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LINEAR PERTURBATIONS 
OF GENERAL DISCONJUGATE EQUATIONS 
W. F. TRENCH 
Drexel University 
Philadelphia, Pennsylvania, U.S.A. 

Suppose t h a t p , , . . . , p , , q £ C[ a,°°l , p . > 0 , and 

(1) f°° p . d t = °°, 1 < i < n - 1, 

and d e f i n e t h e q u a s i - d e r i v a t i v e s 

(2) LQx = x; L x = - (L x ) ' , 1 < r < n 
P r 

(with p = 1). We will give conditions which imply that the 

equation 

(3) L u + q(t)u = 0 
n ^ 

has solutions which behave as t -* °° like solutions of the equation 
L x = 0. 
n 

Let IQ = 1 and 

t 
I\(t,s; q.,...,q_) = / g.(w)I. _(w,s;q. _,...,q_)dw, j > i. 

Then a principal system [2] for L x = 0 is given by 

x±(t) = Ii_1(t,a?pi,...,p___1), 1 < i < n ; 

in fact, 

{Ii-r-l(t'a?Pr+l'" -'Pi-i5' ° - r - i " 1 ' 

0, i < r < n - 1 . 

We also define 

y_(t) = I
n_ i

( t/ a?P n.. 1/"-/P i)/ 1 - - ̂  n, 

and 

(5) d
i r

( t ) = 

L x. (t), 0 < r < i - 1, 
r 1 

l/Ir_i+1(t,a;pr,.,.,p_), i < r < n 

We give sufficient conditions for (3) to have a solution u. 

such that 

(6) Lru± = Lrx_ + o(d<r) (t -* °°) , 0 < r < n - 1, 

for some given i in {!,...,n}. This formulation of the question is 
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due to Fink and Kusano, and the best previous result on this question 

is the following special case of a theorem obtained by them in I ll . 

THEOREM 1. 1i 

(7) r^lyl\q\dt < °°, 

tkzn (3) h<u> a solution u- wklck satisfies (6). 

Our r e s u l t s requi re l e s s s t r i n g e n t i n t e g r a b i l i t y c o n d i t i o n s . We 

need the following lemma from [ 41 . 

LEMMA 1. Suppose, that Q. G C[ t f<*>) f^oh. some, t > a, tkat 

I°°y >ddt convejige.6 [pdnkaps conditionally) , and tkat 

sup I /°°^Qjl6| < y{t)f t > tQf 

T>t X 

u)ke.H.2. i\> Is nonlndzaslng and continuous on [ tn°°) . Vd^lno, 

KU;Q.) = /°°I jU,&;p.,...,p )Q,U)d6, 
• V L ~~ \. A , YL ~ J. 

and, ioн. t > t , ІQX 

J(t;<l) = K(t;Ю li l = 1; 

t 
J(t;(l) = / p1U)K(Á;Q,)d6 = I x ( tf tQ ; p ±K ( ;£))cLó 

t0 
-L& <L = 2 ; 0K 

JU;<1) = I ^ U U ^ P ^ . - ^ P ^ K C ; £ ) ) 

<t<S 3 < L < Ki. 

Then 

(8) L n J ( t ; a ) ^ " £ U ) , t > tQf 

and 

^U0)dliU)' ° " * - * " 2 ' 
IL^JC ,2 )1 <- *j * > ^ Q ; 

2 Y U ) d ^ U ) , X - 1 < / L < K I - 1 , 

motLZov&n., l^ l i m ^ U ) = 0, tko.n also 
t~**> 

Lfi(J(t;Q)) = oUl U)), 0 < 1 < I - 2. 

The following assumption applies throughout. 

ASSUMPTION A. Let / y.x.qds converge (perhaps conditionally), 

and suppose that 

(9) E(t) = / yixiqds = 0(ф(t)) 
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w i t h cp n o n i n c r e a s i n g on [ a,°°) , and 

(10) l i m cp(t) = 0 . 
t
->oo 

If t > a, let B(t ) be the set of functions h such that 

L
n
h,...,L , h e Clt,,,

00
) and 

0 n-1 0 
0(d. ), 0 < r < i - 2, 

ir 

t > t
г 

I 0((pd. ) , i - l < r < n - l , 

with norm II II defined by 

f l L r h ( t ) | l L r h ( t ) l 1 
(11) llhll = sup maxJ ( } ( ( 0 < r < i - 2 ) , • ( i - l < r < n - l ) f 

t>t
Q
 0 lr lr J 

Then Lemma 1 with Q = qv and V - K<p implies the following lemma. 

LEMMA 2. 1& v E C[t0,°°) and 

I S°°y-qvd^\ < KcpU), t > t , 

^ -4. u 

J(
 ;
qv) G B(^

0
) 

and 

IJ( ;qv)« < K . 

Now define the transformation T by 

(12) (Th)(t) = J(t?qx,) + J(tjqh) . 

Lemma 2 and Assumption A imply that J( ;qx.) G
 B(
-t

n
) for all t

n
> a. 

