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Abstract

This paper deals with a nonlinear periodic second order boundary
value problem, which is at resonance. We will search assumptions for the
right side of the equation, which will lead to the existence of a solution of
the boundary value problem. We will use properties of the Fourier series,
the method of a priori estimates and the topological degree arguments.
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1 Introduction

Let us consider a boudary value problem in the form

(1) 2" +wz = f(t,z,2'),

) z(0) = z(27), ='(0) = 2'(27),
where w € R, f is continuous function on the set J x R2, J = [0, 2x].

By a solution of (1), (2) we will mean every function u with the continuous
second derivative, which fulfils (1) for all ¢ € J and which satisfies the condition
(2). First we will consider the homogeneous linear differential equation

(3) 2" +wr =0, wherew € R,
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52 Jan DRAESSLER

with the periodic condition (2). Let us recall, we say that the problem (1), (2)
is at resonance, if the problem (3), (2) has a nontrivial solution.

We can distinguish three cases:

w < 0: In this case the homogeneous periodic problem (3), (2) has only the
trivial solution and then the problem (1), (2) is not at resonance.

w = 0: In this case each constant z = ¢ € R is a solution of the problem (3),
(2). Therefore the problem (1), (2) is at resonance. This kind of a
boudary value problem is described in [1], [2].

w > 0: We can write every solution of the differential equation (3) in the form

z(t) = Acos \Vwt + Bsin y/wt.

The problem (3), (2) has eigenvalues w = 1,4,9,...,k2,... where k € N, and
there is a corresponding linear space of eigenfunctions z(t) = A coskt + Bsinkt
with the base {sinkt,coskt} for each eigenvalue k2. In this case the problem
(1), (2) is at resonance, as well.

In this paper we will study the resonance problem

4) " +m?z = f(t,z,2),
(2) z(0) = z(27), 2'(0) =2'(2n),

where m € N.

We will present new results on the Leray-Schauder topological degree of an
operator associated to (4), (2). These results generalize and extend those of [1]
and imply the existence of a solution of (4), (2) in the case that f can cross

eigenvalues higher than m?.

2 Definitions and Lemmas

In this part we recall some notions and relations, which will be used later.

We will work with the following Banach spaces:

C(J) is the space of continuous functions on J, where we define the norm
[zl = max{|z(t)| : t € J} for each & € C(J).

C*(J) is the space of functions, which have continuous k-th derivatives on
J for k € N. In C*¥(J) we define the norm

k
lzllce = > llzPle
=0

for each function x € C*(J).
Ly(J) is the space of functions = with xP Lebesgue integrable on J for
p € [1,00). For each function € L,(J) we define in L,(J) the norm

el = (5 [ leorar)”
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W12(J) is the space of functions z, derivatives z' of which are defined almost
everywhere on J and (z')? are Lebesgue integrable on J. For x € W12(J) we
define the norm ||z||; 2 = (||z]|2 + ||z'|l2) in W2(J).

For p = 2 we define the scalar product

@ve=g [ sy

in the space L(J) and then we get the Hilbert space.
Moreover we will work with the Hilbert space

H = {z e W"*2(0) = 2(2m)},

1
where we define the norm |[z]|gz = (||z]|3 + ||z']|3)* for each € H and the
scalar product

1 27
@yu=5- [ [2()y®) +2'(O)y'®)]dt
™ Jo
for each z,y € H.
Definition 2.1 We say that a normed linear space X with the norm || - ||x is
continuously imbedded to a normed linear space Y with the norm || - ||y, if

(a) XV,
(b) there exists a constant k£ > 0 such that each u € X fulfils ||u|ly < kl|ju||x-

Definition 2.2 We say that a Banach space X is compactly imbedded into a
Banach space Y, if

(a) X CV,

(b) every sequence {u,}52; of elements from X, which converges weakly in X
to the element ug, converges strongly in Y to ug.

Lemma 2.1 If a Banach space X is compactly imbedded into a Banach space
Y, then X is imbedded into Y continously ([4], p. 205).

Lemma 2.2 The space WY2(J) is compactly imbedded into the space C(J)
([4], p- 206).

