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Abstract. We consider a linear model for a 2−D hybrid elastic structure
consisting of a thermo-elastic plate which has a beam attached to its free
end. We show that the interplay of parabolic dynamics and hyperbolic
dynamics in the model yields analyticity for the entire system. This result
provides an easy route to uniform stability.
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1 Introduction and Statement of the Problem

We consider well-posedness of the following model, Pr (P ), for the transversal
vibrations of a hybrid structure consisting of a thin rectangular thermo-elastic
plate which is clamped along three edges, while to its free edge a thin beam with
ends clamped to the adjoining clamped edges of the plate, is attached:

wtt +∆2w + α∆θ = 0 in ΩT

w = 0 =
∂w

∂n
on ∂ΩT − ΓT

βθt − η∆θ − α∆wt = 0 in ΩT

θ = 0 on ∂ΩT − ΓT

This is an overview article.
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wtt − [wxxx + (2− ν)wxyy ] + wyyyy − α
∂θ

∂n
+ bθyy = 0 on ΓT

∂w

∂n
= 0 on ΓT

w = 0 = wy at ∂ΓT

βθt + η
∂θ

∂n
− κθyy − bwyyt = 0 on ΓT

θ = 0 at ∂ΓT ,

w(x, y, 0) = w0(x, y), wt(x, y, 0) = w1(x, y), θ(x, y, 0) = θ0(x, y) in Ω
w(a, y, 0) = µ0(y), wt(a, y, 0) = µ1(y), θ(a, y, 0) = θ1(y) on Γ.

Here Ω denotes the interior of the plate with corner points (0, 0), (a, 0), (a, ^) and
(0, ^), while Γ is the line joining (a, 0) and (a, ^) and ∂Γ its end-points.

The constitutive equations in Pr (P ) are “contact” equations in the sense that
the deflections as well as the temperatures of the plate and the beam match at the
interface for t > 0, but not necessarily initially. Thus the 1−D biharmonic equation
and heat equation along Γ form a system of dynamic boundary conditions for the
thermo-elastic plate equations. By allowing for interaction between the plate and
the beam, the partial differential equations along Γ contain additional terms: the
third order space derivatives of the displacement variable w in the beam equation
represent the combined shear force and twisting moment exerted by the plate on
the beam, while the conormal derivative of the thermal variable θ in the heat
equation along Γ reflects the flux of heat from the plate to the beam across the
interface Γ.

2 Implicit Evolution Equation for Pr (P )

We formulate Pr (P ) as an implicit evolution problem, Pr (AEP ), of the form
Find U such that

d

dt
(BU(t)) +AU(t) = 0, U ∈ D ⊂ X, t > 0

lim
t→0+

BU(t) = y ∈ Y

with A and B operators from a Banach space X to a second Banach space Y.
The construction of a unique solution of Pr (AEP ) with representation U(t) =
S(t)y entails the construction of a double family of evolution operators [4], viz.
〈{S(t), E(t)}〉 = 〈{S(t) : Y → X |t > 0}, {E(t) : Y → Y |t > 0}〉, with E(t) =: BS(t)
a semigroup in Y. The evolution from an initial state in Y to a solution in the space
X , is generated by the jointly closed operator pair 〈−A,B〉 : D → Y ×Y in which
R(B) is dense in Y.

3 Mathematical Setting for Pr (P )

We define the following spaces and operators:
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X0 =: L2(Ω) with inner product (, )0 and norm ‖.‖0.

Hm(Ω) = Hm,2(Ω) denotes the usual Sobolev spaces with inner products (, )m
and norms ‖.‖m when m > 0 and the Hilbert space L2(Ω) when m = 0. (, )m,Γ

and ‖.‖m,Γ denote the inner products and norms in Hm(Γ ).

For u ∈ Hm(Ω) we denote the trace of u on Γ by γu.

We define the following subspaces of X0:

X1 =: {w ∈ H1(Ω)
∣∣∣w = 0 on ∂Ω − Γ, γw ∈ H1

0 (Γ )}.

