EQUADIFF 6

Jiří Neustupa

The global existence of weak solutions of the mollified system of equations of motion of viscous compressible fluid

In: Jaromír Vosmanský and Miloš Zlámal (eds.): Equadiff 6, Proceedings of the International Conference on Differential Equations and Their Applications held in Brno, Czechoslovakia, Aug. 26-30, 1985. J. E. Purkyně University, Department of Mathematics, Brno, 1986. pp. [409]--414.

Persistent URL: http://dml.cz/dmlcz/700158

Terms of use:

© Masaryk University, 1986
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

THE GLOBAL EXISTENCE OF WEAK SOLUTIONS OF THE MOLLIFIED SYSTEM OF EQUATIONS OF MOTION OF VISCOUS COMPRESSIBLE FLUID

J. NEUSTUPA
Faculty of Mechanical Engineering, Czech Technical University Suchbátarova 4, 16607 Prague 6, Czechoslovakia

1. Introduction

Abstract

It is known that weak solutions of the Navier-Stokes equations for incompressible liquid exist on a time interval of an arbitrary lenght (see e.g. [3] [101). No analogous result has been derived in the case of equations of motion of viscous compressible fluid till now. Only the existence of solutions of such equations local in time was proved (see e.g. [1], [5], [8], [9]) and if some theorems about the global in time existence of solutions appeared, they contained assumptions of the type "the initial conditions are small enough" (see e.g. [4]), "the flow is one-dimensional" ([2]), etc. We study the existence of weak solutions of the equations of motion of viscous compressible fluid on a time interval of a given lenght in this paper, but the system of equations we deal with is rather modified in a comparison with a full general system of equations governing the motion of viscous compressible fluid. The modification consists in the following points:

a) We assume the dynamic viscosity coefficient μ to be a positive constant.
b) We do not take the energy equation into account and we use the relation between the pressure p and the density
(1.1)

$$
\mathrm{D}=\mathrm{c} \cdot \rho^{\tilde{\mu}}
$$

instead of it. c and x are constants such that $c>0, x \in(1,6)$. The tilda over ρ^{x} represents a certain regularization (mollification). Its exact meaninq is explained in the paraqraph 2., but we can write in advance that $\rho^{\tilde{x}}(x)$ is an average of ρ^{x} considered with a proper smooth weight function on a neighbourhood $B_{h}(x)$ of x (where the radius h of this neiqhbourhood mav be arbitrarily small).
c) We use the mollification denoted by \sim also in some terms in the Navier-Stokes eauations for the system we deal with has the form
(1.2)

$$
\begin{aligned}
& (1.2) \quad \rho, t+\left(\rho \tilde{u}_{j}\right), j=0, \\
& (1.3) \quad\left(\rho u_{i}\right), t+\left(\rho \tilde{u}_{j} u_{i}\right), j=-c \cdot\left(\rho^{x}\right), i+\frac{1}{3} \mu u_{j, j i}+\mu u_{i, j j} \\
& (i=1,2,3) .
\end{aligned}
$$

$U=\left(1:_{1},{ }_{3}=u_{3}\right)$ has a physical meaning of the velocity of the moving fluid. In $[\eta], k$. Rautmann used the similar mollification in the Navier-Stokes equations for the incompressible liquid in order to Fiove the g'vbal in time existence of strong solutions in three-dimensional domaine. The notion of the velocitv of the fluid at the point x is usually introduced by means of an average of the velocities of all narticles of the fluid contained in a small neighbourhood of x. So if h is small enough, \tilde{u}_{i} is almost the same as u_{i} from the point of view of mechanics. The system (1.3) expresses the ? : Wewton law on mechanics appliad to piri.icler moving along the intearal curves of the flow field U.

We shall use the Rothe method. We can give only a brief outline of the whole procedure here. Details may be found in [6].