Lemma 2.3 The space H is compactly imbedded into the space C(J) and there
ezists k > 0 such that each v € H fulfils

() llulle < Kllulla-

Proof We can also use the norm || - ||;,2 in H, which is equivalent with the
norm ||-||g. (see [5], p- 348). Therefore the space H is also W12 and then, with
respect to Lemma 2.2, it is compactly imbedded into C(JJ). Then from Lemma
2.1 and Definition 2.1, there is £ > 0 such that (5) is fulfiled for eachu € H. O
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Lemma 2.4 (Mean value theorem) Let m, M € R and f,g € C(J) satisfy
f(@) >0 and m < g(x) < M for all x € J. Then there exists a mean value
g € [m, M] such, that

2

27
f(z)g(z)dz =7 A f(z)dz.

Lemma 2.5 (Sobolev inequality) Let u € H be 2n-periodic and let

27
/ u(t)dt = 0.
0

Then

™
(6) llulle: < Zllu'll3-

([7], p. 25.)

Lemma 2.6 Let X be a Banach space, r > 0 and B(r) = {u € X;||z||x < r}.
Let I be the identical operator on B(r). Let F be a completely continuous
operator, which is defined on B(r) with values in X and such that Fu # u for
each u € OB(r). Then there exists an integer number

d[I - F; B(r)]
(which we call the Leray-Schauder topologic degree) such that:

a) d[I; B(r)] =1
b) If d[I — F; B(r)] # 0, then there exists ug € B(r) such that Fug = ug.

¢) If G is also a completely continuous map on B(r) with the values in X and
if (I — F —tG)u # 0 is fulfiled for each u € dB(r) and for each t € [0,1],
then

@) _ d[I — F;B(r)] =d[I — G — F; B(r)].

d) If the operator F is odd, then the degree d[I — F'; B(r)] is an odd number.
([4], p- 245, Th. 80.14.)

3 Fourier Series

In the whole section suppose that m € N and that x € H is an arbitrary
2m-periodic function. Let us consider Fourier series

[ee]
(8) z(t) = ap + Z ay, cos kt + by, sinkt,
0
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with Fourier coefficients with respect to the scalar product in Ly(J). Let as put

m—1
T(t) = ao+ Y, axcoskt + by sinkt
k=0

9) 20(t) = am cosmt + by, sinmt
Z(t)= 5. aypcoskt+bysinkt
k=m+1
and
(10) zt(t) = z(t) — 2°(t).

Lemma 3.1 There is a real number 6; > 0 such that
(11) sillzllE < m?|izl3 - |Iz'113-
Proof Every z € H fulfils

27 m—1
|3 “2:—‘/ ao+Zakcoskt+bksmkt) dt =

1 [ 5 m! al + b2
_%/0 (ao—l-Zakcos kt + b sin® kt)d ag + 2
k=1 k=1
and
2 m 1 2
IZ')2 = — Z —kay, sin kt + kby, cos k:t) dt =
-1
2r m—1 m—1 b2
= zi (Z ka2 sin® kt + K20 cos® kt ) dt = 3 K +
T Jo k=1 k=1
Hence
'3 < (m — 1)*||z]l3.
Then for §; = ﬂ‘(‘m_‘lT)‘f we get
1+ 6)NIZ'[I3 < (m® - &)|[Z13,
& 11 1% = 6z |13 + a1 lIzll3 < m||Z]13 — 11Z']13- =

Lemma 3.2 Let vy € [0,2m + 1). Then there exists 62 > 0 such that
(12) 12113 = (m® + IIZI3 > &21|Z113-
Proof Like in the proof of Lemma 3.1 we can prove

0 2 4 p2 e 2+b2
EE= Y B ad FE= Y REE

2
k=m+1 k=m+1
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Then
(13) 12115 > (m + 1)%1215-
Hence for 6, = 12;?—;:__1)'% we get

