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THE GLOBAL EXISTENCE OF WEAK
SOLUTIONS OF THE MOLLIFIED SYSTEM
OF EQUATIONS OF MOTION OF VISCOUS
COMPRESSIBLE FLUID

J. NEUSTUPA
Faculty of Mechanical Engineering, Czech Technical University
Suchbdtarova 4, 166 07 Prague 6, Czechoslovakia

1. Introduction

It is known that weak solutions of the Navier-Stokes equations
for incompressible liquid exist on a time interval of an arbitrary
lenght (see e.g. [3] [101). No analogous result has been deri-
ved in the case of equations of motion of viscous compressible fluid
till now. Only the existence of solutions of such equations local in
time was proved (see e.g. [1], [5], [8], [9] ) and if some
theorems about the global in time existence of solutions appeared,
they contained assumptions of the type "the initial conditions are
small enough" (see e.g. [4]), "the flow is one-dimensional" ([2]),
etc. We study the existence of weak solutions of the equations of
motion of viscous compressible fluid on a time interval of a given
lenght in this paper, but the system of equations we deal with is
rather modified in a comparison with a full general system of equa-
tions governing the motion of viscous compressible fluid. The modi-

fication consists in the following points:

a) We assume the d&namic viscosity coefficient u to be a positive
constant.

b) We do not take the energy equation into account and we use the
relation between the pressure p and the density

1.1) P = C.p

instead of it. ¢ and x are constants such that ¢ > 0, » € (1,6).
The tilda over ox represents a certain regularization (mollifi-
cation). Its exact meaning is explained in the paragraph 2., but
we can write in advance that A;(x) is an average of p" conside-
red with a proper smooth weight function on a neighbourhood Bh(x)
of x (where the radius h of this neighbourhood may be arbitrari-
ly small).

c) We use the mollification denoted by ~ also in some terms in the
Navier-Stokes eauations for the system we deal with has the form
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1.2) Pt + (pu) . =0,
J .3
, ~ X 1
(1.3 pu.) + (pusu,) . - e "y L+ 2 AU S TL TR
it e e R P ),1 3 MY,51 T MY, 5
(i = 1,2,3).
U = (u,,w,;ug) has a physical meaning of the velocity of the moving

fluid. InMIVj, R. Rautmann used the similar mollification in the
Navier-Stokes egnations for the incompressibke liquid in order to
prove th2 g'cbal in time existence of strong solutinns in three-di-
mensional domains. The notion of the velocitv of the fluid at the
point x is usually i.atroduced by means of an avcrage of the veloci-
ties of all marticlecs of the fluid contained in a small neighbour-
hood of x. So if h is small enough, Gi is almost the same as ui
from the point of view of mechanics. The system (1. 3) expresses the
2rt Wewton law <« mechanics applied o poriicles moving along the
inteqral curves of the flow field U.

We shall use the Rothe method. We can give only a brief outli-

ne of the whole procedure here. Details may be found in [6].

2. Formulation of an initial-boundary value problem

Assume that @ is a bounded rejion in R3 with the boundary of

+
the class C2 (a) for some o € (0,1). Let us choose h > 0 and put

Q = {x € R3; dist(x,R) < h} .

Assume thit h can be chosen so small that acb is alsc of the class
e2r(e) | pg A

.3
cr & G R, g <h,

Let K, be chosen so that the integral of w, over R3 is equal to 1.

If f € L](Qh), put

(2.1) F(x) = w (x = yIE(y)dy . '
%

If f is defined in ﬂh X Rl then we denote by f the function regu-
larized in the space variable only. If the regularization ~ is
applied to any function def in the space variable on 2 only (like for

example components of the velocity or their approximations), we deal
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with this function as if it is defined on 2, and is identically

equal to zero on Qh - Q.

We shall solve the equation (1.2) on 2. X (0,T) and the system

h
(1.3) on 2 X (0,T) (where T is a given positive number). We consider

the boundary condition

(2.2) u.l =0 (i=1,2,3)
1aq

and the initial conditions

(2.3) plt -0 7 fo ¢

(2.4) (pui)lt -0 7 PoY%; (i =1,2,3) ,

where Por Yo = (uOl’u02’u03) are given functions such that
eyl e fliny3

pg € HI(R), oy z‘o, Y By,

We shall call by the weak solution of (1.2), (1.3), (2.2), (2.3),
(2.4) the couple of functions U,p such that

1}

U= (u,u,,u,) € 2o, )3y,

(2.5) - :
p €L (0, T;H(Q)), 020,
T ~ ] 1
(2.6) Of QI{puiwi,t + pujuiwi,j + c(p )wi,i - suuj,j@i,i -
- uui,jwi,j}dxdt = - Qf;buOi(wi't : O)dx
= € c™(m x <o,m)3 =
for all ¢ (wl,w2,T3) c(n 0,T)° such that wi’aQ o,
Olg =0 (i=1,2,3),
T ~
(2.7) S o Jled ¢ + puyé jldxdt = - Qf Polble = ldx

h h
for all ¢ € c(T X (0,T) such that 4| _ . = 0.