2. Formulation of an initial-boundary value problem

Assume that Ω is a bounded rejion in R^{3} with the boundary of the class $C^{2+(\alpha)}$ for some $\alpha \in(0,1)$. Let us choose $h>0$ and put

$$
\Omega_{h}=\left\{x \in R^{3} ; \operatorname{dist}(x, \Omega)<h\right\} .
$$

Assume thit h can be chosen so small that ∂r_{h} is also of the class $c^{2+(\alpha)}$. Fint

$$
\begin{aligned}
& { }_{h}(\xi)=k_{h} \exp \left(\cdots \frac{|\xi|^{2}}{h^{2}-|\xi|^{2}}\right) \text { for } \xi \in \mathbb{R}^{3},|\xi|<h, \\
& h(\xi)=0 \quad \text { Eor } \xi \in R^{3},|\xi| \geq h .
\end{aligned}
$$

Let K_{h} be chosen so that the integral of ω_{h} over R^{3} is equal to 1 . If $f \underset{\in}{\mathcal{h}} L^{1}\left(\Omega_{h}\right)$, put
(2.1) $\tilde{f}(x)=\int_{\Omega_{h}} \omega_{h}(x-y) f(y) d y$.

If f is defined in $\Omega_{h} \times R^{1}$ then we denote by f the function regularized in the space variable only. If the regularization \sim is applied to any function def in the space variable on Ω only (like for example components of the velocity or their approximations), we deal
with this function as if it is defined on Ω_{h} and is identically equal to zero on $\Omega_{h}-\Omega$.

We shall solve the equation (1.2) on $\Omega_{h} \times(0, T)$ and the system (1.3) on $\Omega \times(0, T)$ (where T is a given positive number). We consider the boundary condition
(2.2) $\left.\quad u_{i}\right|_{\partial \Omega} \equiv 0 \quad(i=1,2,3)$
and the initial conditions
$\left.\rho\right|_{t}=0=\rho_{0}$,
(2.4) $\left.\left(\rho u_{i}\right)\right|_{t}=0=\rho_{0} u_{0 i} \quad(i=1,2,3)$,
where $\rho_{0}, U_{0}=\left(u_{01}, u_{02}, u_{03}\right)$ are given functions such that $\rho_{0} \in H^{1}\left(\Omega_{h}\right), \rho_{0} \geq 0, U_{0} \in R^{1}(\Omega)^{3}$.

We shall call by the weak solution of (1.2), (1.3), (2.2), (2.3), (2.4) the couple of functions U, p such that

$$
\begin{align*}
& U \equiv\left(u_{1}, u_{2}, u_{3}\right) \in L^{2}\left(0, T ; H^{1}(\Omega)^{3}\right), \\
& \rho \in L^{\infty}\left(0, T ; H^{1}\left(\Omega_{h}\right)\right), \rho \geq 0, \tag{2.5}
\end{align*}
$$

$$
\begin{align*}
& \int_{0}^{T} \int\left\{\rho u_{i} \varphi_{i, t}+\rho \tilde{u}_{j} u_{i} \varphi_{i, j}+c\left(\rho^{\sim}\right) \varphi_{i, i}-\frac{1}{3} \mu u_{j, j} \varphi_{i, i}-\right. \tag{2.6}\\
& \left.\quad-\mu u_{i, j} \varphi_{i, j}\right\} d x d t=-\int_{\Omega} \rho \varphi_{0 i}\left(\left.\varphi_{i}\right|_{t}=0\right) d x
\end{align*}
$$

for all $\varphi \equiv\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) \in C^{\infty}(\bar{\Omega} \times\langle 0, \mathrm{~T}\rangle)^{3}$ such that $\left.\varphi_{i}\right|_{\partial \Omega} \equiv 0$, $\left.\varphi_{i}\right|_{t}=T \equiv 0 \quad(i=1,2,3)$,

for all $\psi \in C^{\infty}\left(\pi_{h} \times(0, T\rangle\right)$ such that $\left.\psi\right|_{t=T} \equiv 0$.
By means of a similar method as it is used in [1] in the case of the Navier-Stokes equations for the incompressible liquid, it can be proved that if U, ρ satisfy (2.5), (2.6), (2.7) then $\rho . U$ is a.e. in $\langle 0, T\rangle$ equal to a continuous function from $\langle 0, T\rangle$ into $H^{-1}(\Omega)^{3}$. Hence we can understand under $\left.\left(\rho u_{i}\right)\right|_{t=0}(i=1,2,3)$ in (2.4) limits as $t \rightarrow 0+$ of the components of this function. Similarly, it may be shown that ρ is a.e. in $\langle 0, T\rangle$ equal to a continuous function from $\langle 0, T\rangle$ into $H^{1}\left(\Omega_{h}\right) \%\left(\right.$ the dual of $H^{1}\left(\Omega_{h}\right)$). It gives a reasonable sence to the initial condition (2.3).