(1= 8113 > (m® + v + 62) 12113,

113 = (m® + N3 > 6211Z"[13 + b211Z|13 = 211213 =
Lemma 3.3 The following statements are valid:
a) m*|z°(13 = [l=*'|13;

b) L2, TLZ; 2°1Z; T 1T

c) (",7)2 = —|IT'|13; *,2%)2 = —||z%|13; (@",7)2 = —|I7'|13.
Proof
a)
1 2T
1213 = o (am cosmt + by, sin mt)>dt
0
1 27 9 b2
=9/ (a2, cos® mt + b2, sin® mt)dt = %_m
Lo a2, +b?
12113 = o7 s M2 (=@ sinmt + by, cosmt)?dt = m2_m2_@ = m?|2| 2.

b)

27 m—1
(%,2°), = 51}- / [ao + Z (ay cos kt + by, sin kt)] (am cosmt + by, sinmt) dt
0 k=1

1 2w 1 m—1 27 ~
e ao(am, cosmt + by, sinmt) dt + — E [/ aram cos kt cosmt dt
271' 0 271' =1 0

2w 27
+ / bran, sin kt cosmt dt + / arby, cos kt sinmt dt
0 0

2T

+ by b, sin kt sin mt) dt] =0
0

i.e. ZLz%. We can prove Z1z°, T17 and ' L% analogously.

c)

(‘f",f)z =
1 27 m—1 m-l
_ = / [_ (—k2ay, cos kt+—k2by sin kt)] {ao+ Z (a cos kt + by, sin kt)] dt
T Jo k=1 k=1
1 m—1 o m—1 2 b2
= 3 k2/ (ax coskt + by sinkt)2dt = — Y kzﬂ% = —||Z'l3-
k=1 0 k=1
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We can prove the statements (&,%)> = —||#'||2 and (22", 2°); = —||z%'||2 in the
same way. O

Lemma 3.4 Let vy € [0,2m +1). Then there exists § > 0 depending on 7y such
that the inequality

(14) =[5 + IZl13 + m?|Zll3 — (m® + @13 > 8l
is valid.
Proof From (8), (9), (10) and Lemma 3.3 it follows
etz = lle =2l = |17 + 2|3 = (T + 7,7+ 7)2
= [1Zl3 + 2(z, 2)2 + 117113 = lIzll3 + ||Z]13,
1 = lla' 23 = I + I = (&' + ¥, 7 + &),
= 12|13 +2(@", 32 + 17113 = 112']13 + 1']13-
Hence
lle 113 = llz =213+l — 2”113 = lIZl13 + 203 + 113 + 1115 = 2% + 121
Using (11) and (12) we get
=115 + 12113 + m?||z]l3 — (m® + NIZIS > i llzF + 621|213
> 8lizllF + o1zl = dlla* 11,

where

(15) J_mln{51,52}—-mm{1+(m_1)2’1+(m+1)2}‘

[m]

Lemma 3.5 Let v € [0,2m — 1). Then there exists § > 0 depending on v such
that

1 [ ~
(16) > / [z" + (m? + 7)z][Z + 2° — T)dt > §||l=t||%.
0
Proof We will rearrange the left side of (16) using (14) and Lemma 3.3.

]. 2T

= / (& + (m? +7)a][E + 2° — F]dt =
0
1 27

— | ["@+2°-2)+ m?+7)z(F +2° - 7)]dt
2w 0

1 2m o . " .
=5 [@"Z — "% + m?T — m?%° + y2(Z + 2° — T)]dt
0

v

=I5 + 112113 + m?||Zll3 — (m® + NZ|3 > dllz |13,
where ¢ is the constant given by (15).
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Lemma 3.6 Let € € (0,2m — 1), ¢ € (0,€), 71,72 € C(J) be such that

(17)

2

0< () <2m+1-€0<(t) foraliteld,
12(e—¢
o 72(t)dt < 1+((m+{)))7'

Then there ezists 6* € (0,€) satisfying
1 n " 2 3 0 * 12

(18) 3 | [ mT A () + )]z +2° - F)dt > 57|l ||

0
Proof Following the proof of Lemma 3.5 we have

1 27

= / " + (m? + 7 (8) + 7 (8)][E +2° — Fde >
0
2112 4 (15 sz L [T
> {5+ w5l + 171 — 2l — 5 [ () + ()
By Lemma 2.4 there is a mean value 1 € [0,2m + 1 — €] fulfilling