By means of a similar method as it is used in [1] in the case
of the Navier-Stokes equations for the incompressible liquid, it can
be proved that if U,p satisfy (2.5), (2.6), (2.7) then p.U is a.e.
in (0,T) equal to a continuous function from (0,T) into PR %
Hence we can understand under (pui)lt:0 (i=1,2,3) in (2,4) limits
as t - 0+ of the components of this function. Similarly, it may be
shown that p is a.e. in (0,T) equal to a continuous function from
(0,T into Hl(Qh)* (the dual of Hl(Qh)). It gives a reasonable sence

to the initial condition (2, 3).
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3. The time discretization

Let m be a natural number. Put t = T/m, t, = k.t (k = -1,0,1,...
(-1) 0 ) ko (k) (k)
...,m). Denote p = rouy = (i = 1,2,3) and let o , U =
G5 - G0 o °o tos
= (a7, uy 7, ) denote an approximation of a solution on k-th time
layer., A discrete version of (2.5), (2,6) and (2,7), whlch we use in
the following, is: We look for o0, o) ..., o (m) e uha)
p(k) >0 (k=0,1,...,m) and U(l),...,U(m) € ﬁ (Q) so that
(k-l ) (k—l Ve
(k-1) (k) _ (k=2) (k-1) (k=1)u .
(3.1)k Qf{o ug ey 0 uy o, Tp 1,3
_ (k)n 1 (k) (k) _
TCp 1.i + 3 xuuj jQi i + THUy j¢i'j}dx =0

for all ¢ = (8,,0,,0,) € (™3 and k = 1,...,m ,

L0 | (em1) ) (T

(3.2)k 3 )s =0

v]

for k = 0,1,...,m.

We can further proceed in such a way that we successively solve
(3,2)_ (for the unknown 9(0)), (3.1 )1 and (3.2)1 (for the unknowns
U(l),p(l)),..., (31) and (3.2), (for the unknowns U(m), p(m)). It
can be done using standart methods of the functional analysis and the
theory of the partial differential equations. The following inequal-

ities may be also derived:

1 (k-1) (k) (k) , 1 (s=2), (s)_ (s-1), . (s) (s-1)
(3.3) QI{QQ u; g + 35 5:10 (ui uy )(ui -uy )+

M=

k
+ %ru Z (u(S))2+ TH Z u

s=1 s=

(s; is;}dx + 7§T I Q(k)ndx

@
.dx * ;%— J pgdx (k = 1,40.,m) ,
h

k
Z np(S) _ (s-1)“2 <

(3.4) S . H(Q)‘

1
< K, exp(urﬂuoﬂ 20g) 3+ Qf F0oUg; Ypidx +

C L -
—_— d I H k=0,1,...
+ — Qf °0 X). ®0 Hl(Q ) ( .1, ,m)

h

for an appropriate positive constant K independent on k.

1’

4, An approximate solution of (2.6), (2.7) and the limit

process for m - +=°

Put
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D(k) for t € (tk’tk+l> (k = -1,0,1,...,m-1) ,

"

(4.1) o)

(4.2) Myce) = 0RH) for £oe (e e ) (k= 0,1,.00,me1)

It follows from (3,3) and (3.4) that the sequence (mp} (resp.
{ U}) is unlformly bounded in L (O T; H (Q )) (resp. in the spa-
ce L (o, T ﬁ Q) )) and that { plmUlz} is unlformlv bounded in
L (O,T: L (Q)). Using the Holder inequalityv, it can be also easi-
1v shown that {mme} is uniformly bounded in LGYO,T; L12/7(u) % and
in L (0,T; W /2(9)3). There exist subsequences (denoted by
M3, (Mul again) and functions o, U so that Mp = weakly -
in 170, 1; Y90, ™~ U weakly in L?(0,T; H' (@), ™ Mo -

~ p U weakly - * in L7(0,T: L12/7(Q)3) and weakly in the space

L2(0,T; Wé/ (Q) ). Bv means of other estimates of ™y ™y and ™p
in #'(0.T; w§/2(n> H ) and #7015 mho) . LP(9,)) (see

e.g, [3] or [10] for the definition of these spaces), we can prove
that even mp - p stronqgly in L (0,T: L (Qh)) and mp Ty -

-~ p U stronglv in LZ(O,T: L (Q) ).

The functions mo. My  satisfv (2.6), resp. (2,7) with some
errors E,, resp. E,. It is shown in [6] that E, = 0(11/2) and E, =
= O(T 2) for 1 - 0+ (i.e. m = +° ), These relations together with

the tvpes of convergences mentioned above are sufficient to prove
that o, U satisfy (2.5), (2.6), (2.7).
If we use (3, 3) and (3,4), we can also derive the estimate

1
(43 "”"L (0,7; H (9 yy < K exe (Qf 2 PoYpiYpidx *
C "
+ — [ p, dx).lp 12,
1, % 0'H(2)

h

and the energy inequality

N

H
(4.4) / PU Uy |z £ dx + 7TT f 0 |p=g dx +
Q h 1
t
2
+ ! I(%u(u. D7+ wu .}dxdt <
0 Q J.3] i,J 1:]

IA

1 C "
J 5egugiugidx + 5=1 S e dx
Q Q
h
(for every t, € (o,m™),
While the estimate (4, 3) depends on the parameter h (used in
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the reqularization in (1.2) and (1. 3)) according to the dependance
of K, on h, the enerav inequalitv (4.4) is quite indevpendent on h.
But in soite of this fact, we are not able to prove that if h - 0+,
we can get a solution of (1.2), (1.3 without the mollification vet.
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