3. The time discretization

Let m be a natural number. Put $\tau=T / m, t_{k}=k . \tau(k=-1,0,1, \ldots$
$\ldots, m)$. Denote $\rho(k)=\rho_{0}, u_{i}^{(0)}=u_{0 i}(i=1,2,3)$ and let $\rho^{(k)}, U^{\left.(k)^{(}\right)=}$ $=\left(u_{1}^{(k)}, u_{2}^{(k)}, u_{3}^{(k)}\right)$ denote an approximation of a solution on k-th time layer. A discrete version of (2.5), (2.6) and (2.7), which we use in the following, is: We look for $\rho^{(0)}, \rho^{(1)}, \ldots, \rho^{(m)} \in H^{1}\left(\Omega_{h}\right)$, $\rho^{(k)} \geq 0(k=0,1, \ldots, m)$ and $U^{(1)}, \ldots, U^{(m)} \in H^{1}(\Omega)^{3}$ so that
(3.1) ${ }_{k} \quad \int_{\Omega} \int^{(k-1)} u_{i}^{(k)} \Phi_{i}-\rho^{(k-2)} u_{i}^{(k-1)} \Phi_{i}-\rho_{\rho}(k-1) \tilde{u}_{j}^{(k-1)} u_{i}^{(k-1)} \Phi_{i, j}$
for all $\Phi \equiv\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right) \in \mathcal{C}^{\infty}(\bar{\Omega})^{3}$ and $k=1, \ldots, m$,
$(3.2)_{k} \quad \rho^{(k)}-\rho^{(k-1)}+\tau\left(\rho^{(k)} \tilde{u}_{j}^{(k)}\right), j=0$
for $k=0,1, \ldots, m$.
We can further proceed in such a way that we successively solve $(3.2)_{0}$ (for the unknown $\left.\rho^{(0)}\right),(3.1)_{1}$ and $(3.2)_{1}$ (for the unknowns $\left.U^{(1)}, \rho^{(1)}\right), \ldots,(3.1)_{m}$ and $(3.2)_{m}$ (for the unknowns $U^{(m)}, \rho^{(m)}$). It can be done using standart methods of the functional analysis and the theory of the partial differential equations. The following inequalities may be also derived:
(3.4)

$$
\begin{align*}
& \int_{\Omega}\left\{\frac{1}{2} \rho^{(k-1)} u_{i}^{(k)} u_{i}^{(k)}+\frac{1}{2} \sum_{s=1}^{k} \rho^{(s-2)}\left(u_{i}^{(s)}-u_{i}^{(s-1)}\right)\left(u_{i}^{(s)}-u_{i}^{(s-1)}\right)+\right. \tag{3.3}\\
& \left.+\frac{1}{3} \tau \mu \sum_{s=1}^{k}\left(u_{j, j}^{(s)}\right)^{2}+\tau \mu \sum_{s=1}^{k} u_{i, j}^{(s)} u_{i, j}^{(s)}\right\} d x+\frac{c}{x-1} \int_{\Omega_{h}} \rho^{(k) n} d x \leq \\
& \leq \int_{\Omega} \frac{1}{2} \rho_{0} u_{0 i} u_{0 i} d x+\frac{c}{x-1} \int_{\Omega_{h}} \rho_{0}^{n} d x \quad(k=1, \ldots, m) \text {, } \\
& \left\|\left\|_{\rho}^{(k)}\right\|_{H^{1}\left(\Omega_{h}\right)}^{2}+\sum_{s=0}^{k}\right\|_{\rho}^{(s)}-\rho_{\rho}^{(s-1)} \|_{H^{1}\left(\Omega_{h}\right)}^{2} \leq \\
& \leq K_{1} \exp \left(4 \tau\left\|U_{0}\right\| L^{2}(\Omega)^{3+} \int_{\Omega} \frac{1}{2} \rho_{0} u_{0 i} u_{0 i} d x+\right. \\
& \left.+\frac{c}{x-1} \int_{\Omega_{h}} \rho_{0}^{x} \mathrm{dx}\right) .\left\|\rho_{0}\right\|_{H^{2}\left(\Omega_{h}\right)} \quad(k=0,1, \ldots, m)
\end{align*}
$$