1 27 ) '7”\1 27 ) )
~ _ P4t < (2 — IFR
(19) _27r/0 Ty (t)dt 3 ; Z%dt < (2m +1—€)||Z|]3

Further, using (17) and the Sobolev inequality (6), we get

1 12(e —€o) €— €

o 517113
2nl+(m+1)2 ~ 14+ (m+1)2

1 27r~ _
) g [ @<z

Then, by (19), (20) and (14) with v = 2m + 1 — €, we obtain

o [ @) + )l 20 - e >
T Jo

. _ ~ ~ € — €g ~
> —|lz'[l3 + m?|Iz3 + [13']13 — (m® + 2m + 1 = )3l — ————5 I3
1+(m+1)
> 12 _ €—¢€ 12> |s— €~ ¢ 192
_ €0 1712
ST

Here we have used the fact that

5 = min 2m —1 € _ €
- I+m+1)21+1+m)2f 1+ (1+m)?’

So, for 6* = ﬁrﬁ’;l—)g € (0,¢€o) the inequality (18) is true. |
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4 A priori Estimates

Now, let us consider the equation (4) and suppose that
ft,z,y) = a1t z,y) + 92(t, 2),

where g1, g» are continuous. Then (4) has the form

(21) " +miz = g1 (t,z,2') + g2(t, 2).

Lemma 4.1 Suppose that y;,v2 € C(J) satisfy (17) and that for My, M, B €
(0,00) the conditions

(22) |gl(t7m,y)| S M1 na J X RQ’

(23) lg2(t,z) + (@) +y2(t)z| < My for allt € J and |z| > B

are valid. Then there ezists a € (0,00) such that each solution of the problem
(21),(2) satisfies the inequality

(24) llzt)r < a+ a? + 2a||z9| 5.
Proof Put

7* = max{|n ()| + |[(t)] : t € J},
(25) g* = max{|g2(t,z)| : t € J,|z| < B},
M* = max{M,, g* + v*B}.

Then
(26) lg2(t, @) + (1 () +72(t)z| < M* on J x R.
Let z be a solution of (21),(2). Then
@7) 2"+ (m® +n(t) +e®)r = at,z,2') + g2(t,z) + (n(t) +12(t))z.

If we multiply (27) by 5= (Z + 2° — Z) and integrate, we get by (18)

M M* 2w _
5 lle i < —%—/ I + 2° — 3|dt.
0

Let us put M = M;+ M* and a = Ig,,k, where k is the constant from (5). Then

M 27w 5 1 o _
é*HxLHHSﬂ/ [T-i-wo—z]dtSM\/ﬁ/ |T + 20 — Z|2dt
0 0

= My/|Iz +2° - Zl); = M\/[IZ + 2°113 + ||z]13

< M(llz 2 + 112°l2) < M(lle* |z + ll2°l|7),
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Mk Mk

5* 6*

lle* Iz — 2allz* || — 2all2]la <0,
(lle* e = @) < 2alle®ll + a?,

a—+/a?+2a||2% g <0< ||zt ||g < a+ Va® + 24|29 5.

Since the norm ||z ||x is nonnegative then the negative solution
a — /a2 + 2a||z°||x
is not important for the restriction of ||z*| . Hence we can write

lzt |l < a+ a2 + 2al|2°| - a

Lemma 4.2 Let the conditions (17), (22) and (23) be fulfiled. Further, let
{zn}32, be a sequence of solutions of the problem (21),(2) and

a1 < =l + =l

(28) lim ||z, ||g = oo.
n—oo

Then there exists (prospectively for a convergent subsequence) a function v such
that

0

T
29 — v inC(J),
29 B

pi
30 —2_ v inC()),
(30) Tl

where v is an eigenfunction of (3),(2) with w = m?.

