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THE GLOBAL EXISTENCE OF WEAK 
SOLUTIONS OF THE MOLLIFIED SYSTEM 
OF EQUATIONS OF MOTION OF VISCOUS 
COMPRESSIBLE FLUID 
J. NEUSTUPA 
Faculty of Mechanical Engineering, Czech Technical University 
Suchbdtarova 4, 166 07 Prague 6, Czechoslovakia 

1. Introduction 

It is known that weak solutions of the Navier-Stokes equations 

for incompressible liquid exist on a time interval of an arbitrarv 

lenght (see e.g. f3] [101). No analogous result has been deri­

ved in the case of equations of motion of viscous compressible fluid 

till now. Only the existence of solutions of such equations local in 

time was proved (see e.g. [ ll , [5l , [ 8] , [ 9l ) and if some 

theorems about the global in time existence of solutions appeared, 

they contained assumptions of the type "the initial conditions are 

small enough" (see e.g. [4l) , "the flow is one-dimensional" ([2]), 

etc. We study the existence of weak solutions of the equations of 

motion of viscous compressible fluid on a time interval of a given 

lenght in this paper, but the system of equations we deal with is 

rather modified in a comparison with a full general system of equa­

tions governing the motion of viscous compressible fluid. The modi­

fication consists in the following points: 

a) We assume the dynamic viscosity coefficient y to be a positive 

constant. 

b) We do not take the energy equation into account and we use the 

relation between the pressure p and the density 

(1 .1 ) P = c p K 

instead of it. c and x are constants such that c > 0, x G (1 ,6). 

The tilda over p represents a certain regularization (mollifi­

cation). Its exact meaning is explained in the paragraph 2., but 

we can write in advance that pK(x) is an average of pH conside­

red with a proper smooth weight function on a neighbourhood B, (x) 

of x (where the radius h of this neighbourhood mav be arbitrari­

ly small). 

c) We use the mollification denoted by ~ also in some terms in the 

Navier-Stokes eauations for the system we deal with has the form 
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(1.2) p, t + ( pu\ ) , = 0 , 
J O 

(1 . 3) ' pu ) + ( pu.u ) . = - c. (pK) . + - yu, . , + uu. . . 1 »fc 3 -- »3 #i 3 D,ji i,DJ 

(i - 1,2,3). 

U = (i:,,1.],̂ .) has a physical meaning of the velocity of the moving 
A. I .3 

fluid. In I 7] , R. Rautmann used the similar mollification in the 

Navier-Stokes equations for the incompressible liquid in order to 

p^ove the g'cbal in time existence of strong solutions in three-di­

mensional domain.0. The notion of the velocitv of the fluid at the 

point x is usually introduced by means of an average of the veloci­

ties of all oar tides of the fluid contained in a small neighbour­

hood of x. So if h is small enough, u. is almost the same as u. 

frt^m th^ point of view of mechanics. The system (1. 3) expresses the 

'Ir-i T\Fewton law oi mechanics applied to p'rticlor moving along the 

inteara] curves oi the flow field U. 

We shall use the Rothe method. We can give only a brief outli­

ne of the whole procedure here. Details may be found in f 6] . 

2. Formulation of an initial-boundary value problem 

Assume that ft is a bounded rcjion in R with the boundary of 

the class C for some a € (0,1). Let us choose h > 0 and put 

Qh = (x e R
3; dist(x,Q) < h) . 

Assume th it h can be chosen so small that 9P is also of the class 

,) CO = K exp (•- ~?r~^~-5 ) for t, C: R \ UJ < h , n h -m 
•.• i r3 ) = o for E, e RJ, I r| N n . 

3 
Let K, be chosen so that the integral of to over R is equal to 1. 

if f e L1(a ), put 

h 

(2.1) f(x) = / u> (x - y)f(y)dy . 

"h 

If f is defined in ft, X R then we denote by f the function regu­

larized in the space variable only. If the regularization ~ is 

applied to any function def in the space variable on ft only (like for 

example components of the velocity or their approximations), we deal 
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with this function as if it is defined on ft
h
 and is identically 

equal to zero on ft, - ft. 