X2 =: {w ∈ H2(Ω)
∣∣∣w = 0 = ∂w

∂n on ∂Ω − Γ, ∂w∂n = 0 on Γ, γw ∈ H2
0 (Γ )}.

The spaces Xi, i = 0, 1, 2 are endowed with the inner products (, )i and the norms
‖.‖i. For X2 we also use the equivalent inner product ((, ))2 given by

a(w, z) = (wxx, zxx)0+2(1−ν)(wxy, zxy)0+(wyy, zyy)0+ν(wxx, zyy)0+ν(wyy, zxx)0.
The associated norm will be denoted by |||.|||2.

Y0 =: X0 × L2(Γ ). The (usual) inner product and norm are denoted by (, )Y0 and
‖.‖Y0 .

The domains D1 and D2 are defined by

D1 =: {w ∈ H4(Ω)
∣∣∣w = 0 = ∂w

∂n on ∂Ω − Γ, ∂w∂n = 0 on Γ, γw ∈ H4(Γ )∩H2
0 (Γ )}.

D2 =: {θ ∈ H2(Ω)
∣∣∣θ = 0 on ∂Ω − Γ, γθ ∈ H2(Γ ) ∩H1

0 (Γ )}.

The operators A, B and Cj , j = 1, 2, 3 from X0 into Y0 are defined by

Aw =:
〈
∆2w,−[γ(wxxx + (2 − ν)wxyy)] + (γw)yyyy

〉
,

Bw =: 〈w, γw〉 , w ∈ D1 = D(A).

C1θ =:
〈
α∆θ,−αγ ∂θ

∂n + b(γθ)yy
〉
, θ ∈ D2,

C2ẇ =: 1
β 〈−α∆ẇ,−b(γẇ)yy〉 , ẇ ∈ X2,

C3θ =: 1
β

〈
−η∆θ, ηγ ∂θ

∂n − κ(γθ)yy
〉
, θ ∈ D2.

Observing that R(B) = {〈w, γw〉 , w ∈ D1} is a proper subset of Y0, we define the
following subsets of X1 ×H1

0 (Γ ) and X2 ×H2
0 (Γ ):

Y1 = C^(B[X1]), Y2 = C^(B[X2]), with closures taken in Y0.

Y1 will be endowed with the norm ‖Bw‖Y1 = (‖∇w‖20+‖(γw)y‖20,Γ )
1
2 and Y2 with

the norm |||Bw|||Y2 ≡ ((Bw,Bw))Y2 = (a(w,w) + ‖(γw)yy‖20,Γ )
1
2 .

To cast Pr (P ) in the abstract form Pr (AEP ), we define product spaces equipped
with product space inner products and norms, viz. the “finite energy” space XE
and its accompanying space YE and a weaker space X , with accompanying space
Y :
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XE =: X2 × (X0)2,YE =: Y2 × (Y0)2.

In XE we define the domain
DE =: {UE = (w, ẇ, θ), w ∈ D1, ẇ ∈ X2, θ ∈ D2}
The linear operators A and B on the common domain DE are now defined by

AUE =:

 0 −B 0
A 0 C1

0 C2 C3

UE , BUE =:

B 0 0
0 B 0
0 0 B

UE , U ∈ DE .

To define the weaker spaces X ,Y we first define

H =: {w ∈ X0

∣∣∣A 1
2w = 0}, WX0 = H⊥. [1][2]

Z =: {y = 〈y1, y2〉 ∈ Y0
∣∣∣A 1

2 y1 = 0}, WY0 = Z⊥.

X =: (WX0 ∩X0)× (X0)2, Y =: (WY0 ∩ Y0)× (Y0)2.

To define a domain D in X , we introduce the variable U =: (u, ẇ, θ), Bu =: −A 1
2w.