Proof Firstly we prove that the sequence {Wx’éﬁ o, is bounded in H and
hence there is a subsequence, which is convergent in C(J). Since

lenller < llzxlle + llzplla < llaflle +a+ Va? + 2allz3|ln,

then using (28) we obtain lim, e ||23 ||z = co. The inequality

0 L 2
lzalls  Nablln + izl _a +\/< ‘Yt
EA PR EA EATRR AN P T P

implies limp 00 H—;—E—H% =1, i.e. the sequence is bounded in H and hence with
respect to Lemma 9.3 there is a subsequence, which is convergent in C(J).
Then there exists a function v € C'(J) such, that

Tn

(31) lim ———=v

nvoo [l2fllm
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From N N N
N S 7 PP )
nooo [|Z0[lr T nooo [l2fllg T nooo (|2l

we get

0 L
lim % = lim z—"—o——g—"— =9 —0=uv,
nooo ||lZ3)la - noeo [l |la
z 2w _ v
. n _ . | T lH S
0 Tl e Tl ~ T =
e

Since { E ”H} is the sequence of functions from a linear space S with the base

{cosmt,sinmt}, then v € S. o

Lemma 4.3 Let (17), (22) and (23) be fulfiled and moreover

(32) /0 h 71 (2)dt > 0.

Then there ezists r* € (0,00) such that
(33) llzlla <r
for each solution z of (21),(2).

Proof On the contrary, we suppose that (33) is not valid, i.e. there is a sequence
{zn}52, of solutions of (21),(2), which fulfils (28). Thus z,, fulfils the equation

an +m?Tn + (11 (1) +72(8)2n = 91(t Ta, 23) + g2(t, 20) + (0 () +72(8) 20
for each n € N. If we multiply these equations by —g2— ”x “ and integrate, we get
27

](x"z" +mi Ean + (n(0) + @) - OH0 )dt

llz5 e 23 lle

- /[91 (t,zn,23) + g2(t, zn) + (M1 () + ’Yz(t))ﬂcn][lxﬁTfHdt

0
Since the sequences {ITZ—%”LH}?:I and {”z’; i }82., are uniformly convergent on
J, we can exchange the order of limit and integration. Then with respect to

(29) and (30)

27
n,.0 0 0
lim ( Tnn +m? InZn + (@) + "Yg(t)) Tz ” ) dt =

n—=oo J \[lz3 [l ll25 e
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2
— lim [0l lim / (11 (8) +12(8)) -2 S
T oo M nooo 2Ol e 1|2 || e
0

27

= Jim sl [ i (n(8) + 72(6)

0

0
Tn

n
20l |21l

27

= lim ||2%]|x / (n(t) +72(t)v’dt.
n—o0
0

Since v € S i.e. v2(t) > 0 for almost all ¢ € J and 71(t) is nonnegative on .J
and positive on I, where I C J is the set with the positive Lebesgue measure,
then -1 (t)v2(t) is nonnegative on J and positive on the set with the positive
Lebesgue measure.

Using (28) we get

. zzd 2 Tpx2
), (nmgnﬁ Telln || + 0O + O e )‘”

2
= Tim (|2 / (1 () + v2(6)?dt = oo
n—oo 0

Simultaneously, putting M from the proof of Lemma 4.1 we have

27
li)nolo [gl(tv :L‘n,.’L'{n) + gQ(ta :I,'n) + (71 (t) + 72(t) $n] ” || T —dt < 27TM|Iv||H7
n 0

which leads to a contradiction. O

Since we use the method of the topological degree in the next part, we need
to study the system of equations with a parameter

(34) " +(m?® + )z = MNa(t,z,2') + g2, ) + c1z], X €[0,1],
where ¢; =2m+1—¢, € € (0,2m — 1).

Lemma 4.4 Let the asumptions (17), (22), (28) and (32) be fulfilled. Then
there exists r* € (0,00) such that for any A € [0,1] each solution x of the
problem (84),(2) fulfils (33).

Proof Let for some A € [0,1] a function z be a solution of (34),(2). Then z
fulfils

(35) 2"+ (M2 +e)z+An(t) + %) —a)z =
= Agi(t,z,2") + ga(t, 2) + (1 (t) + 72(t))z].

