EQUADIFF 6

William F. Trench

Linear perturbations of general disconjugate equations

In: Jaromír Vosmanský and Miloš Zlámal (eds.): Equadiff 6, Proceedings of the International Conference on Differential Equations and Their Applications held in Brno, Czechoslovakia, Aug. 26-30, 1985. J. E. Purkyně University, Department of Mathematics, Brno, 1986. pp. [181]--186.

Persistent URL: http://dml.cz/dmlcz/700129

Terms of use:

© Masaryk University, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

LINEAR PERTURBATIONS OF GENERAL DISCONJUGATE EQUATIONS

W. F. TRENCH

Drexel University
Philadelphia, Pennsylvania, U.S.A.

Suppose that $p_{1}, \ldots, p_{n-1}, q \in C[a, \infty], p_{i}>0$, and

$$
\begin{equation*}
\int^{\infty} p_{i} d t=\infty, \quad l \leq i \leq n-1 \tag{1}
\end{equation*}
$$

and define the quasi-derivatives

$$
\begin{equation*}
L_{0} x=x ; \quad L_{r} x=\frac{1}{p_{r}}\left(L_{r-1} x\right)^{\prime}, 1 \leq r \leq n \tag{2}
\end{equation*}
$$

(with $p_{n}=1$). We will give conditions which imply that the equation

$$
\begin{equation*}
L_{n} u+q(t) u=0 \tag{3}
\end{equation*}
$$

has solutions which behave as $t \rightarrow \infty$ like solutions of the equation $L_{n} x=0$.

$$
\text { Let } I_{0}=1 \text { and }
$$

$$
I_{j}\left(t, s ; q_{j}, \ldots, q_{i}\right)=\int_{s}^{t} q_{j}(w) I_{j-1}\left(w, s ; q_{j-1}, \ldots, q_{i}\right) d w, j \geq 1
$$

Then a principal system [2] for $L_{n} x=0$ is given by

$$
x_{i}(t)=I_{i-1}\left(t, a ; p_{1}, \ldots, p_{i-1}\right), \quad 1 \leq i \leq n
$$

in fact,
(4)

$$
L_{r} x_{i}(t)= \begin{cases}I_{i-r-1}\left(t, a ; p_{r+1}, \ldots, p_{i-1}\right), & 0 \leq r \leq i-1 \\ 0, & i \leq r \leq n-1\end{cases}
$$

We also define

$$
y_{i}(t)=I_{n-i}\left(t, a ; p_{n-1}, \ldots, p_{i}\right), 1 \leq i \leq n
$$

and

$$
d_{i r}(t)=\left\{\begin{array}{l}
L_{r} x_{i}(t), 0 \leq r \leq i-1, \tag{5}\\
1 / I_{r-i+1}\left(t, a ; p_{r}, \ldots, p_{i}\right), i \leq r \leq n
\end{array}\right.
$$

We give sufficient conditions for (3) to have a solution u_{i} such that

$$
\begin{equation*}
L_{r} u_{i}=L_{r} x_{i}+o\left(d_{i r}\right) \quad(t \rightarrow \infty), 0 \leq r \leq n-1 \tag{6}
\end{equation*}
$$

for some given i in $\{1, \ldots, n\}$. This formulation of the question is
due to Fink and Kusano, and the best previous result on this question is the following special case of a theorem obtained by them in [1].

THEOREM 1. If

$$
\begin{equation*}
\int^{\infty} x_{i} y_{i}|q| d s<\infty \tag{7}
\end{equation*}
$$

then (3) has a solution u_{i} which satisfies (6).
Our results require less stringent integrability conditions. We need the following lemma from [4].