D =: {U = (u, ẇ, θ), u ∈ (WX0 ∩H2(Ω)), ẇ ∈ X2, θ ∈ D2.}
The linear operators L andM from X to Y are now defined by

LU =:

 0 A
1
2 0

−A 1
2 0 C1

0 C2 C3

U, MU =:

B 0 0
0 B 0
0 0 B

U, U ∈ D.
P r (P )may now be cast in the form of implicit evolution problems, viz. Pr (AEP )I :

d

dt
(BUE(t)) +AUE(t) = 0, UE ∈ DE , t > 0,

lim
t→0+

BUE(t) = G ∈ YE

or Pr (AEP )II :

d

dt
(MU) + LU = 0, U ∈ D, t > 0,

lim
t→0+

MU(t) = F ∈ Y.

4 Main Results

Th e reader is referred to [3] for the detailed proofs.

Lemma 1.

Re {(AUE ,BUE)YE}
= Re {−((Bẇ,Bw))Y2 + (Aw,Bẇ)Y0 + (C1θ,Bẇ)Y0 + (C2ẇ + C3θ,Bθ)Y0}
= η‖∇θ‖20 + κ‖(γθ)y‖20,Γ ,

Re{(LU,MU)Y} = η‖∇θ‖20 + κ‖(γθ)y‖20,Γ .
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We prove

Theorem 2. The operator pair 〈−A,B〉 generates a unique uniformly bounded
double family 〈S, E〉 = 〈{S(t) : YE → XE |t > 0}, {E(t) : Y → Y|t > 0}〉 of evolu-
tion operators. Thus Pr (AEP )I has unique solution UE ∈ C((0,∞);DE ) with
representation UE(t) = S(t)G for any G ∈ R(B) and each t ∈ (0,∞).

Corollary 3. Pr (P ) in (w,wt, θ) can be associated with a uniformly bounded
evolution operator S(t) : YE → DE ⊂ XE in the sense that S(t)G = UE(t) = (w, ẇ, θ)
solves Pr (AEP )I for any G = (G1, G2, G3) = (〈g1, γg1〉 , 〈g2, γg2〉 , 〈g3, γg3〉) such
that 

g1 ∈ D1, γg1 ∈ H4(Γ ) ∩H2
0 (Γ )

g2 ∈ X2, γg2 ∈ H2
0 (Γ )

g3 ∈ D2, γg3 ∈ H2(Γ ) ∩H1
0 (Γ ).

The restriction that each Gi, i = 1, 2, 3, of G is of the form 〈gi, γgi〉 , may be
interpreted as meaning that the initial displacement, velocity and temperature in
the plate and the beam should match along Γ.

Theorem 4. The operator pair 〈−L,M〉 generates a unique analytic uniformly
bounded double family 〈S, E〉 = 〈{S(t) : Y → X|t > 0}, {E(t) : Y → Y|t > 0}〉 of
evolution operators. Thus Pr (AEP )II has unique solution U ∈ C((0,∞);D) with
representation U(t) = S(t)F for any F ∈ Y and each t ∈ (0,∞).

Corollary 5. Pr (P ) in (w,wt, θ) can be associated with an analytic evolution
operator S(t) : Y → D ⊂ X in the sense that S(t)F = U(t) = (u, ẇ, θ) solves
Pr (AEP )II for any F = (〈f1, f2〉 , 〈g1, g2〉 , 〈h1, h2〉) such that

f1 ∈ X0, 0 �= E(〈f1, γf1〉), f2 ∈ L2(Γ )
g1 ∈ X0, g2 ∈ L2(Γ )
h1 ∈ X0, h2 ∈ L2(Γ )

with 2E(〈f1, γf1〉) = a(f1, f1) + ‖(γf1)yy‖20,Γ the elastic potential energy.

With the aid of Lemma 1 we obtain uniform stability for Pr (AEP )II :

Theorem 6. There exist constants M,σ > 0 such that for t > 0, the unique
solution U ∈ C((0,∞);D) of Pr (AEP )II , represented as U(t) = S(t)F for any
F ∈ Y, satisfies

‖S(t)F‖X ≤M exp(−σt)‖F‖Y .
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