of X1 onto Xl
h and rji the natural mapping of Xl

h into Xl
c. For each point y = 

= (yi> y2) G %l x ^c a n d f° rI = i or 2 l e t e ^ denote the trace on rj0X
J
h of the filter-

base consisting of all open neighborhoods of y} in X{9 and let cS}
y denote the image of 

3tf3
y under the transformation ^ f1^"1 . Then ^J

y is a filter-base consisting of <^-open 
subsets of X, and since the uniformities (JU1 and (JU2

 a r e orthogonal, the set <iF y of all 
intersections Gt r\ G2 with Gj e $J

y must also be a filter-base, and in fact clearly a 
^0-Cauchy filter-base for <9J

y is ^-Cauchy. Thus the image of 3Fy under the mapping 
f\0<^0 is a filter-base in *]0X\ converging to a unique point cpy e X°c. Since each °U0-
Cauchy net is both ^-Cauchy and ^2-Cauchy, it is evident that <D is a biunique 
transformation of Kc x Kc onto Kc. It is a routine matter to check that cp is a uniform 
isomorphism and this completes the proof of 3.5. Further, if X is a linear space and 
the orthogonal uniformities °Ur and °l/2 are generated by admissible topologies for X, 
then <D turns out to be a linear transformation, whence — 

3.6. Corollary. If r t and T2 are orthogonal admissible topologies for a linear 
space L, the h. I. s. (L, sup (T19 T2))C is linearly homeomorphic with the h. I. s. 
(L, T,)C x (L, T2)c. 

Now for the example needed in connection with 2.4, observe that if dim L = 2**° 
then L admits both a convex h-topology TX and an exotic h-topology T2. By 3.6, the 
space (L, sup (rl9 T2))C is linearly homeomorphic with the product space (L, TX)C X 
x (L, T2)C. Of course the space (L, sup (T1? T2)) is nearly convex, but from 2.4 (A4) it 
follows that (L, T2)C is exotic and hence every continuous linear functional on the 
product space must vanish everywhere on {0} x (L, T2)C. Note that the topologies xx 

can be chosen to be separable and metrizable and then the same will be true of their 
supremum. These examples can be described more briefly by following the same ideas 
but suppressing some of the machinery employed above. 

Now for i G V = / u {a}, let Ct denote the class of all cardinal numbers X such 
that the space (L, aLL) is complete for K-dimensional L. It has been proved by I. 
NAMIOKA (unpublished) that Ca includes all cardinals. It follows from 3.4 that Cw 

consists only of finite cardinals. A result of S. KAPLAN [6] is that Cc includes all 
cardinals, which implies that Ca, Csc, and C„c include all countable cardinals. Of cour­
se the same is true of Ce and Cse, though in a trivial fashion. We conjecture that 
X0 G C„e, but this is not known and may be connected with the question as to whether 
aneLis finer than crcL when dim L _ X0. For K > K0 nothing is known except in the 
cases of Ca, Cw and Cc. To what extent can arbitrary admissible topologies be re­
presented in terms of the seven types studied here? Note that by Namioka's result 
in conjuction with 3.2, a2L is not the supremum of an admissible rz-topology and 
an admissible non-concrete topology which is orthogonal to T. 

Another limitation on the representation of admissible topologies is indicated 
by 3.8 below. In preparation for its proof, we establish the following 

3.7. Lemma. Suppose Xt is a symmetric starshaped subset of Rn
9 Xi+i = Xt + 

+ Xt for all i9 and Mt is the union of all lines through 0 which lie in cl Xt. Then 
for some r _̂  n, the following three statements are true: 
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(a) for each i ^ r, M{ contains a linear subspace of dimension i; 
(b) Mr is an r-dimensional linear subspace; 
(c) there is a compact set K such that Xx cz Mr + K. 

Proof. Let r be the largest integer for which (a) holds. Let Lrbean r-dimensional 
linear subspace contained in Mr and let F be a subspace supplementary to Lr. Let 
I || be a norm for /T, U = {x e Rn : ||x|| ^ 1}, and Z = {x e F : | |x| = 1}. For 
each z e Z , let (5Z be the least upper bound of the set of all numbers t > 0 such that 
X n (Lr + Rz) cz Lr + lU. Let m = sup (5Z G [0, oo]. Since Lr is a subspace and K is 
symmetric and starshaped, it is easy to see that Lr + ] — 5Z9 o\.[ z cz Lr + X for each 
z G Z. Then if m = oo it follows from compactness of Z that Lr + Rz0 cz cl (Lr + X) 
for some z0 e Z, whence of course Lr + Kz0 is an (r + l)-dimensional subspace of 
Mr+ t. This contradicts the definition of r, so we conclude that m < oo and I c L r + 
+ ml/, thus establishing (c). The truth of (b) is now immediate and this completes the 
proof. (Note, in addition, that M} = Mr for allj ^ r.) 

3.8. Proposition. The usual topology T of the space lp (0 < p < 1) is riol l/?e 
supremum of a convex topology and a nearly exotic topology. 

Proof. Suppose T is the supremum of a convex topology xx and a nearly exotic 
topology T2, and let y denote the admissible topology generated by the family of all 
convex T-neighborhoods of 0. Then of course y is finer than T1? and since the set 
U = {x = (x t , x2, ...) e lp : YJ I \xt\p ^ 1} is a T-neighborhood of 0 there exist a 
y-neighborhood V of 0 and a T2-neighborhood W' of 0 such that V n W' cz U and 
hence W' cz U n (/p ~ V'). By a theorem of DAY [3], each continuous linear function­
al on lp is a linear combination of the coordinate functionals x/1 x G F, whence the 
topology y is weak by 1.3 and consequently there exist e > 0 and an integer n ^ 2 
such that 

V' => V - {x G /p : |x,.| < e for 1 ^ f ^ n - 1} . 

Let IV! be a symmetric starshaped T2-neighborhood of 0 such that Wn cz W' (where 
Wi+1 = KVj + Wj). Then of course JV„ cz U u (P - V). 

For each x e lp, let TLX = (xl9 ..., x„) G KM, whence 7r(7 = {x G Rn : J] \xt\
p ^ 1} 

I 

and nV = {x e K" : |x.-| < £ for 1 ^ / ^ w - 1}. Let X1 = nWu whence Kx is 
symmetric and starshaped with Xn cz nU u (P" — 7rV). Let the subspace Mr of P" be 
as in 3.7. Since clearly cl Xr cz cl Xn + R7\ we see that Mr + Kn and then it follows 
from (c) of 3.7 that conv Xx + Rn. This implies that conv W1 + lp and contradicts the 
assumption of near exoticity for the topology T2. The proof of 3.8 is now complete. 

In connection with 3.8, note also that an K0-dimensional linear space admits 
a topology which cannot be represented as the supremum of a semiconvex, a nearly 
convex, and an exotic topology. However, relative to any examples known to us at the 
moment, each of the following hypotheses may be true: 

each admissible topology is the supremum of a nearly convex topology and a 
nearly exotic topology; 
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each admissible topology is coarser than one which is the supremum of a convex 
topology and a nearly exotic topology; 

each t. 1. s. is linearly homeomorphic with a subspace of a t. 1. s. whose topology 
is the supremum of a convex topology and an exotic topology. 

In view of 2.1 and a result in [9]. it would suffice in the last instance to consider 
metric linear spaces. 
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