We shall solve the equation (1.2) on ft, X (0,T) and the system 
h 

(1.3) on ft X (0,T) (where T is a given positive number). We consider 

the boundary condition 

(2.2) u.I = 0 (i = 1,2,3) 

and the initial conditions 

( 2
-

3 )
 P|t = 0 =

 p
0 ' 

(2.4) (pu.)|
t = Q

 = p
o
u

0
. (i = 1,2,3) , 

where p
n
, U

n
 = (u

Q
 ,u

n 2
, u ^ ) are given functions such that 

P
0
 e H

x
(^

h
), p

Q
 > o, u

Q
 e H

1
^ )

3
. 

We shall call by the weak solution of (1.2), (1.3), (2.2), (2.3), 

(2.4) the couple of functions U,p such that 

U = ( u . , u 0 , u J G L 2 ( 0 , T ; H 1 ( ^ ) 3 ) , 
( 2 . 5 ) oo 

p e L ° O ( 0 , T ? H 1 ( ^ h ) ) , p > 0 , 

T _ ^ l 
( 2 . 6 ) / / { pu cp + p u . u cp . + c ( p M ) c p - - y u . <p -

Q Cj 1 - L , U J l l f j J - / 1 J J / J 1 / 1 

- У u . ( j < p . ř j } d x d t = - / F D u 0 i í ^ ± | t = 0 ) d x 

ft 
f o r a l l <p = (<P ,<p , 9 ) e C°°(TT X < 0 , T > ) 3 s u c h t h a t cp. I = 0 , 

< P _ | t _ T = 0 ( i = 1 , 2 , 3 ) , 

T 
( 2 . 7 ) / /{pcj, <_ + pu.tj, - } d x d t = - / P n U U - n ) d x 

on. ' D /ZI -A, 
n h 

for all (j, e C°°(TI X <0,T>) such that c|A _ = 0. 
By means of a similar method as it is used in [ ll in the case 

of the Navier-Stokes equations for the incompressible liquid, it can 

be proved that if U,p satisfy (2.5), (2.6), (2.7) then p.U is a.e. 
-1 3 in <0,T> equal to a continuous function from <0,T> into H (Q) . 

Hence we can understand under (pu.)l n (i=l,2,3) in (2^) limits 

as t - 0+ of the components of this function. Similarly, it may be 

shown that p is a.e. in <0,T> equal to a continuous function from 

<0,T> into H 1 ( ^ L ) " (the dual of H
1(f2, )). It gives a reasonable sence 

h h 
to the initial condition (2. 3). 
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3. The time discretization 

Let m be a natural number. Put x = T/m, t = k.i (k = -1,0,1,... 
^ -, *. < - l ) ( 0 > r> - o ^ ,- i *- ( k ) r,(k) 

...,m). Denote p = p n , u . = un . d = 1,2,3) and let p , U = 
(k) (k) (k) 1 

r (ul / u2 ' u3 ) denote a n approximation of a solution on k-th time 

Layer. A discrete version of (2.5), (2.6) and (2,7), which we use in 

the followinq, is: We look for p(0), p(1 } , . . . , p(m) e H1(fi ) , 

p ( k ) > 0 (k = 0,1 ,...,m) and U(1 ),...,U(m) G fe1(si) 3 so that 

r q i s ,f (k-1 ) (k). (k-2) (k-1). T ( H ) u | H ) u . ( H V . (3.1) /{p u. *. - P U.: *. - Tp j i 1,3 
ft _ 

- TCp ( k >X.i + "I ̂ j t y i , ! + ^"ityi. j>d* = 0 

for all * = <*i»*2>*3) G £°°(^)3 and k = l,...,m , 

t Q o>> ( k ) (k-1 > x w ( k ) ~(k)^ - n (3.2)k p - p + i ( p
 uj ), j ° 

for k = 0,1,...,m. 

