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ON OPTIMAL CONTROL OF SYSTEMS 
WITH INTERFACE SIDE CONDITIONS 
M. TVRDY 
Mathematical Institute, Czechoslovak Academy of Sciences 
115 67 Prague 1, Czechoslovakia 

Let 0 < T < 1 . Denote by D the space of functions x : [o, 1] -> 

R which are absolutely continuous on [0, T] and on (T,1J and such 
^ • - 9 

that their d e r i v a t i v e s x are square integrable on [0,1] ( x £ L ) . 

We want to establish necessary conditions for a local extremum of the 

functional of the type 

F : (x,u) e DR x L £ - gQ(x(0)) + gx(x(T + )) + g.. (x(1)) 

1 (0.1) 

+ h(s,x(s) ,u(s)) ds e R 

0 

subject to the constraints 

x(t) - A(t)x(t) - B(t)u(t) = 0 a.e. on [o, 1] (0.2) 

and 
1 

Mx(0) + NX(T+) + K(s) x(s) ds = 0 . (0.3) 

0 

1. Preliminaries 

Throughout the paper the elements in R are considered to be co

lumn n - v e c t o r s . Given a c £ R , c* denotes its transposition. Given 
n * 

a Banach space X , ||•|| and X denote the norm on X and the 
A ^ 

dual of X , r e s p e c t i v e l y . For any x £ X and <j> £ X , the value of 

the functional <j> on x is denoted by <x,<|)> . If Y is also a Ba-

nach space, then L(X,Y) denotes the space of linear continuous map

pings of X into Y . For A £ L(X,Y) , N(A) , R(A) and A denote 

its null space, range and adjoint, r e s p e c t i v e l y . 
2 

Furthermore, L denotes the space of functions x : [p, 1] -> R 
square integrable on [p, l]| , equipped with its usual norm denoted by I . The norm on D is defined by x e D + | | x | | = | x ( 0 ) | + 

x(т + 



2 2 
L

v
 x R~ . Its dual will be identified with L x R~ , while 
n 2n n 2n 

< x,ф >_ a*x(0) + b*x(т+) + < x,w >
т 

= a*x(0) + b*x(
T
+) + w*(s) x(s) ds 

0 

2 
for any x e D and d> = (w,a,b) e L x R x R 2

 n
 T

 ' ' n n n 

We shall keep the following assumptions. 

ASSUMPTIONS. A(t), B(t) and K(t) are square integrable on [o, l'J 

matrix valued functions of the types n x n , n x m and k x n , re

spectively, M and N are k x n-matrices. The functions g (x) , 

_J (x), g+ (x) and h(t,x,u) are continuous and continuously differen-

tiable with respect to x and u . 

2. Lagrange Multiplier Theorem 

Let us define 

A : x Є D -> 
n 

B : u 6 L 

x(t) - A(t).x(t) 

1 

Mx(0) + Nx(т+) + K(s) x(s) ds 

0 

B(t)u(t)' 

0 

and 

T : (x,u) 6 D x L^ -> Ax - Bu . 

Then A e L (D . I? x R
v
) , B e ML"?, L^ x R, ) and T <= 

n n K m 11 K 

2 2 
_(D x L L x R, ) and the constraints (0.2), (0.3) may be replaced 

n m n K ^ 
by the operator equation for (x,u) e D x L 

T(x,u) = 0 (2.1) 

The operator A is related to interface boundary value problems. 

It is known (cf. [ij) that under our assumptions A is normally sol-
2 

vable, i.e. (f,r) e L
 x R

> belongs to its range iff < y,f >
T
 + 

n K ^ JL 

Y
r = 0 for all (y,

Y
) € N(A*) ( N(A*) C L^ x RR ). It was also shown 

in [1] that N(A*) consists of all (y,y) e L n
 x R

k
 f o r which there 

exists a z e D such that z* (t) = y* (t) + Y*K(t) a.e. on [o, 1] 

and 



- z*(t) - z*(t)A(t) + Y*K(t)A(t) = 0 a.e. on [0,1] , (2.2) 

- z*(0) + Y*M = 0 , Z*(T-) = 0 , (2.3) 

- Z*(T+) + Y*N = 0 , z*(1) = 0 . (2.4) 

It is easy to see that 0 <̂  dim N (A) + dim N (A*) < <» . Hence we may 

apply Proposition 1.2 of [6] to obtain necessary and sufficient condi

tions for the complete controllability of the system (0.2), (0.3). 

PROPOSITION. R(T) = L2 x R, iff the only couple (z,Y) e
 D x R, ful

filling (2.2) - (2.4) together yith 

- z*(t)B(t) + Y*K(t)B(t) = 0 a.e. on [0,1] (2.5) 

is the trivial one: z(t) = 0 on [0, 1] and y = 0 . 

2 2 Let us suppose that R(T) = L x R, and let (xn,u ) ̂  D x L be n .K u u n m 
such that T(xn,un) = 0 . From the abstract Lagrange Multiplier Theorem 

(cf. [4] 9.3, Theorem 1) we obtain that if (xn,u ) is a local extre-

mum on N(T) of the functional F defined by (0.1) then there exists 
2 2 

a couple (y,Y) € L x R, such that each (x-u) £ D x L satisfies 

[F'(x uQ)](x,u) = < T(x,u),(y,Y) > 2 , (2.6) 
Ln x Rk 

where F'(x ,u ) stands for the Frechet derivative of F at the point 

(x u ) with respect to (x,u) ( F'(x ,u ) £ L (Dn
 x L^, R) ). Inser

ting the explicit form (0.1) of F into (2.6), applying the integration 

by parts formula and taking into account that 

1 1 

(x,u) e X -+ a*x(0) + b*x(T+) + w*(s) x(s) ds + v*(s) u(s) ds e R 

0 0 

2 
is the zero functional on D x L iff a = b = 0 , w(s) = 0 and 

n m 
v(s) = 0 a.e. on [0,1] we obtain the following result. 

THEOREM (Lagrange Multipliers). Let R(T) = L x R, . Then (x ,u ) e 

D x L is a local extremum of F on N(T) only if 
n m J * J 

xQ(t) - A(t)xQ(t) - B(t)uQ(t) = 0 a.e. on [0 ,1] , (2.7) 

MxQ(0) + NX Q(T+) + K(s) xQ(s) ds = 0 (2.8) 

0 

and there exist z € D and y e R. such that 
n ' ̂  k 
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- z * ( t ) - z * ( t ) A ( t ) + ү * K ( t ) A ( t ) = ( | ^ ( t , x n ( t ) , u n ( t ) ) l 3 x v ' O v ' * O 

ř . e . on [O , 1_] 
( 2 . 9 ) 

- z * ( 0 ) + ү*M = ( - ^ - ° ( x 0 ( 0 ) ) ) * , z * ( т - ) = 0 , ( 2 . 1 0 ) 

Әg л ðg^ * 

- z*(т + ) + ү«N = э З Г U

0 ( т + ) ) ) ' z * ( 1 ) = feг(xu(1))) ' (2.11) 

( 2 . 1 2 ) 
- z * ( t ) B ( t ) + Y * K ( t ) B ( t ) = ( | ^ ( t , x 0 ( t ) , u Q ( t ) ) ) * , 

a.e. on pO , i j . 

REMARK. Related topics were treated e.g. in [2], [3], [5]. 
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