LEMMA 1. Suppose that $2 \in C\left[t_{0}, \infty\right)$ for some $t_{0} \geq a$, that $\int^{\infty} y_{i} 2 d t$ converges (perhaps conditionally), and that

$$
\sup _{\tau \geq t}\left|\int_{\tau}^{\infty} y_{i} 2 d s\right| \leq \psi(t), \quad t \geq t_{0}
$$

where ψ is nonincreasing and continuous on $\left[t_{0} \infty\right)$. Define

$$
K(t ; Q)=\int_{t}^{\infty} I_{n-i}\left(t, s ; p_{i}, \ldots, p_{n-1}\right) Q(s) d s,
$$

and, for $t \geq t_{0}$, let

$$
J(t ; Q)=K(t ; 2) \text { if } i=1 \text {; }
$$

or

$$
J(t ; 2)=\int_{t_{0}}^{t} p_{1}(s) K(s ; 2) d s=I_{1}\left(t, t_{0} ; p_{1} K(; 2)\right) d s
$$

if $i=2$; or
$J(t ; Q)=I_{i-1}\left(t, t_{0} ; p_{1}, \ldots, p_{i-1} K(; 2)\right)$
if $3 \leq i \leq n$.
Then
(8)

$$
L_{n} J(t ; 2)=-2(t), \quad t \geq t_{0},
$$

and

$$
\left|L_{r} J(; 2)\right| \leq\left\{\begin{array}{l}
\Psi\left(t_{0}\right) d_{i r}(t), 0 \leq r \leq i-2, \\
2 \Psi(t) d_{i r}(t), i-1 \leq r \leq n-1,
\end{array}\right.
$$

moreover, if $\lim _{t \rightarrow \infty} \Psi(t)=0$, then also

$$
L_{r}(J(t ; 2))=o\left(d_{i r}(t)\right), \quad 0 \leq r \leq i-2 .
$$

The following assumption applies throughout.
ASSUMPTION A. Let $\int^{\infty} y_{i} x_{i} q d s$ converge (perhaps conditionally), and suppose that

$$
\begin{equation*}
E(t)=\int_{t}^{\infty} Y_{i} x_{i} q d s=O(\varphi(t)) \tag{9}
\end{equation*}
$$

```
with \varphi nonincreasing on [a,\infty), and
(10)
    \mp@subsup{\operatorname{lim}}{t->\infty}{}\varphi(t)=0.
    If t}\mp@subsup{|}{0}{}>a, let B(t, be the set of functions h such that
L
    Lrr
```

with norm |l \| defined by

$$
\begin{equation*}
\|h\|=\sup _{t \geq t_{0}} \max \left\{\frac{\left|L_{r} h(t)\right|}{\varphi\left(t_{0}\right) d_{i r}(t)}(0 \leq r \leq i-2), \frac{\left|L_{r} h(t)\right|}{2 \varphi(t) d_{i r}(t)}(i-1 \leq r \leq n-1)\right\} \tag{11}
\end{equation*}
$$

Then Lemma l with $Q=q v$ and $\psi=K \varphi$ implies the following lemma.
LEMMA 2. If $u \in C\left[t_{0}, \infty\right)$ and

$$
1 \int_{t}^{\infty} y_{i} q u d s \mid \leq K \varphi(t), \quad t \geq t_{0}
$$

then

$$
J(; q v) \in B\left(t_{0}\right)
$$

and

$$
\|J(; q v)\| \leq K .
$$

Now define the transformation T by

$$
(T h)(t)=J\left(t ; q x_{i}\right)+J(t ; q h) .
$$

Lemma 2 and Assumption A imply that $J\left(; q x_{i}\right) \in B\left(t_{0}\right)$ for all $t_{0}>a$. We need only impose further conditions which will imply that $\int^{\infty} Y_{j}$ qhds converges (perhaps conditionally) if $h \in B\left(t_{0}\right)$, and that

$$
\left|\int_{t}^{\infty} y_{i} q h d s\right| \leq\|h\|_{\sigma}\left(t ; t_{0}\right) \varphi(t), \quad t \geq t_{0},
$$