The left-hand side of (35) can be written in the form =" + (m? + 71 (t) + ¥2(t))z,
where 71 (t) = (1 = A)ep 4+ Ay (2), F2(t) = Ay2(t). We can see that 71,7 satisfy
(17).
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So, by Lemma 3.6, we can find 6* > 0 such that (18) is true. Therefore,
following the proof of Lemma 4.1, we can find a > 0 such that (24) is valid for
any A € [0, 1] and any solution of (34), (2).

Now, consider a sequence of parameters {\,}52; C [0,1] and a correspond-
ing sequence of solutions {z,}3%; of (34),(2). We can choose a convergent
subsequence from {\,}%2; and hence we can suppose without loss of generality
that there is Ag € [0, 1] such that

lim A, = Ao.
n—oo

Following the proof of Lemma 4.3 we assume that (28) is valid. Then we can
prove (29) and (30) in the same way as in the proof of Lemma 4.3. Substituting

An and z, in (34), multiplying by ﬁ%ﬁ; and integrating, we have

2 zhzd Tnz? T2 o
+m? I e (1= Ay) ) t) + Yot ——"—'—‘—]dt=
/ [uwnuﬂ Ty PO ey e

.’L‘O
= [ Aalor b0, + 9232) + ((0) + 20 D)l i
0 n

27
<ot [ ||H‘”

where M* is given by (25). Therefore, by (29), (30),

2w 0
lim A [(1 - /\n)cl Tz OH + An(m1(2) + 12(2)) In¥p ] dt =

n—ro0 Nz, &

(11(8) + 72(8)v (1) dt]

27 2w
:nli_)n;ou:anH[cl(l—)\o)/o 02(t)dt+,\0/0
27

< (My + M%) [ |ty dt.
0

Since [Z7(1 — Ao)erv?(£)dt + Ao 2T (1 (t) + 12(8))v?(t)dt = D > 0, we have
limp—soo ||Zn||HD = 00, a contradiction. O

We can write the problem (34),(2) in the form of an operator equation
(36) Lz = ANz, Xe€|0,1],

where
L:domL — C(J),z — 2" + (m? + ¢1)z, domL = {z € C?(J); z fulfils (2)},
N:CY(J) = C(J);z = gi(2(-),2' (1) + g2, () + crz("),
KerL = {z € domL; Lz = 0}.



64 Jan DRAESSLER

Since m? + ¢; € (m?,(m + 1)?), then KerL = {0} and hence there exists
the inverse operator L~! : C(J) — C?(J). We can write equation (36) in the
equivalent form

(37) (I-XML™'N)z=0, Xelo0,1],
where I : C1(J) — C'(J) is the identical operator and i : C?(J) — C'(J),

x — x is the operator of compact imbedding.

Lemma 4.5 Let the assumptions (17), (22), (23) and (32) be fulfilled. Then
there exists p* € (0,00) such, that

(38) llzllcr < p*
is valid for any X € [0,1] and all solutions of (37).

Proof Lemma 4.4 implies that every solution of (37) for X € [0, 1] is bounded
by r* in H. Then
lzlle < kllzlla < kr®,

where k is the constant from (5).
The conditions (2) imply the existence of to € J such that z'(tg) = 0.
Integrating (34) we get

2(8) — o' (to) = /t Agi(t,2,2) + g2(t:2) — c1 (1 = Nz — m?a] dt

and hence
llz'llc < 27[M; + max{|ga(t,z)| : t € J,|z| < kr*} + (m + 1)2kr*] = Ms.

Therefore (38) is valid for p* = M3 + kr*. a

5 Main Results

Theorem 5.1 Let the assuptions (17), (22), (23) and (32) be fulfilled. Then
there is p* such, that

dlI —iL7'N,K(p*)] =1,
where K (p) = {z € C*(J); alln < p°}-
Proof We will use the properties of the Leray-Schauder topological degree.