We can further proceed in such a way that we successively solve 

( 3.2) (for the unknown p ( 0 ) ) , (3.1) and ( 3.2) (for the unknowns 

U ( l ), p(1 } ) , ..., ( 3.1 ) m and ( 3.2 ) m (for the unknowns U
( m ), p ( m ) ) . It 

can be done using standart methods of the functional analysis and the 

theory of the partial differential equations. The following inequal­

ities may be also derived: 

, o Qs r,l (k-1) (k) (k) M 1 £ (s-2), (s) (s-l)w (s) (s-1) 
(3.3) /{-p u. u. + x E P (u. -u. )(u. -u. ) + 

pj 2 ii i s = 1 ii 11 

, 1, --, , (s)N2, -̂  (s) (sK , , c r (k)«J + 3 T WJ 1
( uj,j ) + T P

s^
Ui,j Ui,j } d X + *=T J P dX S 

- 0 I2 pouoiuOidx *• I?T n ! Podx (k = x m ) • 

/ 0 nl « (k)«2i j. v H Cs) (S-1 ).2, . 
(3-4) *p ,

H
1(oh)

 +
 S V

P " p V(V s 

< Kx exp(4TBu0»L2(n) 3 + J |p0u0iuoidx + 

+ -£- / P;dx).lp0i;i a = 0,1 m) 
ft, n 
n 

for an appropriate positive constant K , independent on k. 

4. An approximate solution of (2.6), (2.7) and the limit 

process for m — +00 

Put 



413 

(4.1) .mp(t) = p ( k ) for t e (tk,tk + 1> (k - -1,0,1 m-l) , 

(4.2) mu(t) = U(k+1 } for t e (t *t > (k = 0,lt...,m-l) . 

It follows from (3.3) and (3.4) that the sequence { p) (resp. 

{mU} ) is uniformly bounded in L°°(0,T; H (fth)) (resp. in the spa­

ce L2(0,T; H1(^)3)) and that {mp|mu|2} is uniformlv bounded in 
00 1 
L (0,T; L (ft)). Usinq the Holder inequalitv, it can be also easi-

lv shown that {mP
mU} is uniformly bounded in L°°(0,T; L12^7(ft) 3) and 

2 1 3 in L (0,T; W . (ft) ). There exist subsequences (denoted by 

{mp} , {mU} again) and functions p, U so that mp - p weakly - * 

in L°°(0,T; H^ft,)), mU - U weakly in L2(0,T; H1(fi)3), mp U 

, oo 12/7 3 
— P U weaklv - *" in L (0,T; L (ft) ) and weaklv in the space 

L2(0,T; W1 (ft)3). Bv means of other estimates of mp mU and mp 

in #Y(0.T; Wg / 2(n)
3. H_1(ft)3) and JfY(0,T; H 1 ^ ) . L2(fth)) (see 

e.q. [ 3] or [ 10] for the definition of these spaces), we can prove 

that even mp - p stronqlv in L2(0,T; L2(fth)) and m p
 mu -

- p U stronqlv in L2(0,T; L2(ft)3). 
mU satisfv (2.6), resp. (2,7) with some 

1/ 2 errors E , resp. E0. It is shown in 16] that E - 0(T ) and E0 = 
1/2 

= 0(x ) for T - 04- (i.e. m - +°° ) . These relations toqether with 

the tvpes of converqences mentioned above are sufficient to Drove 

that p, U satisfy (2.5), (2.6), (2.7). 

If we use ( 3. 3) and (3.4), we can also derive the estimate 

(lt'3) ML~(0,T, H 1 ^ ) S Kl eXP {J \ pOU0iU0idx + 

+ ^T J % ^ - ' V H 1 ^ ) 
" h h 

and t h e ene rgy i n e q u a l i t y 

<*.*> J I " V i l t - t / * + TT-T Q' p K k = t i
d x + 

fcl 1 2 
4- / / { ~ y ( u . . ) 4- n u . . u . , } d x d t < 

O f t 3 ' 3 1,J 1,J 

< I ip 0
u 0i u 0i d x + "5^T ; p0 d x 

ft fth 

( f o r e v e r y t e < 0,T> ) , 

While the estimate (4.3) depends on the parameter h (used in 
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the reqularization in (1.2) and (1. 3)) accordinq to the dependance 

of K1 on h, the enerav ineaualitv (4.4) is quite independent on h. 

But in soite of this fact, we are not able to prove that if h - 0+, 

we can get a solution of (1.2), (1.3) without the mollification yet. 
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