We need only impose further conditions which will imply that / y.qhds 

converges (perhaps conditionally) if h €= B(tn), and that 

I /°°yiqhds| < HhH a (tj tQ )q> (t), t > t , 
t 

where a does not depend on h, and 

(13) sup a(t-rt ) = 9 < 1 
t>tQ 

if t is sufficiently large,Lemma 2 will then imply that T is a 

contraction mapping of B(t ) into itself, and therefore that there 

is an h. in B(tn) such that Th. = h.. It will then follow from 
l 0 1 1 

(8) and (12) that u^ = x± + hi is a solution of (3). Moreover, Lemma 

3 with Q = qu. will imply that 

(14) 

o(d. ), 0 < r < i - 2 

0(фd. ), i - l < r < n - l 
ìr ' 

The next lemma can be obtained from (9) and integration by parts. 
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See [ 3l for the proof of the special case where p = ... = p = 1 . 

*l n 

LEMMA 3. Ldt 

(15) HQ = y^q; H Xt) -- J°°p^ _H^ _d*, 1 < j < I (pQ = 1). 
Then (9) implies that 

(16) H. = 0(cp/L. x. ), 1 < j < i , 
3 3-1 i 

and t h a t the i n t e g r a l s 
(17) / ° ° p j ( L j x i ) H j d s , 0 < j < i - 1, 

a l l c o n v e r g e . Moreover , i f t h e conve rgence i s a b s o l u t e f o r some j = k 

w i t h 0 < k < i - 2 , t h e n i t i s a b s o l u t e fo r k < j < i - 1. 

THEOREM 2 . I & 

(18) Tm ( c p U ) ) " 1 /°°p, \H. |<pck = A < I , 
t-*°° t /L" ~ 

tkzn (3) ka6 a solution u. voklak &atit>hl<L£> {14}, 

VKOO^, Integration by parts yields 

T i-1 T 
(19) / yiqhds = - E H.(L. h)l£ + / p. H. (L h )ds 

if h £ -^^n^ an<^ 2 < i < nj if i = 1, then the sum on the right 

is vacuous and (19) is trivial. (Recall (2) and (15).) Now (5), (9), 

(11),(18), and Lemma 3 imply that we can let T - °° in (19 ) and infer 

(13) with 

-1 i" 1 

(20) a(t?tn) = <p(tft)(<p(t)) ~ |H (t)|L. .x.(t) + 
j = l j 3 " 1 1 

+ 2 ( c p ( t ) ) _ 1 J 0 ° p i . 1 l H i _ 1 l ( p d s . 

From (16), the sum on the right side of (20) is bounded on [a,00); 

hence, (10) and (18) imply (13) for tQ sufficiently large. This 

completes the proof. 

With i = 1, (18) reduces to 

Tim ((p(t))"1 J°°y Iqlcpds < i , 
t-*» t 

which is weaker than (7), since x_ ~ 1. The next two corollaries show 

that ( 18) is also weaker, than (7) if 2 < i < n. 

COROLLARY 1. li 2 < I < n and 

(21) /0°Pfe(V-t
)(Lfe-lX-crl'^< ~ 

£oi 6omz k In { l , . . . , ^c - 1}, tkan (3) kat> a solution u^ wklck 
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6atlA£lzt> ( 1 4 ) . 

Vnooh. From ( 1 6 ) , 

(22) P k ( L k x . ) | H k l < M P ^ V ^ V ^ , ) ' 1 , 

for some constant M, so (21) implies that (17) with j = k 

converges absolutely. From the closing sentence of Lemma 3, this 

means that 

/°°Pi^1lHi_1lds < - , 

which obviously implies (18) with A =0. 

COROLLARY 2. 1^ 2 < I < n and 

(23) J°°p. U ) ( J p . Au))dvo)~1i9
2U)d& = o ( c p U ) ) , 

t yL~1 a yL~1 

tkzn (3) ka& a solution u. wktck 6att6£t2.A ( 13) . 

P/ioo*J. From (22) with k = i - 1 and (4), (2 3) implies (18) with 

A = 0. 

THEOREM 3. 1^ 1 < I < n - 1 and 

(24) Tim" (cpU))""1 J°°q>U)p.U)( J p.(u))dwj) I H . U ) I d6 = B < - , 
t-°° t *- a * *-

tkdn (3) ka& a solution wkick batlk^t^ (14). 

Vnoofa. Lemma 3 and our present assumption enable us to continue 

the integration by parts in (19) by one more step, to obtain 

J°°y.qhds = Z H - ( t ) L . , h ( t ) + J°°p .H . (L . h ) d s . 
t j = l J J t 

Because of (5) (with r = i) and (11), this yields 

-1 i ' 1 

a(trt0) = <p(t0)(q>(t)) Z |H, (t)lL. xX±(t) + 2Hi(t) + 
j = l " J 

+ 2(<p(t)) X J°°cp(s)p. (s)( J p. (w)dw)"1|Hi(s)|ds. 
t a 1 

Now (10) and (16) imply (20) for tQ sufficiently large. This completes 

the proof. 

COROLLARY 3. li 1 < I < n - 1 and 

(25) J°°p.U)( J°°p .(u))dvo)~1y2(A)d* = o(cpU))f 
t *- a /L 

tkan (3) ka6 a solution u. wklck Aatit>&i&t> {14}, 

Vtiooh. From (16) w i t h j = i , i t f o l l o w s t h a t (25) i m p l i e s (24) 
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w i t h B = 0 . 
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