for an appropriate positive constant K_{1}, independent on k.
4. An approximate solution of (2.6), (2.7) and the limit process for $m \rightarrow+\infty$

Put
(4.1) $\quad .^{m} \rho(t)=\rho^{(k)}$ for $t \in\left(t_{k}, t_{k+1}\right) \quad(k=-1,0,1, \ldots, m-1)$,
(4.2) $\quad m_{U}(t)=U^{(k+1)}$ for $t \in\left(t_{k}, t_{k+1}\right)(k=0,1, \ldots, m-1)$.

It follows from (3.3) and (3.4) that the sequence $\left\{{ }^{m} f\right.$ (resp. $\left\{^{m} U\right\}$) is uniformly bounded in $L^{\infty}\left(O, T ; H^{1}\left(\Omega_{h}\right)\right)$ (resp. in the space $L^{2}\left(0, T ; H^{1}(\Omega)^{3}\right)$) and that $\left\{\left.\left.{ }^{m}\right|^{m_{U}}\right|^{2}\right\}$ is uniformlv bounded in $L^{\infty}\left(0, T: L^{1}(\Omega)\right)$. Using the Hölder ineaualitv, it can be also easilv shown that $\left\{{ }^{m}{ }_{\rho} m_{U}\right\}$ is uniformly bounded in $L^{\infty}\left(0, T ; L^{12 / 7}(\Omega 2)^{3}\right)$ and in $L^{2}\left(0, T ; W_{3 / 2}^{1}(\Omega)^{3}\right)$. There exist subsequences (denoted by $\left\{{ }^{m} \rho\right\},\left\{{ }^{m} U\right.$ again $)$ and functions ρ, U so that $m_{\rho} \rightarrow \rho$ weakly - * in $L^{\infty}\left(0, T ; H^{1}\left(\Omega_{h}\right)\right), m_{U} \rightarrow U$ weakly in $L^{2}\left(0, T ; H^{1}(\Omega)^{3}\right), m_{\rho}{ }^{m} U \rightarrow$ $\rightarrow \rho$ U weakly $-*$ in $L^{\infty}\left(0, T ; L^{12 / 7}(\Omega)^{3}\right)$ and weakly in the space $L^{2}\left(0, T ; W_{3 / 2}^{1}(\Omega)^{3}\right)$. Bv means of other estimates of $m_{\rho} m_{U}$ and m_{ρ} in $\mathcal{K}^{\gamma}\left(0 . \mathrm{T}: \mathrm{W}_{3 / 2}^{1}(\Omega)^{3}, \mathrm{H}^{-1}(\Omega)^{3}\right)$ and $\mathcal{K}^{\gamma}\left(0, \mathrm{~T} ; \mathrm{H}^{1}\left(\Omega_{\mathrm{h}}\right), \mathrm{L}^{2}\left(\Omega_{\mathrm{h}}\right)\right.$) (see e.q. [3] or [10] for the definition of these spaces), we can prove that even $m_{\rho} \rightarrow \rho$ stronalv in $L^{2}\left(0, T: L^{2}\left(\Omega_{h}\right)\right)$ and $m_{\rho} m_{U} \rightarrow$ $\rightarrow \rho \mathrm{U}$ stronqly in $\mathrm{L}^{2}\left(0, \mathrm{~T} ; \mathrm{L}^{2}(\Omega)^{3}\right)$.