where σ does not depend on h, and
(13) $\sup _{t \geq t} \sigma\left(t ; t_{0}\right)=\theta<1$
$t \geq t_{0}$
if t_{0} is sufficiently large. Lemma 2 will then imply that T is a contraction mapping of $B\left(t_{0}\right)$ into itself, and therefore that there is an h_{i} in $B\left(t_{0}\right)$ such that $T h_{i}=h_{i}$. It will then follow from (8) and (12) that $u_{i}=x_{i}+h_{i}$ is a solution of (3). Moreover, Lemma 3 with $Q=q u_{i}$ will imply that

$$
L_{r} u_{i_{1}}-L_{r} x_{i}= \begin{cases}o\left(d_{i r}\right), & 0 \leq r \leq i-2 \tag{14}\\ 0\left(\varphi d_{i r}\right), & i-1 \leq r \leq n-1 .\end{cases}
$$

The next lemma can be obtained from (9) and integration by parts.

See [3] for the proof of the special case where $p_{1}=\ldots=p_{n}=1$.
LEMMA 3. Let

$$
\begin{equation*}
H_{0}=y_{i} q ; H_{j}(t)=\int_{t}^{\infty} p_{j-1} H_{j-1} d s, \quad 1 \leq j \leq i \quad\left(p_{0}=1\right) . \tag{15}
\end{equation*}
$$

Then (9) implies that
(16) $\quad H_{j}=0\left(\varphi / L_{j-1} X_{i}\right), \quad 1 \leq j \leq i$,
and that the integrals

$$
\begin{equation*}
\int^{\infty} p_{j}\left(L_{j} x_{i}\right) H_{j} d s, \quad 0 \leq j \leq i-1 \tag{17}
\end{equation*}
$$

all converge. Moreover, if the convergence is absolute for some $j=k$ with $0 \leq k \leq i-2$, then it is absolute for $k \leq j \leq i-1$.

THEOREM 2. If

$$
\begin{equation*}
\operatorname{Iim}_{t \rightarrow \infty}(\varphi(t))^{-1} \int_{t}^{\infty} p_{i-1}\left|H_{i-1}\right| \varphi d s=A<\frac{1}{2}, \tag{18}
\end{equation*}
$$

then (3) has a solution u_{i} which satisbies (14).
Proof. Integration by parts yields

$$
\begin{equation*}
\int_{t}^{T} y_{i} \text { qhds }=-\left.\sum_{j=1}^{i-1} H_{j}\left(L_{j-1} h\right)\right|_{t} ^{T}+\int_{t}^{T} p_{i-1} H_{i-1}\left(L_{i-1} h\right) d s \tag{19}
\end{equation*}
$$

if $h \in B\left(t_{0}\right)$ and $2 \leq i \leq n$; if $i=1$, then the sum on the right is vacuous and (19) is trivial. (Recall (2) and (15).) Now (5), (9), (11), (18), and Lemma 3 imply that we can let $T \rightarrow \infty$ in (19) and infer (13) with

$$
\begin{align*}
\sigma\left(t ; t_{0}\right) & =\varphi\left(t_{0}\right)(\varphi(t))^{-1} \sum_{j=1}^{i-1}\left|H_{j}(t)\right| L_{j-1} x_{i}(t)+ \tag{20}\\
& +2(\varphi(t))^{-1} \int_{t}^{\int^{\infty} \underline{D}_{i-1}\left|H_{i-1}\right| \varphi d s} .
\end{align*}
$$

From (16), the sum on the right side of (20) is bounded on $[a, \infty)$; hence, (10) and (18) imply (13) for t_{0} sufficiently large. This completes the proof.

```
With i = 1, (18) reduces to
```

 \(\operatorname{Iim}_{t \rightarrow \infty}(\varphi(t))^{-1} \int_{t}^{\infty} Y_{1}|q| \varphi d s<\frac{1}{2}\),
 which is weaker than (7), since $x_{1}=1$. The next two corollaries show
that (18) is also weaker than (7) if $2 \leq i \leq n$.