It will be sufficient, if L= : C(J) = C?(J) is bounded. We can write the
operator L™ : C(J) = C?(J) in the form

L7'z(t) = " G(t,s)z(s) ds,
0
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where

2rsin7r
cos r(s—t+m)
2rsinnr

Glt.s) cosr(s—t—m) for0<t<s <2r
s) =
for0<s <t<2mw

is the Green function of (34),(2) for A = 0 and where r = v/m? +¢; € (m,m+1).
Since r ¢ N then sin 77 # 0 and hence there is K € R such that |G(¢,s)| < K.
Furthermore

. 2sinnwr
ot _sinr(s—t+m) for0<s<t<2r

2sinwr

aG(t,s)_{—M?—‘t—”—"2 for0<t<s<2rm

8%G(t,s) _{ —peosrls=tom) g 0<t<s< 2

2sinnr
ot? peosrls—t+m) forOSSStSQﬂ-’

2sin7r

than there exist konstants K;, K2 < oo such that

dG(t,s)
ot

8G(t, s)

K
< K; and o

< Ks.

Therefore

IL7 zllc= = IL 7 alle + L7 2) lle + (L7 2)"lc

< r?ea}(/o ’ |G(t, S)llz(S)lderr{lEaJx/o i BG(t ?) ‘I s)|ds+

t 52 -
+max/0 ‘———a G(t,5) ’lz(s)lds +r{1€aJx [.BG(t’t ) _ BG(;’:—F) ]Ix(t)l—%-

teJ ot2 ot

™ 92G L, s)

+ max aﬁ{mmﬁgmm+m+mnmmw

teJ

We can see that the map L™! is bounded.

Further we prove that N is continuous i.e. if for every € > 0 there is § > 0
such that for each z,y € C*(J), which fulfil

llz = yller = rgleaa}{Iz(t) —y@®l+1a'(t) ' ()], t € T} <,

the expression ||[Nz — Ny|lc < € is valid.

Put g(t,z,y) = g1(t,z,y) + g2(t, z) + c1z. Since g(t,z,y) is continuous on
J x R? and z,y € C'(J) then the function g(t,z(t),z'(t)) — g(t,y(t),y'(t)) is
also continuous on J and it has a maximum in J. Hence there exists to € J
such that

max |g(t, 2(t), 2’ (1)) — 9(t:y(8), y' ()] = lg(to, @(to), 20() — g(to, y(to), y' (to))!-
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Further for every € > 0 we can search § > 0 such that if |z(to) —y(to)| + |2’ (t0) —
y'(to)| < 4 then

lg(to, z(to), 26,(t)) — g(to, y(to), ¥’ (to))| < €.

Therefore if ||z — yllcr < d then |z(to) — y(to)| + |2’ (t0) — y'(to)| < & is valid,
thus
l9(to, z(to), zo(t)) — g(to, y(to), ¥ (to))| < €

and hence || Nz — Nyllc < e.

Let us prove that the map iL~'N : C*(J) — C*(J) is compact. Since L™ :
C(J) = C?(J) is a linear bounded operator and i : C?(J) — C*(J) is compact
then sL~! : C(J) — C(J) is compact. The operator N : C(J) = C'(J) is
continuous. Therefore the operator iL™'N : C1(J) — C'(J) is compact.

Lemma 4.5 implies that there exists p* € (0, 00) such that for any A € [0, 1]
every solution of (37) lies in the interior of K (p*). Thus for any A € [0, 1] and
z € 0K (p*) we get = # ML ' Nuz.

Then the map F = iL~!N fulfils the assumptions of Lemma 2.6. Let us put
G = —F. From Lemma 2.6 d[I, K(p*)] = 1 and using (7) we get

dlI —iL™'N,K(p*)] = d[I - F,K(p*)] = d[I - F — (1 = NG, K (p")]
=d[I - A\F,K(p*)] = d[I, K(p*)] = 1. 0

Theorem 5.2 Let the assumption (17), (22), (23) and (32) be fulfilled. Then
the problem (21),(2) has at least one solution.

Proof In view of Theorem 5.1 we have d[I —iL™'N, K(p*)] = 1 and with
respect to the Lemma 2.6 there is u € K(p*) such that u = iL™1Nu, i.e. u is a
fixed point of iL~*N. Since the equation (37) with A = 1 is equivalent to the
problem (21),(2), then u(t) is a solution of (21),(2). O
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