The functions ${ }^{m}{ }_{\rho}, m_{U}$ satisfv (2.6), resp. $(2,7)$ with some errors E_{1}, resp. E_{2}. It is shown in [6] that $E_{1}=0\left(\tau^{1 / 2}\right)$ and $E_{2}=$ $=0\left(\tau^{1 / 2}\right)$ for $\tau \rightarrow 0+$ (i.e. $\left.m \rightarrow+\infty\right)$. These relations toqether with the types of converqences mentioned above are sufficient to prove that ρ, U satisfy (2.5), (2.6), (2.7).

If we use (3.3) and (3.4), we can also derive the estimate

$$
\begin{align*}
& \|\rho\|_{L}^{2}{ }^{\infty}\left(0, T ; H^{1}\left(\Omega_{h}\right)\right) \leq K_{1} \exp \left(\int_{\Omega} \frac{1}{2} \rho_{0} u_{0 i} u_{0 i} d x+\right. \tag{4.3}\\
& \left.\quad+\frac{c}{x-1} \int_{\Omega_{h}} \rho_{0}^{x} d x\right) \cdot\left\|\rho_{0}\right\|_{H}^{2}{ }^{1}\left(\Omega_{h}\right)
\end{align*}
$$

and the energy inequality
(4.4)

$$
\begin{aligned}
& \left.\int_{\Omega} \frac{1}{2} \rho u_{i} u_{i}\right|_{t=t_{1}} d x+\left.\frac{c}{x-1} \int_{\Omega_{h}} \rho^{x}\right|_{t=t_{1}} d x+ \\
& \quad+\int_{0}^{t_{1}} \int\left\{\frac{1}{3} \mu\left(u_{j, j}\right)^{2}+\mu u_{i, j} u_{i, j}\right\} d x d t \leq \\
& \quad \leq \int_{\Omega} \frac{1}{2} \rho_{0} u_{0 i} u_{0 i} d x+\frac{c}{x-1} \int_{\Omega_{h}} \rho_{0}^{x} d x
\end{aligned}
$$

(for every $t_{1} \in\langle 0, T\rangle$).
While the estimate (4.3) depends on the parameter h (used in
the reqularization in (1.2) and (1.3)) according to the dependance of K_{1} on h, the enerav ineaualitv (4.4) is quite independent on h. But in soite of this fact, we are not able to prove that if $h \rightarrow 0+$, we can get a solution of (1.2), (1.3) without the mollification yet.

References

[1] ITAYA,N., On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids, Kodai Math. Sem. Rep. 23, 1971, 60-120.
[2] KAZHIKOV,A.V., SHELUKIN,V.V., Unique global solution in time of initial-boundary value problems for one-dimensional equations of a viscous gas, Prikl. Math. Mech. 41, 1977, 282-291.
[3] LIONS,J.L., Quelques méthodes de résolution des problémes aux limites non linëaires. Dunod. Paris. 1969.
I 41 MATSUMURA.A.. NISHIDA.T.. Initial-boundary value problems hor the equations oh motion oh compressible viscous and heat-conductive bluids, Comm on math. Phvsics 89. 1983, 445-464.
[51 NASH.J.. Le problème de Cauchu pour les équations dihf. d'un Kluide gëneral, Bull. Soc. Math. France 90, 1962, 487-497.
[6] NEUSTUPA,J.. The global weak solvability on an initial-boundary value problem of the Navier-Stokes type for the compressible Gluid, to appear.
[7] RAUTMANN,R., The uniqueness and regularity of the solutions of Navier-Stokes problems, Funct. Theor. Meth. for PDR, Proc. conf. Darmstadt 1976, Leciure N. in Math., 561, 1976, 378-393.
[8] SOLONNIKOV,V.A., Solvability of the initial boundaru value problem for the equations of motion of a viscous compressible bluid, J. Soviet Math. 14, 1980, 1120-1133.
[9] TANI,A., On the first initial-boundary value problem of compressible viscous fluid motion, Publ. RIMS Kyoto Univ. 13, 1977, 193-253.
[10] TEMAM,R., Navier-Stokes equations, North-Holland Publ. Comp., Amsterdam - New York - Oxford, 1979.