$$
\begin{equation*}
\text { COROLLARY 1. If } 2 \leq i \leq n \text { and } \tag{21}
\end{equation*}
$$

for some k in $\{1, \ldots, i-1\}$, then (3) has a solution u_{i} which
satisfies (14).
Proob. From (16),

$$
\begin{equation*}
p_{k}\left(L_{k} x_{i}\right)\left|H_{k}\right| \leq M p_{k}\left(L_{k} x_{i}\right)\left(L_{k-1} x_{i}\right)^{-1}{ }_{\varphi} \tag{22}
\end{equation*}
$$

for some constant M, so (21) implies that (17) with $j=k$ converges absolutely. From the closing sentence of Lemma 3, this means that

$$
\int^{\infty} \mathrm{p}_{\mathrm{i}-1}\left|\mathrm{H}_{\mathrm{i}-1}\right| \mathrm{ds}<\infty,
$$

which obviously implies (18) with $A=0$.
COROLLARY 2. If $2 \leq i \leq n$ and

$$
\begin{equation*}
t_{t}^{s^{\infty} p_{i-1}(s)\left(\int_{a}^{s} p_{i-1}(w) d w\right)^{-1} \varphi(s) d s=o(\varphi(t)), ~} \tag{2}
\end{equation*}
$$

then (3) has a solution u_{i} which satisfies (13).
Proof. From (22) with $k=i-1$ and (4), (23) implies (18) with $\mathrm{A}=0$.

THEOREM 3. If $1 \leq i \leq n-1$ and
(24) $\operatorname{Tim}_{t \rightarrow \infty}(\varphi(t))^{-1} \int_{t}^{\infty} \varphi(s) p_{i}(s)\left(\int_{a}^{s} p_{i}(w) d w\right)^{-1}\left|H_{i}(s)\right| d s=B<\frac{1}{2}$,
then (3) has a solution which satisfies (14).
Proo6. Lemma 3 and our present assumption enable us to continue the integration by parts in (19) by one more step, to obtain

$$
{ }_{t} \int^{\infty} y_{i} q h d s=\sum_{j=1}^{i} H_{j}(t) L_{j-1} h(t)+\int_{t}{ }^{\infty} p_{i} H_{i}\left(L_{i} h\right) d s .
$$

Because of (5) (with $r=i$) and (11), this yields

$$
\begin{aligned}
\sigma\left(t ; t_{0}\right) & =\varphi\left(t_{0}\right)(\varphi(t))^{-1} \sum_{j=1}^{i-1}\left|H_{j}(t)\right| L_{j-1} x_{i}(t)+2 H_{i}(t)+ \\
& +2(\varphi(t))^{-1} \int_{t}^{\infty}{ }_{\varphi}^{\infty}(s) p_{i}(s)\left(\int_{a}^{s} p_{i}(w) d w\right)^{-1}\left|H_{i}(s)\right| d s .
\end{aligned}
$$ the proof.

COROLLARY 3. If $1 \leq i \leq n-1$ and

$$
\begin{equation*}
t^{\int^{\infty} p_{i}(s)\left(\int_{a}^{\infty} p_{i}(w) d w\right)^{-1} \varphi^{2}(s) d s=o(\varphi(t)), ~} \tag{25}
\end{equation*}
$$

then (3) has a solution u_{i} which satisfies (14).
Proof. From (16) with $j=i$, it follows that (25) implies (24)
with $B=0$.
References.
[1] A.M.Fink and T.Kusano, Nonoscillation theorems for a class of perturbed disconjugate differential equations, Japan J. Math. 9 (1983), 277-291.
[2] W.F.Trench, Canonical forms and principal systems for general disconjugate equations, Trans. Amer. Math. Soc. 189 (1974), 319-327.
[3] W.F.Trench, Evetual disconjugacy of a linear differential equation, Proc. Amer. Math. Soc. 89 (1983), 461-466.
[4] W.F.Trench, Asymptotic theory of perturbed general disconjugate equations II, Hiroshima Math. J. 14 (1984), 169-187.
[5] W.F.Trench, Eventual disconjugacy of a linear differential equation, Proc. Amer. Math. Soc. 89 (1983), 461 - 466.

